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Abstract—This article presents a new spatio-temporal frame-
work for the day-ahead probabilistic forecasting of Distribution
Locational Marginal Prices (DLMPs). The approach relies on
a recurrent neural network, whose architecture is enriched by
introducing a deep bidirectional variant designed to capture
the complex time dynamics in multi-step forecasts. In order to
account for nodal price differentiation (arising from grid con-
straints) within a procedure that is scalable to large distribution
systems, nodal DLMPs are predicted individually by a single
model guided by a generic representation of the grid. This strat-
egy offers the additional benefit to enable cold-start forecasting
for new nodes with no history. Indeed, in case of topological
changes, e.g., building of a new home or installation of photo-
voltaic panels, the forecaster intrinsically leverages the statistical
information learned from neighbouring nodes to predict the
new DLMP, without needing any modification of the tool. The
approach is evaluated, along with several other methods, on a
radial low voltage network. Outcomes highlight that relying on
a compact model is a key component to boost its generaliza-
tion capabilities in high-dimensionality, while indicating that the
proposed tool is effective for both temporal and spatial learning.
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I. INTRODUCTION

ITH the advent of distributed energy resources, such
Was photovoltaic (PV) generation, electric vehicles and
new storage technologies (e.g., home batteries), there is a
growing interest in local energy markets to foster coordination
between end-users [1]. In that regard, pricing energy in distri-
bution networks, which is enabled by the massive roll-out of
smart metering and energy management systems, is becoming
increasingly important [2]. To account for network constraints
in these local energy exchanges, an effective solution con-
sists in penalizing energy transfers in accordance with the
Distribution Locational Marginal Prices (DLMPs) [3]. Such
DLMPs reflect the marginal cost of supplying an extra unit
of energy at each bus (arising mainly from losses, voltage
constraints and phase imbalances), thus creating nodal price
differentiation when network constraints are violated. Market
designs based on DLMPs have already shown some strong
theoretical advantages for the future energy landscape, offer-
ing benefits not only for end-users, but also for the system
as a whole [4], [5]. In particular, the implementation of
DLMPs would incentivize the investment of distributed assets
at optimal locations on the distribution network, while better
reflecting the value of the different flexible resources.

In practice, DLMPs are the dual variables associated with
the nodal energy balance constraints when solving an optimal
power flow (OPF) problem that minimizes the total costs of
the distribution system [6]. These DLMPs are thus compli-
cated signals which are strongly correlated between nodes
(due to technical constraints of the distribution system) and
in time (along the time steps of the scheduling horizon) [7].
Additionally, these DLMPs are highly uncertain, since the OPF
problem is subject to different stochastic sources, i.e., upstream
energy prices, as well as local PV generation and consumption
that have a significant impact on power flows.

Our objective is thus to develop a data-driven tool providing
reliable probabilistic prediction of DLMPs that will be used
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by distribution system operators (DSOs) to properly motivate
end-users to contribute to the network support during their sub-
sequent trading process [8]. In particular, we aim at developing
a prediction framework that bypasses the need for the DSO of
solving a day-ahead multi-phase distribution system dispatch,
in a probabilistic environment that accurately represents corre-
lations among the many uncertainty sources. This aspect is of
high interest since determining the economic dispatch requires
the DSO to gather the preferences and resource characteris-
tics of all the consumers, which would necessitate significant
bidirectional communication and may have privacy implica-
tions. Overall, the proposed data-driven tool is designed to
be applicable to any low-voltage (LV) system, for predicting
(in day-ahead) the DLMPs embodying the intricate space-time
correlations, while quantifying the uncertainty related to future
conditions.

This task requires that each position of the space-time graph
(i.e., each node of the distribution feeder for each time step)
has access to information from all positions [9]-[11], which is
difficult to achieve in a compact and robust framework. In that
respect, traditional machine learning techniques, such as ran-
dom forests, support vector machines and feedforward neural
networks, are designed for a static learning of the relationship
between the variables of interest (i.e., outputs) and their covari-
ates (i.e., inputs) [12]. Such models are thus known to struggle
at efficiently sharing information among different space-time
locations [13].

A naive approach to account for such dependencies con-
sists thus in splitting the complexity of the task by rely-
ing on multiple models, e.g., a different model is trained
for each point of the space-time domain [14]. However,
such a procedure does not scale well to large systems
since the number of models to train (and store) increases
with the problem dimensionality. Moreover, it necessitates a
cumbersome (engineering-based) data pre-processing to feed
each model with the relevant neighbouring information [15].
Another solution consists in simultaneously predicting all
outputs of the forecast domain (in a single instance) [16].
However, when the number of outputs increases (with many
clients over a long forecast horizon), this architecture typically
leads to optimization difficulties to efficiently map the result-
ing high-dimensional input features to the high-dimensional
output vector [17]. This issue is further exacerbated when few
relevant historical data are available.

In order to improve such strategies, statistical methods (such
as autoregressive models) have been developed with the goal
of processing and learning sequences where the elements
are strongly correlated over time [18]. Different alternatives
have then been proposed to integrate spatial information
into such models. In [19], [20], the spatial dimension is
represented through a vector autoregressive (VAR) model,
where co-dependence between sites is captured by additional
coefficients. In [21], the interdependence structure among loca-
tions and lead times is modeled with multivariate ellipsoids.
In such models, the correlations are imposed a priori, which
is not suited for representing the varying correlation pattern of
DLMPs. Indeed, nodal dependencies strongly differs between
safe operation conditions where all nodal prices are equal, and
stressed situations where price discrepancies arise. Moreover,
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the linear nature of the model leads to limitations in the ability
to represent nonlinear dependencies and high-frequency events
(such as rapid variations between successive time steps) [22].

To better represent complex dependencies, one can rely
on recurrent neural networks (RNNs), which have recently
achieved improved performance in many tasks such as the
short-term prediction of electrical series (load, renewable gen-
eration and prices) [23]-[26]. In particular, their emergence
has been fostered by the Long Short-Term Memory (LSTM)
architecture, which is characterized by a memory cell that
is able to extend the range of temporal context available to
the model [27]. This basic (one-dimensional) architecture has
been generalized towards the space-time domain in [28], by
introducing convolutional LSTM (ConvLSTM) for the task
of precipitation forecasting. However, such an architecture
requires that the data follows a matrix structure, where the
spatial information is divided into (2-dimensional) equal sub-
spaces which does not suit the radial topology of low-voltage
systems. In [29], a LSTM-based network is used to extract rel-
evant features of different (spatially-correlated) wind farms,
which are then fed into a deterministic prediction model
combining graph theory and convolutional neural networks.

Overall, applying these approaches for DLMPs forecasting
involves tailoring the model to a specific architecture of the
low-voltage system, such that the resulting model is not robust
in case of topological modification. In particular, accommodat-
ing new nodes (e.g., construction of a new home, installation of
community PV, etc.) requires to modify the forecaster architec-
ture, and to resort to reliable assumptions to infer the historical
missing data, which may not be trivial.

In this article, we develop a generic model that is able to cope
with new clients (with no history) in a framework that exploits
space-time dependencies. The contributions are threefold.

Firstly, we use the flexible nature of neural networks to
represent the high-level spatio-temporal structure of DLMPs.
Practically, the tool relies on a deep bidirectional LSTM
network, which is designed to share the information among all
time steps of the prediction horizon. We find that this struc-
ture yields a large improvement over the standard LSTM, thus
showing a great potential for other multi-step forecast appli-
cations. This solution is combined with a new generic method
to encode spatial information within the model inputs, which
includes both the nodal position indication and the grid struc-
ture. These data enrich the model with the ability to account
for nodal price differentiation.

