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Abstract— The cross-border capacities are prominent input data 

in the adequacy assessment of an interconnected electric power 

system. In order to incorporate the interconnection capacities 

through the Flow-Based (FB) domains in the adequacy 

assessments of the Central Western Europe (CWE) electricity 

system, the main challenge lies in the dependence of FB domains 

on factors that are unknown over the long-term horizon of the 

adequacy study. To tackle this challenge, the CWE Transmission 

System Operators (TSOs) employ a two-step methodology, which 

consists in first clustering the FB domains, then correlating the 

obtained FB clusters with relevant factors. This paper focuses on 

the first step of the methodology and studies advanced clustering 

techniques to improve the partition of FB domains. To this end, 

different dedicated distance measures, clustering approaches and 

cluster validation metrics are proposed. Our clustering studies 

conducted on the historical FB domains demonstrate that the 

fuzzy clustering technique in combination with the proposed 

dissimilarity distance measure lead to the cluster results, which 

are considerably improved with respect to the ones obtained by 

the application of k-medoids clustering method and Hausdorff 

distance, traditionally used by the TSOs.  

Index Terms— adequacy assessment, flow-based market 

coupling, clustering techniques, interconnection capacities.   

I. INTRODUCTION  

Adequacy study evaluates the ability of an electric power 
system to meet the load demand over the studied horizon. 
Traditionally, the adequacy assessment has been carried out 
according to a deterministic formulation based on the amounts 
of peak load and available generation considering conservative 
contingency scenarios. In order to efficiently cope with the 
increasing uncertainty in the adequacy study (e.g., arisen from 
the renewable-based generations [1], [2]) while addressing the 
cost-effectiveness aspect (avoiding the reliance on conservative 
scenarios), the adequacy assessment methodologies are 
changing from deterministic towards probabilistic-based 
approaches [3]. In the latter case, Monte Carlo simulations are 
usually carried out to capture the uncertain nature of load and 
generation as well as the unplanned outages. The probabilistic 
(known also as risk-based) adequacy assessment determines 
through Monte Carlo simulations and economic dispatch, the 
probability, duration, and amount of energy shortfall in the 
studied scenarios [3].      

Besides the available domestic generation and load demand 
as well as the unplanned outages, it exists another important 
factor in the adequacy study of an interconnected electric power 
system, namely the cross-border exchange capacities. The latter 
defines the amount of achievable import or export via the 
interconnections. Generally, the electricity systems (markets) 
are interconnected to benefit from the available resources in 
other zones and countries to eventually improve the social 
welfare of the involved countries. Currently, there are two 
approaches for incorporating the interconnection capacities in 
the electricity market in Europe, introduced as follows. The Net 
Transfer Capacity (NTC) approach that assumes a commercial 
capacity between two market zones, and the Flow-Based (FB) 
approach, which more accurately considers the physical grid 
constraints. The FB method aims to consider the 
interdependencies between the flows crossing different borders 
by relying on a joint methodology, shared by all the involved 
countries. Reference [4] describes concepts and definitions of 
the Flow-Based Market Coupling (FBMC). The NTC is the 
traditional capacity allocation approach still being used on 
specific borders in Europe, while the Central Western Europe 
(CWE) region, which is the focus of the current paper, has 
moved towards the FBMC since 2015. The FBMC is the target 
model to be applied to other regions of Europe [5]. 