Secondly, in order to stimulate cross-nodal learning within
a procedure that is applicable to any distribution system, each
nodal DLMP is considered as a different sample fed into a
single model. This solution boosts the model generalization
capabilities, while inherently supporting cold-start forecast-
ing for new nodes with no historical values [30]. Indeed, for
any new client, the procedure only requires to encode its spa-
tial information, and we can use the model (which is trained
with the past information of other nodes) to obtain the desired
predictions, without needing to retrain the tool from scratch.

Thirdly, an extensive comparison with other state-of-the-
art forecasting approaches in a probabilistic setting is carried
out. The benchmark intends not only to compare most suc-
cessful tools such as gradient boosting and deep feedforward
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Fig. 1. Representation of the day-ahead forecasting problem, i.e., at the
forecast creation time fq, the model jointly provides the predicted DLMPs
yi,n for every grid nodes n € N' = {ny, ..., ny} for all time periods t € 7 =
{t1,..., 17} of the next day.

neural networks, but also different strategies to represent
space-time correlations. Outcomes show that avoiding to deal
with high-dimensionality in both input and output feature
spaces is essential to obtain an efficient model, and that
the proposed tool is an efficient architecture to compactly
leverage space-time information, thereby outperforming other
forecasters.

Overall, the resulting model is thus scalable in time (through
a bidirectional recurrent model) and in space (since the
model predicts each nodal DLMP individually). Moreover, the
generic and data-driven nature of the model makes it ideally
suited for smart grid applications where a different model can
be efficiently applied to each of the many low-voltage areas.

The proposed deep bidirectional LSTM model is presented
in detail in Section II, together with the strategy to encode
spatial information. Section III defines the different modeling
frameworks used as benchmark to capture space-time depen-
dencies in the prediction of DLMPs. In Section IV, these
models are evaluated on a 57-buses low-voltage distribu-
tion system with a complex tree-structured topology. Finally,
Section V concludes this article and outlines the main results.

II. MODEL DESCRIPTION

The objective is to generate (in day-ahead) reliable prob-
abilistic forecasts of DLMPs, so as to properly inform local
energy exchanges, and thereby supporting an optimized man-
agement of the low-voltage (LV) system [3].

As represented in Fig. 1, there is a delay (of typically 12
hours) between the forecast creation time f¢ and the start of the
prediction horizon #1, which differentiates this problem from
traditional online prediction tasks. Overall, the forecaster is
designed to solve the following time series regression problem:

p(yt],n» ey ytT,n|y:t0,n» xt((/::),na XS,”) Vne N (1)

where the goal is to forecast DLMPs for each grid node
ne N = {n,...,ny} over the t € T steps (from #; to
tr) of the daily horizon. To that end, the tool has access to
different explanatory variables (inputs), i.e., the DLMP values
Y:10,n Known at the forecast creation time fy as well as the tem-

poral covariates xt({ )n (such as the estimated consumption and

PV generation), and the static features xff) (such as the node
location features) that do not vary with time.

This task is difficult since electricity prices are non-
stationary signals that show multiple periodicities (both slow
and fast fluctuating components) with strong space-time cor-

relations [31]. To that end, based on [25], we propose in
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Fig. 2. Recurrent neural network.

Section II-A a modeling framework that uses the ability of
bidirectional LSTM recurrent neural networks to access long-
range context along time dimension. Then, in Section II-B,
the procedure is complemented to foster cross-nodal learning
(between nodes of the distribution system). This is achieved
by encoding spatial information as additional explanatory vari-
ables, while feeding each nodal price series as a different
sample into a single model. Finally, the input selection and
training framework are described in Section II-C.

A. Capturing Time Dependencies

Recurrent neural networks (RNNs) are models designed to
process input series through the recursive application of a
transition function H at each time period. Such networks are
characterized by a time-dependent hidden state h; that pro-
vides an internal representation of past events, which is used to
propagate relevant information through time (Fig. 2). Indeed,
at each time step t € [#1, t7], the transition function { maps
the hidden state /; to both local features (inputs) x; and the
previous hidden state h;_i.

Basic RNN architectures have shown a limited ability in
grasping dependencies more than a few time steps long [27].
This problem is alleviated by the introduction of the Long
Short-Term Memory (LSTM) transition function, which is
characterized by an additional hidden state ¢, designed to act
as a memory for keeping long-term information from past
inputs (5). This memory cell ¢; interacts with three con-
trol gates, i.e., the input gate i; which memorizes the new
information revealed over time (2), the forget gate f; which has
the ability to discard irrelevant information from the past (3),
and the output gate o; that extracts the relevant information
from the memory content ¢; to compute the LSTM state A; (4).
Since the neural network is composed of multiple LSTM neu-
rons, the information can be either propagated or eliminated
among different units such that the tool is potentially able to
model any complex nonlinear signals, resulting in performance
enhancement [32]. The standard LSTM is implemented by the
following composite function Hysras:

ir = o (Wix; + Uihy—1 + b)) 2
fo =0 (Wyxi + Uphi—y + by) 3)
or = 0 (Wox; + Uphy—1 + by) 4)
¢t = iy © tanh(Wexy + Uchi—1 + be) +f; © -1 %)
hy = o; © tanh(cy) (6)

where W. and U. are the weight matrices, while b. are the bias
vectors, all of which representing the parameters of the neural
network (that need to be optimized during the training phase
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Fig. 3. Bidirectional recurrent neural network.

to efficiently predict DLMPs). Also, ©® denotes element-wise
multiplication, and o is the logistic sigmoid function.

As depicted in Fig. 2, standard LSTM networks process
inputs in temporal order, i.e., the DLMP at #; is predicted
using only data from [#1, #;] such that the predictions are only
based on previous context. This framework is perfectly suited
for online tasks, but may be plagued with a loss of valu-
able information for our day-ahead problem. Indeed, since the
whole DLMP sequence y;, ,, . .., Y,» Deeds to be jointly pre-
dicted at once (Fig. 1), there is no reason not to exploit the
available context in [#x+1, f7]. The underlying idea is that the
available knowledge related to time f;4; withi =1,..., T—k,
such as the estimated values of aggregated loads and PV gen-
eration at the LV system level, can help at explaining the price
conditions at time #. This logic has been successfully applied
in translation tasks where sentences that seem meaningless
after a few words are found to become intelligible in the light
of future context [33].

A powerful strategy to capture such backward dependencies
is to rely on a bidirectional LSTM (BLSTM). This tool is
built upon two separate hidden layers Hrsry (2)-(6), each
one processing the data in opposite directions. The BL_S)TM
model (Fig. 3) computes the forward hidden sequence h; by
iterating from ¢t = 1 to 7, and the backward hidden sequence
h; by iterating from ¢ = T to 1. These vectors are then fed
into the same output layer to generate the DLMP predictions
¥t (9). Hence, for every point ¢ of the sequence, the BLSTM
has complete information about all points before and after .

— —
hi= HLSTM<W7xt +Up him +b7), (7
<« <~
h,= HLSTM<W<h—xt +Us; hpr + bg), ®)
— <~
y;=W—h>yh,+W<h—yh,+by. (9)

Finally, we further strengthen the tool by using deep archi-
tectures to extract more information from input features [34].
Deep RNNs are created by stacking multiple RNN hidden
layers on top of each other, with the output 4! of one layer [
forming the input for the next / + 1. When combining deep
architectures with the bidirectional data processing, each hid-
den state i’ is replaced by the concatenation of forward and
backward states _h)l and h . Practically, for layers / > 1, the
input x; in (7)-(8) is replaced by the concatenation of the out-
puts (A ﬁ_l, h ﬁ_l) of the bidirectional layers at the level /—1
below. 'Ill)e predi(it_ion y¢ is computed in (9) using the hidden
vectors h {‘ and h tL of the upper layer L.
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B. Capturing Nodal Dependencies

In its standard form, the deep BLSTM network strictly
focuses on processing sequential data. In order to capture
space dependencies (i.e., nodal price differentiation due to grid
constraints), we train a single model in a framework where
each nodal price series y. , is individually forecasted.

This strategy offers four advantages. Firstly, training a single
model on multiple nodal series allows the sharing of statis-
tical information across nodes, thereby triggering cross-series
learning. Secondly, the training dataset is |\/| times larger than
models where nodes are jointly predicted, so that overfitting
risk reduces. Thirdly, the framework efficiently decouples the
size of the distribution system from the dimensionality of the
output space y;, treated by the model. This prevents scalability
issues associated with approaches jointly predicting all nodal
prices {¥i.n,. - - .. Yr.ny} 0 a single instance. Fourthly, since the
model is intrinsically trained to generalize to all nodes n € N/
of the distribution system, it has the ability to generate cold-
start predictions for nodes with little or no history (such as
new homes). In order for the tool to exploit this ability, we
need to properly express spatial data.

These spatial features must represent the location of the
nodes, while accounting for the structure of the distribution
system. Traditional methods rely on discrete variables, but
such strategies face the issue that node np is not 2 times
more important than nj. Moreover, they are unable to cap-
ture the similarity between nodes of concomitant branches in
complex tree-structured systems. In this work, we therefore
use a binary representation, which offers a more generic way
of representing spatial data. Practically, each branch of the
system is associated with a boolean feature, which is equal to
1 for the nodes connected to the branch, and O for the oth-
ers. This information is then complemented by encoding the
distance between each client and the root node of the branch.

This generic framework separates the size of the distribu-
tion system from the dimension of the input-output space,
thus accommodating new nodes without affecting the struc-
ture of the forecaster. Indeed, in case of a new connection,
we only need to encode its spatial information, and the fore-
caster leverages its generalization capabilities learned from
past observations of other clients to generate the DLMP
predictions of interest.

C. Inputs Selection and Model Training

In addition to spatial features (described in Section II-B), the
input vector x must be enriched with relevant explanatory vari-
ables. Since DLMPs are mainly dependent on global loading
conditions within the system, the forecaster is guided by the
aggregated conditions at the low-voltage substation level. In
particular, the model takes as inputs the forecasted global PV
generation and load consumption. Moreover, calendar-based
features, i.e., hour of the day, and day of the week, are also
represented with a binary representation [25]. In this work, no
historical prices (such as previous day, or previous week) are
used as explanatory variables in neural networks.

In general, the use of neural networks is divided into two
stages. Firstly, in the training phase, we have access to the
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Fig. 4.

static static

model (S3) model (S4)
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Strategies to represent space-time dependencies with static models, (S1) probabilistic DLMPs are individually predicted for each time step t € 7

at each node n € N, (S2) the model is run for each time step individually, and all nodal prices are jointly predicted, (S3) the model is run for each node
individually, and all time periods are jointly predicted, (S4) all DLMPs of the space-time horizon are predicted together.

historical database, and the objective is to optimize the param-
eters 0 of the forecaster (corresponding to the weight and bias
matrices for neural networks) such that we accurately map the
output y corresponding to a given input x. Secondly, once the
model is trained, it can be used for actual field forecasting.

During the training, the optimal model parameters 6* are
determined by minimizing a loss function £ between the actual
values y and the predictions 3:

0* = argrrgn E(f)(x, 0),y) (10)

The loss function £ is a user-defined measure that quanti-
fies how well the model fits the historical data. In traditional
regression models, the goal is to minimize the mean squared
error Y ,c7 > penFrn — Yin)?, which yields a deterministic
forecast reflecting the conditional mean E(y;, | x;,) where
X;, denotes all explanatory variables known at fo.

In order to properly consider the uncertainty around
predictions, two distinct philosophies can be found. Firstly,
one can implement a two-step procedure whereby a point fore-
casting is firstly obtained and a distribution should then be
estimated to calibrate the point results and get a final density
forecast. In particular, an efficient framework to approxi-
mate the posterior distribution that quantifies the prediction
uncertainty consists in using variational inference [35]-[37].
Secondly, there are methods directly providing the proba-
bilistic predictions. This can be achieved using either a fully
parametrized model (assuming, e.g., a Gaussian distribution of
the error) or via an empirical function. In this article, the latter
approach is selected, where a tailored quantile regression tool
is developed.

Practically, the model is trained with the goal of predicting
the conditional quantiles )A/anc,,,, for different g € Q € [0, 1],
within a non-parametric (distribution free) method. The result-
ing |Q|-dimensional output y;, = {&Zln, e, 57;{%} is forecasted
within a single compact network.

To that end, we minimize the pinball loss £9, which yields a
trade-off between calibration and sharpness [38]. A calibrated
model ensures the statistical correctness of the predictions,
i.e., the percentage of values y;, (across all ¢ and n) below
the predicted quantile )A)Zn is close to the nominal probability
q. The sharpness ensures that the prediction interval widths
(between quantiles) are sufficiently narrow to provide useful
information.

Ly, y) = qrnax(y -9, 0) +( -9 rnax(fz -y, 0) (11)

However, the standard pinball loss is not differentiable when
the forecast error is zero, i.e., jthﬂ = y1.n, Which prevents
the use of gradient descent-based methods to train the model.
The loss function is thus smoothly approximated by including
the Huber norm [39], which consists in replacing the pinball
function by the (continuously differentiable) Euclidean norm
when the error is lower than a user-defined threshold € (in this
article, we arbitrarily use € = 10’6):

L}, 3,9) = gmax(Hy(, $), 0)

+ (1 — g) max(Hp(y, ), 0) (12)
where the Huber norm Hp(y, y) is computed as:
G—»? o
Hb(y, y) =1 . OAS ly—yl<e (13)
y=yl—=5 [y—=yl>e¢

In this work, the model is trained to minimize the total
q od ;
10SS ) e D N qug LH;, (Vt,ns Y1), using the Adam algo-
rithm, a stochastic gradient descent method that uses adaptive
learning rates for escaping local optima.

III. BENCHMARKS

In this section, we introduce different probabilistic forecast-
ing methods as benchmarks for the case study.

A. Static Models

In this part, we implement four different static models, i.e.,
which do not endogenously represent dependencies between
points of the space-time horizon. These are shown in Fig. 4.

The static model of reference (S1) consists in individually
forecasting each point (¢, n) of the space-time domain, i.e.,
the model is run |7 |*| /| times to generate a |Q|-dimensional
output §,, = {37}, ..., jf,q’,Ql} at each iteration.

The second topology (S2) aims at jointly forecasting all
nodes at a given time period, i.e., the model is run |7| times
to generate the |N'|*|Q|-dimensional output.

The third architecture (S3) is trained to jointly predict all
times periods for each particular node, i.e., the model is
applied |\| times to provide the |7 |*|Q|-dimensional output.

Finally, the fourth strategy (S4) is designed to forecast all
points of the spatio-temporal horizon in a single instance, i.e.,
with an output of size |7 |*|N|*| Q).