In order to incorporate interconnection capacities through 
the FB domains in the adequacy assessments, the main 
challenge consists in finding the FB domains that efficiently 
represent the network constraints and exogenous conditions 
over the long-term horizon of the adequacy study (typically 
between one to several years ahead). In practice, the FB 
domains depend on factors such as network operating points 
and exogenous conditions (e.g., meteorological conditions that 
affect the load demand and renewable generation) [6], which 
cannot be known precisely over such a long-time horizon. To 
address this challenge, the French TSO (RTE), Belgian TSO 
(Elia) and European TSOs (ENTSO-E) employ a two-step 
methodology, which consists in first clustering the FB domains, 
then correlating the obtained FB clusters with the relevant 
important factors [5], [7]-[9]. More precisely, the objective of 
the clustering task is to group the FB domains into a reduced 
number of clusters, and to select the representative object 
(prototype) of each cluster. The goal of the correlation phase is 
to determine a link between the clustered FB data and the 
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external factors to assign the proper cluster representative to 
each sampled scenario of the risk-based adequacy study.  

In the current paper, we conduct a gap analysis of the 
current clustering methodology employed by the TSOs, and we 
propose suggestions and solutions to improve its performance. 
This will lead to a better calibration of one of the most important 
adequacy assessment inputs, i.e., the interconnection capacities. 
Indeed, relying on wrong FB domains leads to consideration of 
unrealistic import and export capacities in the adequacy 
assessment that will certainly mislead the results.  

This paper discusses the possible improvements in the 
clustering phase of the methodology (employed by the TSOs) 
by proposing tailored distance measures for comparison of FB 
domains, studying different clustering techniques, investigating 
impact of changing the number of clusters, and validating the 
clustered results by meaningful cluster validation metrics.   

The remainder of this paper is structured as follows. In 
section II, the principles and motivation of the flow-based 
market coupling are discussed. The current methodology used 
by the TSOs for the adequacy assessment incorporating the FB 
domains is presented in section III. Then, the proposed 
improvements regarding the choice of proper dissimilarity 
measures and efficient clustering techniques are explained in 
sections IV and V, respectively. Afterwards, section VI 
presents the proposed cluster validation techniques, and section 
VII discusses the studied clustering cases and the obtained 
results. Finally, the last section is dedicated to the conclusions.     

II. FLOW-BASED MARKET COUPLING (FBMC)  

The FBMC aims at modelling the physically feasible power 
exchanges for the trade considering the interdependencies of 
flows within zones (countries). In practice, there is a 
fundamental difference between commercial energy trades and 
physical flows as in an electric power network, the power flows 
through the existing paths according to the Kirchhoff's laws. 
Consequently, the exchange capacity between two market 
zones cannot be fully allocated to the commercial trade between 
them, as some of the capacity will be used by flows resulting 
from the trade of other market zones [4]. In FBMC, physical 
possible flows for the trade are determined according to the FB 
domains, which are represented by a set of linear constraints as:   

                                      � × � ≤ �                                          (1) 

where A is a matrix containing the Power Transfer Distribution 
Factors (PTDFs), x is the net position (= export - import) of 
each zone or country, and b is vector of the Remaining 
Available (capacity) Margin (RAM) of grid elements. The 
PTDF coefficients indicate the incremental physical flows 
induced on transmission lines as a result of a power exchange 
between two zones. Each row of the system of linear constraints 
(1) corresponds to one selected grid element. The FB domain, 
at a given hour corresponds to the intersection of all half-spaces 
created by the system of linear constraints (1), which eventually 
creates a N-dimensional polytope, where N is the number of 
countries involved in the FBMC. Currently, five zones 
(countries) in the CWE region participate in the FBMC, i.e., 
Germany, France, Belgium, Austria, and the Netherlands. 
Figure 1 illustrates a typical FB domain projected on various 2-
dimensional (2D) planes. It shows the interconnection 
capacities between the (two) selected countries while 

neglecting the coordinates relating to 3 other zones. It should 
be noted that in practice, a feasible exchange is determined in 
accordance with coordinates of all the (5) dimensions, i.e., an 
exchange to be feasible must be placed inside the FB polytope. 
 

 
Figure 1.   Projection of a typical FB domain on various 2D planes. The first 
(second) country appearing in the figure legend corresponds to the horizontal 

(vertical) axis. 