It is important to notice that, since all nodes are jointly
predicted in models (S2) and (S4), it is irrelevant to feed them
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Fig. 5. Strategies to represent space-time dependencies with time-dependent
models, (R1) by encoding spatial information so as to predict each node
individually (in a more compact model enabling cold-start forecasting), and
(R2) by jointly predicting all nodes of the distribution system.

with spatial information (Section II-B). These four strategies
(S1)-(S4) are applied for the four forecasting tools described
hereunder, resulting in 4¥4 = 16 tested cases.

o FFNN, a feedforward neural network characterized by a
single hidden layer composed of neurons with rectifier
linear units (ReLUs) as activation function. This tool is
the basic neural network structure, which is theoretically
able to learn any nonlinear function.

e DFFNN, a deep feedforward neural network, composed
of several hidden layers stacked on top of each other
with the goal of building up higher level representations
of data, which enables to more efficiently map the raw
available inputs to the desired predictions.

o ORF, a quantile regression forest, i.e., a method that gen-
eralizes random forests for estimating quantiles instead
of the conditional mean. The number of trees is
set to 500, which makes the QRF a strong learning
model.

o GradBoost, a gradient boosting regression tree trained
with the pinball loss to generate quantile predictions. This
method sequentially creates new models to forecast the
residuals of the global model obtained at the previous
stage. The number of boosting stages is fixed to 100.

B. Recurrent Models

We focus here on time-dependent models. As represented
in Fig. 5, two different topologies can be considered.

In the strategy of reference (R1), each nodal series is indi-
vidually predicted (which allows cross-nodal learning and
cold-start forecasting). In the second one (R2), all nodes are
jointly predicted for each time step of the horizon. These two
topologies are tested on the six techniques described thereafter,
resulting in 2*5 = 10 tested cases.

o a traditional LSTM recurrent neural network, composed

of a single hidden layer.

e R-DFFNN, an hybrid forecaster merging a recurrent

model with a deep feedforward neural network (DFFNN).
The goal is to combine the strengths of a LSTM model
(which is tailored to capture the sequential structure of
DLMP sequences) with a regular fully connected feed-
forward layer (which has the ability to learn relations
among non-sequential data).

e BLSTM, a bidirectional LSTM which is dedicated to share

information across all time steps of the horizon.

e DBLSTM, a deep architecture of BLSTM.
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e NS_DBLSTM, a non spatial DBLSTM where location
features and topology of the distribution system are not
encoded so that there is no nodal price differentiation.

These forecasters are also compared with an ARIMA-

GARCH model, where a standard Auto-Regressive Integrated
Moving Average (ARIMA) model is combined with
Generalized AutoRegressive Conditional Heteroscedasticity
(GARCH) residuals, to leverage their ability to represent
changes in variance over time. The confidence intervals around
point forecasts is obtained from the variance derived with the
GARCH model, by assuming a Gaussian distribution of the
error [40]. Moreover, we also implement a naive methodol-
ogy, consisting in partitioning the historical observations (in
the training set) into 7*#|7|*| /| groups, respectively based on
the day of the week, the time period of the day, and the node
of the system. The empirical distribution within each group
is then constructed, and is used (in the test set) as a naive
benchmark to represent the uncertain DLMPs.

C. Hyper-Parameters Optimization

To make a fair comparison, we have carried out an extensive
random search to find the combination of hyper-parameters
that optimizes the predictive power of each model. Indeed,
the forecaster has to be sufficiently sophisticated for reflecting
the dynamics of nodal electricity prices, but not too complex
for avoiding to overfit the model on the training observations,
thus undermining its generalization capacity on unseen data.

The complexity of neural networks is defined by the num-
ber of hidden layers and the number of neurons within each
layer. In deep models, different number of hidden layers are
tested (between 2 and 6, since the first manual simulations
have quickly shown that a higher number does not enhance
the performance of the tools). The weights of neural networks
were initialized using a Glorot uniform distribution. Also,
the activation function of neurons from feedforward neural
networks are rectified linear unit (ReLU).

In complement, early stopping is implemented for avoiding
overfitting in the learning procedure. This consists in divid-
ing the historical set of data into three sets, respectively for
training, validating and testing. This allows stopping the learn-
ing phase (carried out on the training set) before the network
begins to memorize the data instead of learning the underlying
trend, on the basis of the model performance on unseen data
(i.e., the validation set). At the end of the learning phase, the
accuracy of the final model is evaluated on the test set.

D. Evaluation Metrics

For the sake of completeness in performance comparison,
all forecasters are also trained in a traditional deterministic
framework. We evaluate the statistical quality of these point
forecasts using the root mean square error (RMSE). This error
metric focuses on the degree of correspondence between the
deterministic predictions and the actual observations.

A 2
ZIET Zne/\[(yt,n - yt,n)
V| x |T]

RMSE = (14)
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where J; , is the deterministic output of the prediction model
for client n € A at time r € 7, and y, , is the actual value.

Then, four different probabilistic metrics are computed
to evaluate the accuracy of the predicted quantiles. The
performance is evaluated not only in terms of reliability (how
closely the predicted intervals correspond to the actual data
frequencies) and sharpness (concentration of the predicted
intervals), but also through two global metrics, i.e., the pinball
loss and the Winkler score, which quantify the compromise
between these two criteria. Overall, sharpness and reliability
need to be jointly analyzed, as high sharpness (i.e., a desirable
property) is not always associated with a better prediction if
the reliability of the model is low.

Firstly, we use a simple empirical measure of the reliabil-
ity of the prediction intervals, by computing E(I(y, < 51;1’,1))
over the test set. The deviation with respect to the corre-
sponding nominal probability g is a direct measure of forecast
calibration.

Secondly, we evaluate the sharpness of the models using the
prediction interval average width (PIAW), which is computed
for a confidence interval of (1 — «)- 100% as follows [41]:

a1 a/2 Aa/2

PIAW,, = T /\/ > b (15)
ITIWI & &
~0t/2 ~l—a/2
where y;;" and y,, represent the «/2 and (1 — «/2)

predicted quantiles for node » at time .

Thirdly, as a first global metric, we use the total pinball
loss, i.e., the average value of all pinball losses (11) across all
quantiles (in this article, ¢ = 5, 10, 25, 50, 75, 90 and 95%),
over all points (t € 7,n € N) of the space-time domain for
each day of the test set. The smaller is the quantile loss, the
better is the forecasting performance.

However, by averaging all quantiles in the final score, the
total pinball loss may hide low reliability levels for extreme
quantiles [42]. For instance, a high inaccuracy in the 5% quan-
tile forecasts may have a limited impact on the global score.
Hence, we complement the pinball loss with the Winkler score,
which jointly quantifies if the intervals properly encapsulate
the actual realization of uncertain variables (calibration), while
considering the tightness of these intervals (sharpness), within
a design where a lower score indicates a better probabilis-
tic forecast. For a confidence interval of (1 — «) - 100%, the
Winkler score is defined as:

5tn Ltn<ytn§Utn

|T| |N|ZZ 8tn +2(Len — yen)/a Yin < Len

1€T neN | 8t + 20en — Urn) /o Yen > Uy
(16)
~at/2 ~l—a/2 .
where L;, = y,;,; and U;, = y,, are respectively the

lower and upper bounds of the prediction interval (defined by
the confidence level «), and &, = U;, — Ly, is the interval
width. If an observation y; , falls into the predicted interval
[Lt.n, Ut ], the Winkler score is a direct measure of sharpness.
Otherwise, a penalty term is added, whose value depends on
the severity of the forecast error, hence integrating a calibration
measure.
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Fig. 6. The case study distribution network, composed of 6 line ramifications
(I to VI) feeding 57 clients, i.e., 15 single-phase inflexible loads, 40 single-
phase prosumers (with inflexible load, PV source and battery system) and 2
three-phase community-scale PV plants. The industrial load (node D) is added
to the (resulting 58-bus) system at a later stage.

IV. CASE STUDY

This part intends to evaluate the performance of the differ-
ent probabilistic forecasting tools. The neural networks have
been implemented using Python 3.6.0 and the Keras library
(along with the TensorFlow backend), whereas the Scikit-
Learn tool has been employed for ensemble models (QRF
and GradBoost). It should be noted that the same input data
(Section II-C) are used by all models of the case study.

The benchmark is implemented for the IEEE European
Low Voltage Test Feeder, shown in Fig. 6, which has a
tree-structured topology composed of 6 line ramifications.
The original network, which is used to compare the differ-
ent forecasters in Section IV-A, feeds a total of |Ni| = 57
nodes, among which 55 are residential prosumers with single-
phase connections, while 2 are community-scale PV plants
(100 kWp) with three-phase connections. Among residential
clients, 40 are equipped with PV sources (6 kWp) and bat-
teries (4 kW, 8 kWh), while the other 15 have only inflexible
loads. In order to evaluate the ability of cold-start forecast-
ing, a 3-phase 100kW industrial load ‘Ind. Load’ (node D) is
added in Section IV-B.

The DLMPs database comes from the three-phase prob-
abilistic dispatch in [3], realized based on residential load
and PV generation data from the Customer-Led Network
Revolution Trial from October 2012 to March 2014 [43].

A. Comparison of Models for DLMPs Forecasting

The DLMPs are predicted over a (daily) multi-horizon of
|7| = 48 intervals of 30 minutes for the |Nj| = 57 nodes.
The available database has a total of 478 days, among which
286 and 96 are respectively used for model training and vali-
dation, while the last 96 are applied for model testing. Table I
presents the performance of the different (naive, static and
recurrent) tools, and their respective ability to capture the
space-time dependencies in DLMPs. Practically, we compare
the static forecasting techniques presented in Section III-A
on the single-output topology (S1). Then, we select the best
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TABLE I
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Topolo Model RMSE Pinball loss Winkler score [c£/kWh] Empirical coverage [%]
pology [c£/kWh] [CEKWh] | =01 | =02 | a=05 | ¢=5% | ¢q=25% | ¢=73% | ¢=95%
naive methodology 252 337 9.97 8.18 512 34 21.1 737 94.1
ARIMA-GARCH 2.02 2.47 7.23 5.84 3.97 6.2 27.0 75.0 94.2
static (ST) FFNN 1.49 2.14 557 4770 3.41 32 19.9 744 95.8
static (S1) DFFNN 1.31 1.91 4.99 4.20 3.05 3.9 21.0 72.6 93.6
static (S1) ORF 1.36 228 6.45 5.19 3.57 11.8 30.6 65.1 86.4
static (S1) GradBoost 1.50 2.14 5.72 4.74 3.40 3.1 23.7 73.0 95.1
static (S2) DFFNN 1.43 2.04 5.79 455 321 7.7 22 2.4 924
static (S3) DFFNN 1.55 2.18 5.90 4.98 3.47 3.0 21.7 74.5 96.6
static (S4) DFFNN 1.62 222 6.65 5.4 3.39 6.1 25.7 71.6 92.5
recurrent (R1) LSTM 1.42 1.69 438 374 2.70 43 25.0 75.6 942
recurrent (R1) R-DFFNN 127 1.62 429 3.59 2.56 46 24.0 75.5 96.1
recurrent (R1) BLSTM 1.20 1.33 3.63 2.97 2.09 6.7 26.8 70.1 91.5
recurrent (R1) DBLSTM 0.93 1.19 3.20 2.65 1.88 47 24.1 68.0 91.4
recurrent (R1) | NS_DBLSTM 1.25 1.40 3.90 3.24 2.27 5.3 26.3 71.4 91.5
recurrent (R2) DBLSTM 1.22 1.31 4.00 2.99 2.01 45 229 725 937
Li d:  — —_— . . . . .
B BRI S S in Fig. 7), but this does not contribute to improved fore-
—— DFFNN(S1) — GradBoost QRF cast accuracy in comparison to other models such as deep
0.05 feedforward neural networks and traditional LSTM that con-
g 0.04 sistently achieve higher performances. Generally, static tools
= (ORF, GradBoost and feedforward neural networks) are struc-
= 0.03 ture agnostic, which makes them broadly applicable, but at the
E 65 expense of a weaker performance than recurrent models which
Sl are purposefully tailored to the time structure of the multi-step
0.01{ — = prediction [45].
50 60 70 80 90 This observation is strengthen by the improvement asso-

Confidence level (1 — a) - 100%

Fig. 7.
(PIAW).

Sharpness estimate using the prediction interval average width

technique (i.e., the deep feedforward neural network), and we
apply it on the other three (multi-output) topologies (S2, S3
and S4). Similarly, we compare the different recurrent mod-
els on the single output topology (R1), which highlights the
advantages of the bidirectional processing of data in multi-
step forecasting as well as the effect of spatial information on
the prediction performance. Finally, we compare this learning
framework (where each nodal price series is treated individu-
ally) with the multi-output topology (R2). This information is
completed in Fig. 7, where the average sharpness for nominal
coverage rates (1 — «) - 100% € [50 — 90]% is depicted for
different models.

The experiments show that all neural networks strongly out-
perform both the naive (averaging) method and the ARIMA-
GARCH statistical model. This observation is aligned with
previous studies [22], [44], which show that the linear nature
of econometric models make them poorly suited for predicting
the highly nonlinear behavior (and quick fluctuations) of the
price signals. This trend is exacerbated by the increasing
penetration of renewable sources, since prices are becoming
more volatile with frequent price spikes that require advanced
nonlinear tools to be accurately forecasted.

Interestingly, we also observe that LSTM-based recurrent
neural networks are well-calibrated, i.e., P(y; , < )Azzn | X1.n) &
g, and exhibit higher sharpness than other models, with the
exception of the QRF. Indeed, the quantile random forest
yields narrow quantiles (leading to high sharpness as depicted

ciated with the bidirectional LSTM architecture (relative
increase in accuracy of around 20% with respect to the stan-
dard LSTM). This difference illustrates the BLSTM ability
to make more use of surrounding context than the other tools,
by efficiently sharing the information among the different time
periods of the prediction horizon.

Acting in a complementary way, the advantage of deep
networks is also obvious. In line with the current literature,
we see that deep architectures (with several hidden layers)
have better generalization capabilities than shallow ones, with
the pinball loss dropping from 1.33 to 1.19 c£/kWh as the
number of layers increases from one to five for the BLSTM
model. In the latter model, which is the most efficient of
the benchmark, each hidden layer is composed of 20 neu-
rons. A similar improvement of approximately 10%, from
2.14 to 1.91 c£/kWh, is observed for feedforward networks (in
which the optimal complexity is obtained with four hidden lay-
ers). However, in accordance with [22], the hybrid R-DFFNN
model exhibits comparable performances than its individual
components, which illustrates the difficulty to design hybrid
architectures that improve the global prediction accuracy.
Overall, the best performance, in terms of both reliability and
sharpness, is achieved by the deep bidirectional LSTM model.
Its hyper-parameters are presented in Table II, which is com-
plemented in Table III with a sensitivity analysis evaluating
the effects of the model complexity on the related accuracy.
Different numbers of neurons within hidden layers are tested,
i.e., {10, 20, 50, 100, and 200}, but the same number of neu-
rons is used for forward and backward layers in the proposed
DBLSTM tool.

The optimal structure is a DBLSTM layer with 20 neurons
in each of the 5 hidden layers. The batch size to train the model
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Fig. 8.