III. ADEQUACY STUDY INCORPORATING FB DOMAINS 

FB domains modelled through a set of linear constraints are 
integrated into the adequacy study by adding (1) in the 
optimization problem of the adequacy assessment.   

A. What is the Challenge?  

Integrating FB domains in the adequacy assessment with 
time horizons from one to several years poses several 
challenges. The main difficulty consists in finding, for each 
time step (generated scenario), the FB domain that correctly 
represents its network constraints and exogenous conditions. 
Indeed, the FB domain depends on factors such as network 
operating points and climatic conditions, which are unknown 
over such a long horizon.  

B. Current Methodology Used by the TSOs 

To address the aforementioned challenge, the French TSO 
(RTE), Belgian TSO (Elia) and European TSOs (ENTSO-E) 
rely on a strategy based on a two-step clustering-correlation 
procedure of the FB domains [5], [7]-[9], summarized below.  

FB domains are firstly clustered into k groups according to 
their geometrical resemblance. A partitional clustering 
algorithm (i.e., k-medoids, see below) is employed to that end, 
in combination with a dissimilarity measure (or distance), 
which compares the geometrical shapes of the FB domains. 
More precisely, the distance between two arbitrary FB domains 
A and B is computed using the coordinates of the polytope 
vertices (shown in Figure 1 in 2D plane). To this end, the 
Euclidean distances between each vertex of A and the 
corresponding closest vertex of B are summed to constitute the 
total distance between A and B. The above procedure is applied 
to calculate all distances between every possible pair of FB 
domains. In the end, a square matrix is constructed that includes 
all distances (dissimilarities) of the FB domains in the studied 
dataset. The k-medoids clustering algorithm is then applied [5], 
[8] using the distance exposed above. It consists in a partitional 
clustering algorithm, which structures the input space by 
assigning each object to the cluster with the closest medoid.  

The aim of the correlation phase is to identify a link between 
the partitioned FB domains and the external factors. Indeed, 



 

 

adequacy analyses rely on Monte Carlo sampling of such 
factors. Considering a FB domain that is in line with the 
sampled scenarios is thus crucial in such a context. The shape 
of a FB domain is affected by several factors of different 
importance levels [6]. The objective is to carry out the 
correlation study with the most important factors affecting the 
FB domains. The final selected factors are correlated with the 
cluster memberships obtained in the previous phase, to obtain 
the probability of occurrence of each FB cluster for each factor 
combination (e.g., high, medium, and low levels). Once a 
scenario is generated within the (risk-based) adequacy study 
process, according to its corresponding factor combination, 
medoid of the cluster with the highest probability is employed, 
and the linear constraints encoded by that medoid are integrated 
into the economic dispatch problem.    

C. Proposed Improvements  

This paper focuses on the clustering phase of the above 
methodology. It aims to improve the quality of clustered FB 
data by defining new dissimilarity measures, examining various 
clustering methods, studying impact of changing the number of 
clusters, and defining efficient cluster validation techniques.     

IV. PROPOSED DISTANCE MEASURES FOR DISSIMILARITY 

EVALUATION OF FB DOMAINS  

The first direction of investigation on possible 
improvements to the methodology presented in the previous 
section is dedicated to the choice of the dissimilarity metric, or 
distance measure, which is needed to evaluate the degree of 
dissimilarity between two FB domains. The Hausdorff distance 
(HD), traditionally employed in computer vision (see e.g., [10]) 
is firstly proposed. Slight variations of the classical HD, which 
rely e.g., on a squared Euclidean norm, are then discussed. 
Another original distance measure based on the volume 
calculation of the compared FB polytopes is finally presented.  

A. Hausdorff Distance (HD) 

The Hausdorff distance is usually employed in computer 
vision (e.g., for shape matching and object recognition) in order 
to identify the physical shapes of objects [10]. Let A and B be 
two sets of points, with A = {��, ��, ..., �	}, and B = {
�, 
�, 
..., 
�}, which can represent (vertices of) two polytopes. The 
Hausdorff distance from A to B is defined as follows.                      