TABLE 1T
HYPER-PARAMETERS OF THE DBLSTM MODEL

Hyper-parameter Value
number of layers (L) 5

number of neurons by layer 20
Training algorithm Adam

Batch size 16

Time lag 0

Regularization Early stopping

TABLE III
SENSITIVITY ANALYSIS ON THE COMPLEXITY OF THE DBLSTM MODEL

Model complexity Pinball loss [c£/kWh]
# layers - # neurons

1-100 1.33

2 -100 1.27

3-50 1.23

4-20 1.20

5-20 1.19

6 - 20 1.23

is set to 16 daily sequences (of 48 half-hourly intervals) for the
Adam algorithm. This stochastic gradient descent procedure
endogenously adapts the learning rate during the learning. Due
to the nature of the task, in which predictions are needed with
a horizon of interest ranging from 12 to 36 hours from the
forecast creation time (Fig. 1), no past data are treated by
the model. Also, early stopping proves sufficient to achieve
good generalization capabilities, and traditional regularization
techniques such as dropout or adding penalty terms using L1-
L2 norms in the loss function (to enforce sparsity on network
weights) do not lead to improved results. Finally, to deal with
differences in the scales across (input and output) variables,
all data are individually standardized, using a robust scaler
that removes the median and scales the data according to the
quantile range [0.1, 0.9].

From Table III, we see that increasing the model complex-
ity is beneficial but may ultimately lead to overfitting issues
(due to network parameter redundancy). Also, we observe that
relying on additional hidden layers is more efficient in improv-
ing performance than adding more neurons within the same
recurrent layer. However, it should be reminded that the hyper-
parameter solution is closely linked to the size of the training
database. In the case of a limited dataset, a more compact (less
complex) model is more likely to be selected to avoid a model
overfitting on the limited information.

Fig. 8 shows the day-ahead DLMP forecasts of 3 nodes
(A, B, and C in Fig. 6) during a summer day (subject to

hour of the day

15 20 24 0 5 10 15 20 24
hour of the day

Day-ahead probabilistic forecasts of the DLMPs associated with three different nodes (A, B and C in Fig. 6) of the distribution system.

a base load with high PV generation) for the best model
(DBLSTM). The gray areas stand for the forecasted quan-
tiles and the red line denotes the actual price series. At this
stage, it is important to remind that DLMPs are defined by
three main components: energy, losses, and voltage violations.
In general, uncertainties on the energy component arise from
the underlying load and generation uncertainties. Here, we
notice that such forecast uncertainties are globally small in
comparison with the average price of around 20 c£/kWh, and
that the quantiles can effectively seize the variability in the
DLMP profiles. However, during periods of peak PV genera-
tion and low consumption (in the middle of the day), voltage
violations (and increased losses) are observed, resulting in
lower price values. Since the actual voltage violation rates
are highly uncertain (and thus difficult to predict), this leads
to increased uncertainty on nodal prices during these off-peak
periods (which is associated with larger confidence intervals
on DLMP values). Also, these violations of the network
voltage limits on certain buses lead to nodal price differentia-
tion (mainly between 08:00 am and 16:00 pm). Interestingly,
we see that the forecaster has properly captured these
spatial dependencies, thereby suggesting that the proposed
approach is effective in learning across the related nodal
price series.

To further illustrate the contribution of the energy and volt-
age components in the forecasted DLMPs, we show in Fig. 9
the predictions for node A for a classical autumn day (during
which the probability of stressed network conditions is close
to 0). During this day, the DLMP uncertainty is mainly driven
by the energy component, and we observe that price uncer-
tainty is higher during peak periods (slightly in the morning
and more prominently in the evening).

Over the test set, no congestion nor voltage violation (and
thus no price discrepancies) were observed during night peri-
ods, which explains the acceptable global accuracy of the
non-spatial NS_DBLSTM model in which all nodes have
roughly the same price profile. Based on these outcomes,
we see that the predicted DLMPs provide useful day-ahead
information incentivizing the prosumers to increase their indi-
vidual self-consumption when the price of energy is low during
the middle of the day (to alleviate overvoltage issues), and to
flatten their load when the price of energy is highest, hence
leading to safer operating conditions.

At this stage, it is important to notify that, for achieving
decent accuracy on the multi-output architectures (S2, S3, S4
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Fig. 9. Day-ahead probabilistic forecasts of daily DLMPs of node A for a

working day in autumn.
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Fig. 10. Cold-start prediction of the new client connected to the system.

and R2), a different model had to be trained for each g € Q.
This operation is needed to reduce the size of the output space
of each individual model, which is realized at the expense of an
increased computational burden. In general, these multi-output
models attempt to better account for correlations between out-
puts, but are inevitably plagued with scalability issues, e.g.,
model (S4) requires to compute |7 |*|N;| = 48%57 = 2736
points (for each ¢) in a single instance, which is impractical in
view of the number of historical data. This leads to an increase
of the pinball loss from 1.91 (for model S1) to 2.22 c£/kWh
(i.e., accuracy loss of 16%). Likewise, the joint prediction of
all nodal price series with the DBLSTM (R2) is associated
with a drop in performance of 21% in comparison with the
single-output variant (R1). Overall, the outcomes show that
relying on a compact model (with a limited dimensionality
of both input and output feature spaces) is a key element to
extract the predictive power of machine learning techniques.

B. Cold-Start DLMP Forecasting

By considering each nodal DLMP individually (in R1), the
DBLSTM is able to smoothly accommodate nodes with little
history (without modifying the tool structure nor relying on
uncertain inference strategies). This appealing feature is fur-
ther investigated by adding a large 3-phase 100 kW industrial
load (node D) in the case study. We then perform the day-
ahead probabilistic forecast for all |AV>| = 58 nodes over the
same 96 days of the test set.

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 3, MAY 2021

The prediction outcome for the new node D is depicted
in Fig. 10 (for the first week of the test set). It is observed
that the proposed tool has powerful generalization capacities
which enables to efficiently determine the price profile of the
new node. However, the size of the industrial load has a sig-
nificant impact on the power flows within the system, and thus
on the resulting DLMPs. The trained tools are therefore not
well-calibrated to these new conditions, with the global pin-
ball loss of the DBLSTM growing from 1.19 to 2.62 c£/kWh,
mainly due to a loss of sharpness coming from the increased
uncertainty. Interestingly, the NS_DBLSTM suffers a greater
deterioration with the pinball loss increasing to 2.88 c£/kWh,
which shows that our generic way used to encode spatial
information is not only efficient in capturing nodal discrep-
ancies, but makes also the tool more resilient to changes in
the operating conditions. Overall, the ill-conditioning effects
can be smoothly alleviated over time through a proper recal-
ibration of the model (that can be progressively fitted to the
updated system topology) with the new data revealed each
day [46]-[48].

V. CONCLUSION

This article addresses the problem of a distribution system
operator who is responsible to come up with probabilistic
forecasts of DLMPs in low-voltage systems for incentivizing
end-users to account for network constraints in their prosump-
tion profile. These DLMPs are not only correlated across
consecutive time steps, but also among the different nodes
of the distribution network (due to technical limitations). We
show that the combination of deep, bidirectional Long Short-
term Memory RNNs (to capture time information) with a
strategy dedicated to learn across nodal price series gives
state-of-the-art results in probabilistic DLMP prediction.

The main advantage of the method is to capture space-
time dependencies in a framework inherently scalable to large
systems thanks to an unified treatment across all nodes of the
distribution network, which moreover ensures adaptability to
fluctuating operating conditions. Moreover, the strategy allows
to smoothly accommodate new end-users without historical
information (i.e., cold-start forecasting) by leveraging the rel-
evant information from other nodes. Additionally, the generic
nature of the methodology can be applied to other space-time
problems such as forecasting transmission LMPs, or the local-
ized probability of voltage violation or line congestion within
power systems.

REFERENCES

[1] Y. Parag and B. K. Sovacool, “Electricity market design for the prosumer
era,” Nat. Energy, vol. 1, no. 4, 2016, Art. no. 16032.