                    �
��, �� = max
�∈�

min
�∈�

‖� − 
‖                    (2) 

with the || || referring to the Euclidean norm operator. The above 
expression is equivalent to find for every point of A, its closest 
point from B. The maximum of the above minimum distances 
gives the Hausdorff distance.   

B. Modified Hausdorff Distance (MHD) 

The modified Hausdorff distance is the metric employed by 
the TSOs in the framework of the methodology presented in 
section III.B. In contrast to the original HD, instead of finding 
the maximum of all the minimum distances, the sum of all the 
minimum distances is calculated as the MHD.   
 

C.  Modified Hausdorff Distance based on the Squared 

Euclidean Norm (MHD_SQE) 

The third distance measure is similar to the MHD but uses 
the squared Euclidean norm || ||2 instead. Consequently, it 

intensifies the large discrepancies between polytope shapes, 
which can bring an opportunity for a better clustering 
performance.  

D. Volume-Based (VB) Metric 

FB domains are polytopes with N dimensions, centered 
around the origin. They occupy a volume that can be calculated 
considering the convex hull of their vertices [11]. A new 
dissimilarity measure based on the volume calculation of 
compared polytopes is proposed in this paper according to 

                          � = 1 −
"#$%�& �(�)∩ (�+�

"#$%�& �(�)∪ (�+�
                     (3) 

The VB metric can take values between 0 and 1. A distance 
of 0 corresponds to two identical FB domains, whereas higher 
values demonstrate an increasing dissimilarity.    

E. Combination of Hausdorff Distance and Volume-Based 

(HD2V) Metric 

To provide a better distinction when comparing FB 
domains, a new dissimilarity measure is defined by combining 
the MHD_SQE and the VB distances as:    

 

                             HD2V =
123_567

�89�
                                   (4) 

The numerator of (4) is the modified Hausdorff distance 
with the squared Euclidean norm. Its denominator represents 
the similarity of two FB domains according to their volume 
calculation. In practice, this new index intensifies the distances 
between FB domains that are not similar while for rather similar 
objects, its impact is less. Indeed, the denominator of (4) can 
vary between 0 and 1, and for its small values, indicating little 
similarities, it nonlinearly increases the index value with respect 
to the MHD_SQE distance.  

V. STUDIED CLUSTERING TECHNIQUES  

Regarding the choice of clustering techniques, firstly, we 
consider three different k-medoids algorithms. In particular, the 
performance of the classical Partitioning Around Medoids 
(PAM) method is investigated alongside two more recent 
algorithms offering better exploration capabilities according to 
the data science literature. In addition, fuzzy and bottom-up 
clustering approaches are studied here to further evaluate the 
possible improvements in this direction.  

A. k-medoids Algorithms  

Similarly to k-means, k-medoids belongs to the family of 
partitional clustering algorithms, which structure the input 
space by assigning each data object to the cluster with the 
closest representative object (or prototype), according to a 
given distance measure. With k-medoids, the cluster 
representative objects are their respective medoids, i.e., the data 
objects that minimize the sum of distances with all the objects 
of the considered cluster, contrarily to k-means where the 
cluster prototypes are computed by taking the average of the 
cluster objects. Cluster representative objects are therefore 
existing physical objects with k-medoids, whereas prototypes 
with k-means are artificial objects, which may show 
undesirable non-physical properties.  

The methodology developed by the TSOs relies on the k-
medoids clustering. The clustering process is achieved by 
minimizing a non-convex loss function and may therefore be 



 

 

trapped in local minima (depending on the algorithm 
initialization). The time complexity of the classical k-medoids 
technique poses furthermore problems with large datasets. 
More recent versions of the k-medoids algorithm, able to more 
effectively deal with these issues, have been proposed in the 
literature. The performance of the traditional k-medoids method 
is examined here alongside two of these recent algorithms to 
evaluate the possible improvement in this direction.  

1) Partitioning Around Medoid (PAM): PAM is the 

traditional method of the k-medoids family, developed in 1990 

[12]. It consists of two phases named build and swap. The build 

phase chooses k times the point which leads to the smallest 

sum of object distances. The swap phase considers all possible 

changes to the set of selected medoids to improve the 

initialization step of the build phase. It includes replacing 

(swapping) medoid with non-medoid objects.   

2) A simple and fast algorithm for k-medoid (Fastkmed): 

Expressing that the PAM method faces difficulties when 

dealing with large datasets due to its time complexity, the 

Fastkmed algorithm is introduced in [13] as a simple and fast 

alternative to the PAM. This algorithm consists of three steps. 

In the first step, using its proposed formulation, the initial 

medoids are selected, which are the k most middle objects in 

the dataset. Then, the objects are assigned to their nearest 

initial medoids. In step 2, the initial medoids are updated by 

finding the objects, which minimize the total distance to other 

objects in each cluster. In step 3, objects are assigned to new 

selected medoids of step 2. If an improvement is found, we 

return to step 2, and repeat the same procedure as long as a 

reduction in the cluster distances is achieved.   

3) Ranked k-medoid (Rankkmed): Stating that the 

Fastkmed is sensitive to the initialization step, and that it can 

get trapped in local optimum points, [14] proposes a ranked k-

medoids algorithm. Practically, a new function is introduced 

that ranks objects according to their similarities. Also, a 

hostility measure is used to evaluate how dissimilar are objects 

in the selected group. The Rankkmed algorithm in the 

initialization step, randomly selects k medoids from the 

dataset. Then, using the ranked objects, it chooses the group of 

the most similar objects to each selected medoids. Also, the 

hostility measure defines the most dissimilar object of the 

group that should be updated for constituting the new medoids.  

B. Fuzzy Clustering (FANNY) 

In fuzzy clustering, each observation is spread out over the 
various clusters. In other words, each object does not explicitly 
belong to one specific cluster, but to all clusters according to 
membership values expressing different levels of belonging. In 
the literature, fuzzy clustering is also called as soft clustering, 
in contrast to hard clustering (which links each object to one 
specific cluster). In the current paper, one particular 
implementation of fuzzy clustering, i.e., FANNY algorithm 
[12] is studied. It aims to minimize an objective function that 
includes the memberships of objects i and j to each cluster as 
well as the distance between i and j (:;<) as follows [12].           
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where n, k and r denote the number of observations in the 
dataset, number of clusters, and the membership exponent, 
respectively. Also, G;" (G<") is the membership of observation i 

(j) to cluster v. The memberships are nonnegative, and for each 
observation, they sum to 1. The membership values are the 
decision variables of above optimization problem. Once the 
problem is solved, the membership results can define the 
explicit assignment (hard clustering) assuming that each object 
belongs to the cluster with the greatest membership value. 

C. Bottom-up clustering  

The bottom-up clustering algorithm, or agglomerative 
hierarchical clustering, constructs a hierarchy of similar objects 
with the number of clusters ranging from one to the number of 
observations in the dataset. In this approach, at first, each 
observation is a small cluster by itself. Then, clusters are 
merged successively until only one large cluster remains, which 
contains all the objects. In this paper, Agglomerative Nesting 
(AGNES) algorithm presented in [12] is used for clustering 
process. The complete linkage method is applied, which means 
the largest dissimilarity between two objects placed in two 
different clusters is selected when merging the clusters.  

VI. CLUSTER VALIDATION TECHNIQUES  

In the literature, different cluster validation techniques are 
found that can be grouped into the following categories: internal 
validation, external validation, and visual assessment. Internal 
validation relies on the computation of indices, which quantify 
the quality of a partition without any information on the ideal 
solution. Reference [15] presents a comprehensive review of 
different internal validation indices. External validation indices 
aim at comparing the clustering results with some reference or 
external correct data, when it is available. In the cluster 
visualization, human intuition via visual assessment is utilized 
to judge the quality of partitioned data.    