[2] A. Papavasiliou, “Analysis of distribution locational marginal prices,”
IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4872-4882, Sep. 2018.

[3] T. Morstyn, A. Teytelboym, C. Hepburn, and M. D. McCulloch,
“Integrating P2P energy trading with probabilistic distribution loca-
tional marginal pricing,” IEEE Trans. Smart Grid, vol. 11, no. 4,
pp. 3095-3106, Jul. 2020.

[4] C. Edmunds, S. Galloway, and S. Gill, “Distributed electricity markets
and distribution locational marginal prices: A review,” in Proc. 52nd Int.
Univ. Power Eng. Conf. (UPEC), Heraklion, Greece, 2017, pp. 1-6.

[5] R. Tabors et al., “Distributed energy resources: New markets and new
products,” in Proc. 50th Hawaii Int. Conf. Syst. Sci., 2017, p. 10.

Authorized licensed use limited to: Olivier Deblecker. Downloaded on April 22,2021 at 11:48:14 UTC from IEEE Xplore. Restrictions apply.



TOUBEAU et al.: CAPTURING SPATIO-TEMPORAL DEPENDENCIES IN PROBABILISTIC FORECASTING

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

K. Zheng, Y. Wang, K. Liu, and Q. Chen, “Locational marginal price
forecasting: A componential and ensemble approach,” IEEE Trans.
Smart Grid, vol. 11, no. 5, pp. 4555-4564, Sep. 2020.

A. Radovanovic, T. Nesti, and B. Chen, “A holistic approach to forecast-
ing wholesale energy market prices,” I[EEE Trans. Power Syst., vol. 34,
no. 6, pp. 4317-4328, Nov. 2019.

L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution loca-
tional marginal pricing (DLMP) for congestion management and voltage
support,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4061-4073,
Jul. 2018.

Y. Ji, R. J. Thomas, and L. Tong, “Probabilistic forecasting of real-time
LMP and network congestion,” IEEE Trans. Power Syst., vol. 32, no. 2,
pp. 831-841, Mar. 2017.

J. Lago, F. De Ridder, P. Vrancx, and B. De Schutter, “Forecasting day-
ahead electricity prices in Europe: The importance of considering market
integration,” Appl. Energy, vol. 211, pp. 890-903, Feb. 2018.

M. Sun, C. Feng, and J. Zhang, “Conditional aggregated probabilis-
tic wind power forecasting based on spatio-temporal correlation,” Appl.
Energy, vol. 256, Dec. 2019, Art. no. 113842.

P. Pinson and H. Madsen, “Adaptive modelling and forecasting of off-
shore wind power fluctuations with Markov-switching autoregressive
models,” J. Forecast., vol. 31, no. 4, pp. 281-313, 2012.

Y. Goude, R. Nedellec, and N. Kong, “Local short and middle term
electricity load forecasting with semi-parametric additive models,” IEEE
Trans. Smart Grid, vol. 5, no. 1, pp. 440-446, Jan. 2014.

G. H. Bai, B. Fleck, and M. J. Zuo, “A stochastic power curve for
wind turbines with reduced variability using conditional copula,” Wind
Energy, vol. 19, no. 8, pp. 1519-1534, Aug. 2015.

J. Tastu, P. Pinson, P.-J. Trombe, and H. Madsen, “Probabilistic fore-
casts of wind power generation accounting for geographically dispersed
information,” [EEE Trans. Smart Grid, vol. 5, no. 1, pp. 480—489,
Jan. 2014.

X. Li et al., “DeepSaliency: Multi-task deep neural network model for
salient object detection,” IEEE Trans. Image Process., vol. 25, no. 8,
pp. 3919-3930, Aug. 2016.

A. Ghaderi, B. M. Sanandaji, and F. Ghaderi, “Deep forecast: Deep
learning-based spatio-temporal forecasting,” 2017. [Online]. Available:
arXiv:1707.08110.

Z. Yang, L. Ce, and L. Lian, “Electricity price forecasting by a hybrid
model, combining wavelet transform, ARMA and kernel-based extreme
learning machine methods,” Appl. Energy, vol. 190, pp. 291-305,
Mar. 2017.

J. Dowell and P. Pinson, “Very-short-term probabilistic wind power fore-
casts by sparse vector autoregression,” IEEE Trans. Smart Grid, vol. 7,
no. 2, pp. 763-770, Mar. 2016.

Y. Zhao, L. Ye, P. Pinson, Y. Tang, and P. Lu, “Correlation-constrained
and sparsity-controlled vector autoregressive model for spatio-temporal
wind power forecasting,” IEEE Trans. Power Syst., vol. 33, no. 5,
pp. 5029-5040, Sep. 2018.

F. Golestaneh, P. Pinson, R. Azizipanah-Abarghooee, and H. B. Gooi,
“Ellipsoidal prediction regions for multivariate uncertainty characteriza-
tion,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4519-4530, Jul. 2018.
J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot elec-
tricity prices: Deep learning approaches and empirical comparison of
traditional algorithms,” Appl. Energy, vol. 221, pp. 386—405, Jul. 2018.
M. Sun, T. Zhang, Y. Wang, G. Strbac, and C. Kang, “Using Bayesian
deep learning to capture uncertainty for residential net load forecasting,”
IEEE Trans. Power Syst., vol. 35, no. 1, pp. 188-201, Jan. 2020.

Y. Wang, N. Zhang, Q. Chen, D. S. Kirschen, P. Li, and Q. Xia, “Data-
driven probabilistic net load forecasting with high penetration of behind-
the-meter PV,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3255-3264,
May 2018.

J.-F. Toubeau, J. Bottieau, F. Vallée, and Z. De Greve, “Deep learning-
based multivariate probabilistic forecasting for short-term schedul-
ing in power markets,” IEEE Trans. Power Syst., vol. 34, no. 2,
pp. 1203-1215, Mar. 2019.

T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and
R. J. Hyndman, “Probabilistic energy forecasting: Global energy fore-
casting competition 2014 and beyond,” Int. J. Forecast., vol. 32, no. 3,
pp. 896-913, 2016.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and
W.-C Woo, “Convolutional LSTM network: A machine learn-
ing approach for precipitation nowcasting,” in Advances in
Neural Information Processing Systems. New York, NY. USA:
Curran Associates, Inc. 2015, pp. 802-810.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

2673

M. Khodayar and J. Wang, “Spatio-temporal graph deep neural network
for short-term wind speed forecasting,” IEEE Trans. Sustain. Energy,
vol. 10, no. 2, pp. 670-681, Apr. 2019.

R. Wen, K. Torkkola, and B. Narayanaswamy,
horizon quantile recurrent forecaster,” 2017. [Online].
https://arxiv.org/abs/1711.11053.

B. Uniejewski, R. Weron, and F. Ziel, “Variance stabilizing transforma-
tions for electricity spot price forecasting,” IEEE Trans. Power Syst.,
vol. 33, no. 2, pp. 2219-2229, Mar. 2018.

J.-F. Toubeau, J. Bottieau, F. Vallée, and Z. De Greve, “Improved
day-ahead predictions of load and renewable generation by optimally
exploiting multi-scale dependencies,” in Proc. 7th IEEE Conf. Innovat.
SmartGrid Technol., Dec. 2017, pp. 1-5.

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
Netw., vol. 18, nos. 5-6, pp. 602-610, Jul./Aug. 2005.

A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), Vancouver, BC, Canada, 2013,
pp. 6645-6649.