 In this paper, we rely on internal validation measures to 
evaluate performance of the clustering results due to the 
following reasons. Firstly, the external validation technique is 
not possible since there is no available reference or previous 
correct clustering results for the sake of comparison. Visual 
assessment is neither an effective method in our case. This 
would require the generation and comparison of numerous 2D 
plots, representing the 2D projections of the N-dimensional FB 
polytopes (5-dimensional in our case) for each combination of 
clustering algorithm/distance measure/number of clusters, 
which will not be convenient for the analysis and interpretation.  

A. Silhouette Width  

The Silhouette index [12] is based on measures of the 
cluster compactness and separation. The compactness of object 
i (H�I�) is computed as the average distance between object i 
and all the other objects in the same cluster. The separation of 
object i (J�I�) is evaluated based on the average distance 
between object i and all the objects placed in the nearest cluster 
(called neighbor cluster). The Silhouette width of object i (K�I�) 
is obtained by: 

 

                           K�I� =
L�;�8M�;�

NOP {M�;�,L�;�}
                                      (6) 

 

The Silhouette width lies in [-1,1], and should be 
maximized. The values smaller than zero express that the object 



 

 

i is wrongly assigned to the selected cluster, and that it should 
have been placed in its neighbor cluster. In this work, the 
average of the Silhouette widths of all the objects is employed 
as a global index assessing the quality of the clustering solution. 

B. Average Compactness to Average Separation Ratio 

Separation of object i is measured in the Silhouette index 
with respect to its closest neighbor cluster only (i.e., Silhouette 
encodes the worst separation). We propose here to have an 
additional insight on the results by computing the ratio between 
the average intra-cluster distances (compactness) and the 
average inter-cluster distances (separation). The average 
distance between clusters I and J is equal to the average of the 
distances between every object of cluster I and all objects of 
cluster J. The final average inter-cluster distance is the average 
of all above distances between all pairs of I and J (I ≠ J). Lower 
intra-cluster distance and larger separation are preferred; thus, 
smaller values of this index show an improved cluster quality.   

VII. CASE STUDIES 

In this section, performance of the proposed dissimilarity 
measures and investigated clustering algorithms is tested. The 
clustering analysis is carried out on 2760 hourly FB domains 
corresponding to the first 115 days of 2020, which relate to 5 
CWE countries. The source of the FB data is the joint allocation 
office [16], where the FB data can be obtained with their hourly 
PTDF coefficients and RAM values. Given that the vertices of 
the polytopes representing the FB domains are needed for 
computing the distance measures presented earlier, and that 
data in [16] is provided under the form of linear equations, a 
vertex enumeration operation [17] is carried out to obtain these 
vertices. The quality of the clustering results is evaluated 
through the average Silhouette width (of all the objects) as well 
as the proposed index based on the average compactness to 
average separation ratio. Two cases are investigated as follows.  

A. Investigation on the Proposed Dissimilarity Measures and 

Studied Clustering Techniques 

In the first case, the objective is to evaluate the performance 
of the proposed dissimilarity measures and studied clustering 
algorithms for a predefined number of clusters. Table I presents 
the cluster results evaluated by the average Silhouette index 
when the 2760 FB domains are grouped into 5 clusters (k=5). 
Table II gives the results assessed by the index based on the 
average compactness to average separation ratio. The best 
result of each category is shown hereafter in bold for a better 
distinction.  

TABLE I.  CLUSTERING RESULTS EVALUATED BY THE AVERAGE 

SILHOUETTE INDEX (K=5) 

 HD  MHD MHD_SQE VB HD2V 

PAM 0.03  - 0.05 0.04 0.07 0.14 

Fastkmed  0.046 0.006 0.143 0.05 0.1 

Rankkmed  0.055 0.08 0.152 0.073 0.19 

Fuzzy  0.06 0.16 0.26 0.09 0.36 

Bottom-up  0.04 0.06 0.09 -0.08 0.1 

 

Considering the results given in Table I, it is seen that the 
fuzzy clustering leads to the highest average Silhouette values 
using all the studied dissimilarity measures. This is explained 
by the fact that the fuzzy method tries to minimize the sum of 
distances between all the objects, while in the k-medoids 
approaches, the objective is to minimize the object distances 
with respect to their medoids. The former formulation can offer 
a better cluster compactness (i.e., smaller cluster diameter).  

Furthermore, in Table I, it can also be observed that the 
dissimilarity measure based on the ratio of Hausdorff distance 
to volume (HD2V) has a superior performance (when used in 
the clustering process) with respect to others, using all the 
studied clustering methods. This is achieved thanks to the 
improved distinction possibility of this metric. For the same 
reason, the MHD_SQE measure being based on the squared 
Euclidean distance leads to better results compared to the MHD 
(i.e., the one being used by the TSOs). In addition, it is seen that 
the VB measure (equation (3)) putting all dissimilarities 
between 0 and 1 cannot provide high-quality cluster results. 
Similarly, being based on the maximum of minimum distances, 
the HD metric does not provide a good distinction between the 
objects; consequently, it is not able to result in proper cluster 
results. In Table I, it is also noticed that using the recent 
versions of the k-medoids family, higher Silhouette values are 
obtained compared to the ones of the PAM method. 

  
TABLE II.  CLUSTERING RESULTS EVALUATED BY THE AVERAGE 

COMPACTNESS TO AVERAGE SEPARATION RATIO (K=5) 

 HD  MHD MHD_SQE VB HD2V 

PAM 0.421 0.38 0.284 0.424 0.195 

Fastkmed  0.455 0.375 0.351 0.445 0.353 

Rankkmed  0.448 0.37 0.339 0.42 0.327 

Fuzzy  0.399 0.28 0.212 0.415 0.163 

Bottom-up  0.404 0.33 0.277 0.459 0.222 

 

The results presented in Table II (evaluating cluster quality 
by the index based on average compactness to average 
separation ratio) are in line with the ones of Table I, and similar 
discussions can be applied to Table II as well regarding superior 
performances of the HD2V and the fuzzy clustering technique. 
It should be noted that smaller values in Table II show the 
improved cluster results (unlike the results of Table I evaluated 
by the Silhouette index). 

B. Investigation on the Impact of Number of Clusters     

The main goal of the second studied case is to investigate 
impact of changing the number of clusters (k) on the cluster 
validation indices. In this regard, the clustering analysis is 
performed using the introduced clustering algorithms when the 
number of clusters (k) is increased to 10, 15 and 20. Due to the 
space limit, the investigation of this part is only carried out on 
two dissimilarity measures, namely the MHD (used by the 
TSOs) and the HD2V proposed in this work. Table III presents 
the clustering results using the MHD measure, and Table IV 
gives the results obtained by the HD2V metric. In Table III and 
Table IV, Ind. 1 relates to the average Silhouette, and Ind. 2 
represents the index based on the average compactness to 
average separation ratio.  