Y. Wang, Q. Hu, D. Meng, and P. Zhu, “Deterministic and prob-
abilistic wind power forecasting using a variational Bayesian-based
adaptive robust multi-kernel regression model,” Appl. Energy, vol. 208,
pp. 1097-1112, Dec. 2017.

Y. Liu et al., “Ensemble spatiotemporal forecasting of solar irradiation
using variational Bayesian convolutional gate recurrent unit network,”
Appl. Energy, vol. 253, Nov. 2019, Art. no. 113596.

Y. Liu et al., “Probabilistic spatiotemporal wind speed forecasting based
on a variational bayesian deep learning model,” Appl. Energy, vol. 260,
Feb. 2020, Art. no. 114259, doi: 10.1016/j.apenergy.2019.114259.

R. Koenker and B. Gilbert, Jr., “Regression quantiles,” Econometrica
J. Econometric Soc., vol. 46, no. 1, pp. 33-50, 1978.

Y. Wang, D. Gan, M. Sun, N. Zhang, Z. Lu, and C. Kang, “Probabilistic
individual load forecasting using pinball loss guided LSTM,” Appl.
Energy, vol. 235, pp. 10-20, Feb. 2019.

M. David, F. Ramahatana, P.-J. Trombe, and P. Lauret, “Probabilistic
forecasting of the solar irradiance with recursive ARMA and GARCH
models,” Sol. Energy, vol. 133, pp. 55-72, Aug. 2016.

M. Khodayar, S. Mohammadi, M. E. Khodayar, J. Wang, and G. Liu,
“Convolutional graph autoencoder: A generative deep neural network for
probabilistic spatio-temporal solar irradiance forecasting,” IEEE Trans.
Sustain. Energy, vol. 11, no. 2, pp. 571-583, Apr. 2020.

J. Bottieau, L. Hubert, Z. De Greve, F. Vallée, and J.-F. Toubeau, “Very-
short-term probabilistic forecasting for a risk-aware participation in the
single price imbalance settlement,” IEEE Trans. Power Syst., vol. 35,
no. 2, pp. 1218-1230, Mar. 2020.

Enhanced Profiling of Domestic Customers With Solar Photovoltaics,
Customer-Led Netw. Revolution, Newcastle upon Tyne, U.K. [Online].
Available: networkrevolution.co.uk, 2014.

N. Amjady and M. Hemmati, “Energy price forecasting—Problems and
proposals for such predictions,” IEEE Power Energy Mag., vol. 4, no. 2,
pp- 20-29, Mar./Apr. 2006.

C. Feng, M. Sun, and J. Zhang, “Reinforced deterministic and proba-
bilistic load forecasting via Q-learning dynamic model selection,” IEEE
Trans. Smart Grid, vol. 11, no. 2, pp. 1377-1386, Mar. 2020.

K. Hubicka, G. Marcjasz, and R. Weron, “A note on averaging day-ahead
electricity price forecasts across calibration windows,” IEEE Trans.
Sustain. Energy, vol. 10, no. 1, pp. 321-323, Jan. 2019.

J.-F. Toubeau, P.-D. Dapoz, J. Bottieau, A. Wautier, Z. De Greve, and
F. Vallée, “Recalibration of recurrent neural networks for short-term
wind power forecasting,” Elect. Power Syst. Res., vol. 190 Jan. 2021,
Art. no. 106639.

A. Bracale, P. Caramia, P. De Falco, and T. Hong, “Multivariate quantile
regression for short-term probabilistic load forecasting,” IEEE Trans.
Power Syst., vol. 35, no. 1, pp. 628—638, Jan. 2020.

“A multi-
Available:

Jean-Francois Toubeau (Member, IEEE) received the degree in civil elec-
trical engineering and the Ph.D. degree in electrical engineering from the
University of Mons, Belgium, in 2013 and 2018, respectively, where he
is currently a Postdoctoral Researcher of the Belgian Fund for Research
(F.R.S/FNRS) within the Power Systems and Markets Research Group. He
was a Visiting Researcher with KU Leuven from September 2019 to February
2020. His research mainly focuses on bridging the gap between machine
learning and decision making in modern power systems.

Authorized licensed use limited to: Olivier Deblecker. Downloaded on April 22,2021 at 11:48:14 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1016/j.apenergy.2019.114259

2674

Thomas Morstyn (Member, IEEE) received the B.Eng. degree (Hons.) in
electrical engineering from the University of Melbourne in 2011, and the
Ph.D. degree in electrical engineering from the University of New South Wales
in 2016. He is a Lecturer of Power Electronics and Smart Grids with the
School of Engineering, University of Edinburgh. He is also a Visiting Fellow
with the Oxford Martin School, University of Oxford. His research interests
include multiagent control and market design for integrating distributed energy
resources into power system operations.

Jérémie Bottieau (Student Member, IEEE) received the Diploma degree in
electrical engineering from the University of Mons, Belgium, where he is
currently pursuing the Ph.D. degree with the Power Systems and Markets
Research Group. His research interests include short-term forecasting and
optimization in electricity markets.

Kedi Zheng (Graduate Student Member, IEEE) received the B.S. degree
in electrical engineering and automation from the Department of Electrical
Engineering, Tsinghua University, Beijing, China, in 2017, where he is
currently pursuing the Ph.D. degree in electrical engineering. His research
interests include the application of big data analytics for electricity market.

Dimitra Apostolopoulou (Member, IEEE) received the undergraduate degree
in electrical and computer engineering from the National Technical University
of Athens, Greece, in 2009, and the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Illinois at Urbana—Champaign
in 2011 and 2014, respectively. She is currently a Lecturer with the City,
University of London. She was a Postdoctoral Researcher with the University
of Oxford and a Lecturer with Christ Church College. She worked with the
Smart Grid and Technology Department, Commonwealth Edison Company.
Her research interests include power system operations and control, market
design, and economics.

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 3, MAY 2021

Zacharie De Greéve (Member, IEEE) received the electrical and electronics
engineering degree from the Faculty of Engineering of Mons, University of
Mons, Belgium, in 2007, and the Ph.D. degree in electrical engineering from
the University of Mons in 2012. He was a Research Fellow with the Belgian
Fund for Research (F.R.S/FNRS) until 2012. He is currently a Researcher with
the Power Systems and Markets Research Group, University of Mons, and
a part-time Lecturer since September 2019. He conducts transverse research
in machine learning, optimization, and energy economics, applied to modern
electricity networks with a high share of renewables, in order to contribute to
the energy transition.

Yi Wang (Member, IEEE) received the B.S. degree from the Department
of Electrical Engineering, Huazhong University of Science and Technology,
Wuhan, China, in 2014, and the Ph.D. degree from Tsinghua University,
Beijing, China, in 2019. He was also a Visiting Student Researcher with
the University of Washington, Seattle, WA, USA, from 2017 to 2018. He is
currently a Postdoctoral Researcher with ETH Ziirich. His research interests
include data analytics in smart grid and multiple energy systems.

Francois Vallée (Member, IEEE) received the degree in civil electrical engi-
neering and the Ph.D. degree in electrical engineering from the Faculty
of Engineering, University of Mons, Belgium, in 2003 and 2009, respec-
tively. He is currently an Associate Professor and a Leader of the Power
Systems and Markets Research Group, University of Mons. His research
interests include PV and wind generation modeling for electrical system
reliability studies in the presence of dispersed generation. His Ph.D. work
has been awarded by the SRBE/KBVE Robert Sinave Award in 2010. He
is currently a member of the Governing Board from the “Société Royale
Belge des Electriciens—SRBE/KBVE” (2017) and an Associate Editor of the
International Transactions on Electrical Energy Systems (Wiley).

Authorized licensed use limited to: Olivier Deblecker. Downloaded on April 22,2021 at 11:48:14 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