 

 

TABLE III.  CLUSTERING RESULTS WITH DIFFERENT NUMBERS OF 

CLUSTER USING THE MHD 

 k=10 k=15 k=20 

Ind. 1 Ind. 2 Ind. 1 Ind. 2 Ind. 1 Ind. 2 

PAM - 0.05 0.324 - 0.09 0.315 - 0.1 0.3 

Fastkmed  0.05 0.365 0.02 0.348 0.1 0.33 

Rankkmed  0.06 0.35 0.05 0.3 0.1 0.29 

Fuzzy  0.13 0.258 0.11 0.249 0.11 0.242 

Bottom-up  0.01 0.311 - 0.01 0.295 - 0.01 0.28 

 

As it can be seen in Table III and Table IV, when increasing 
the number of clusters (k), the cluster quality according to Ind. 
1 is worsening (in most of the cases) while Ind. 2 shows the 
improvement of results. This is due to the fact that the 
Silhouette index measures the cluster separation based on the 
distance with respect to the nearest cluster while the other 
studied index (Ind. 2), evaluates the average cluster separations. 
Increasing the number of clusters generally improves the 
clusters compactness (homogeneity) but it can worsen the 
cluster separation with respect to its nearest cluster. The final 
choice of the proper number of clusters depends on the studied 
validation index, and the main purpose of the clustering 
analysis. In our application, the main objective of the clustering 
task is to gather the similar FB domains in one group such that 
the clustered FB domains (placed in that group) would lead to 
(relatively) similar adequacy results. In this regard, the 
cohesion (homogeneity) of the clustered data is the most 
important factor. The obtained results in this section show that 
increasing the number of clusters can improve the cluster 
cohesion (compactness).  

 

TABLE IV.  CLUSTERING RESULTS WITH DIFFERENT NUMBERS OF 

CLUSTER USING THE HD2V 

 k=10 k=15 k=20 

Ind. 1 Ind. 2 Ind. 1 Ind. 2 Ind. 1 Ind. 2 

PAM - 0.01 0.175 - 0.03 0.154 - 0.06 0.145 

Fastkmed  0.08 0.288 0.06 0.275 0.09 0.27 

Rankkmed  0.16 0.246 0.1 0.184 0.08 0.178 

Fuzzy  0.25 0.136 0.24 0.123 0.23 0.114 

Bottom-up  0.05 0.191 0.01 0.173 - 0.02 0.15 

 

In addition, comparing the indices reported in Table III with 
their counterparts given in Table IV, one can observe that using 
HD2V measure (Table IV) proposed in this paper, the quality 
of clustered data has been improved. Furthermore, in both 
Table III and Table IV, fuzzy clustering technique leads to the 
best performance among the studied clustering methods. These 
outcomes are in line with the results of the previous section.  

Finally, taking into account the conducted analyses of this 
paper, it is concluded that the fuzzy clustering technique in 
combination with the dissimilarity metric based on the ratio of 
Hausdorff distance to volume provide the best results. This 
proposed solution considerably improves the clusters quality 
compared to application of the k-medoids method and the 
modified Hausdorff distance, traditionally used by the TSOs.     

VIII. CONCLUSIONS 

In order to incorporate the interconnection capacities 
through the FB domains in the adequacy assessment, the CWE 
TSOs rely on a methodology based on the clustering-correlation 
analysis of the FB domains. This paper proposes different 
distance measures, and studies various clustering techniques 
aiming at improving performance of the clustering phase. The 
obtained results confirm that the proposed metric based on the 
ratio of the Hausdorff distance to the volume can improve the 
quality of the clustered data. Furthermore, it is demonstrated 
that the fuzzy clustering method can lead to better results 
compared to the ones obtained by the medoids-based 
approaches. The combination of the fuzzy clustering and this 
proposed dissimilarity measure improves the average 
Silhouette value from 0.08 (obtained according to the 
methodology employed by the TSOs) to 0.36 (for k=5). The 
investigation also shows that by increasing the number of 
clusters, the average compactness to separation of the clusters 
is improved while the cluster separation with respect to its 
nearest neighbor can worsen. Finally, it is shown that the 
medoids-based approaches are sensitive to the initialization 
step, and their performance depends on the exploration 
capability of the selected algorithm. Although this paper 
focuses on advanced clustering of FB domains in context of an 
adequacy assessment, the highlighted suggestions and 
improvements of this work can be extended to other studies 
incorporating the FBMC.  
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