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Abstract: This paper addresses the voltage control problem of the medium-voltage distribution systems under uncertainty of 
the network model. A Robust Voltage Control Algorithm (RVCA) is developed in order to manage the voltage constraints 
considering uncertainties associated with the parameters of load, line and transformer models. The RVCA determines a 
corrective solution that remains immunized against any realization of uncertainty associated with the parameters of network 
model. To this end, prior to formulating the voltage control problem, Monte Carlo (MC) simulations are used to characterize 
uncertain parameters of the network component models and Load Flow (LF) calculations are carried out to evaluate their 
impacts. The voltage constraints management under the uncertain environment is then formulated as a Robust Optimization 
(RO) problem. The latter is constructed based on the results obtained through the MC simulations and LF calculations. Once 
the RO is solved, in order to check the robustness of the solution, system voltages are evaluated using the LF calculations 
considering the new set-points of control variables and uncertainty of network parameters. The simulation results reveal 
that neglecting model uncertainty in the voltage control problem can lead to infeasible solutions while the proposed RVCA, 
at an extra cost determines a corrective solution which remains protected against the studied uncertainties.   
 
 

1. Introduction 

The massive integration of Distributed Generation 

(DG) units in the electric distribution systems has created 

serious voltage violation issues. In order to maintain the 

system voltages within the permitted limits, different Voltage 

Control Algorithms (VCAs) have been proposed in the 

literature. Despite their differences, the VCAs have been 

developed relying on similar assumptions that the exact 

power factors of loads are known [1-11], load powers are 

independent of the voltage [1], [3-11], lines can be modelled 

with the series impedances [2, 5, 6, 9, 10], which remain 

unchanged over the time [1-10], and the substation 

transformer is equivalent to a pure reactance [2, 5, 9]. The 

models based on which the VCAs in [1-11] were developed 

do not represent the real characteristics of the network 

components because in practice, load power factors are not 

available accurately, power consumptions of loads depend on 

the voltage, shunt admittances of lines must be taken into 

consideration, line resistances vary in function of the 

conductor temperatures, and internal resistance of 

transformer has important impact on the node voltages [12]. 

Consequently, corrective decisions of the Voltage Control 

Algorithm (VCA) obtained by relying on the simplified 

network model may be insufficient to solve a specific voltage 

violation problem of the real case.  

Given that an accurate and up-to-date model of the 

network is not quantifiable and the simplified deterministic 

network model leads to erroneous analyses, the alternative 

solution is to consider that parameters of the network model 

are not deterministic but are rather uncertain varying within 

the predefined bounds. To the best of our knowledge, the first 

work that considers the model uncertainty in the VCA is [11]. 

In the latter paper, it is assumed that the line resistances vary 

due to the thermal dependency effect. The Robust 

Optimization (RO) has been adopted to account for the 

uncertainty of the line resistances. In addition, on the basis of 

a posteriori analysis, impacts of the model uncertainty on the 

VCA relying on the simplified deterministic network model 

have been investigated in [12].     

In this paper, a Robust Voltage Control Algorithm 

(RVCA) is developed that manages the voltage constraints 

considering uncertainties associated with the parameters of 

load, line and transformer models. The proposed RVCA 

determines a corrective solution that remains immunized 

against any realization of uncertainty associated with the 

parameters of network model. To this end, the RVCA 

modifies DG active and reactive powers as well as the 

transformer tap position. The RVCA is developed on the 

basis of an optimization procedure relying on the linear 

approximations of the relations between nodal voltages and 

control variables obtained through the voltage sensitivity 

analysis.  

Compared to [11], beside the thermal dependency of 

line resistances, we consider complementary sources of 

model uncertainty, which are arisen from voltage dependency 

of loads, power factor of loads, shunt admittances of lines and 

internal resistance of transformer. Our proposed RVCA 

firstly manages the voltage constraints subject to uncertainty 

arisen from each of the abovementioned factors (individually). 

Then, we consider that uncertainties of load, line and 

transformer parameters are present simultaneously and the 

RVCA determines a corrective solution that remains 

protected against any realization of uncertainty associated 

with the network model. Moreover, in our work, the 

robustness of the RVCA solution is verified with the 

numerical simulations. Finally, the proposed RVCA is 

adapted for voltage management of 3-phase unbalanced 

systems.  

Compared to [12], in the current work, the model 

uncertainty is considered inside the VCA when taking the 

corrective decisions of the control variables by adopting a RO 

formulation. The proposed framework of [12] determines the 

upper and lower bounds of voltage variations due to 
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uncertainty of the network model. In order to be robust 

against the uncertainty effects, in [12], it is suggested to keep 

the VCA simple (relying on the simplified deterministic 

network model) and modify its targeted bounds based on the 

maximum deviations that the node voltages can have due to 

the model uncertainty. In contrast with this idea, the proposed 

RVCA of the current work leads to solutions which are less 

conservative since the solutions are immunized against the 

considered working point while in the approach according to 

[12], the targeted bounds of the VCA are modified based on 

the maximum deviations that the node voltages can have due 

to model uncertainty. 

In view of the above discussion, the main contribution 

of this work is to propose a robust VCA that incorporates 

wide sources of model uncertainty and to validate its 

robustness through the numerical simulations. The 

comparative studies of the RVCA and simple VCA (relying 

on the simplified deterministic network model) reveal that the 

solution of the latter will be insufficient to solve the voltage 

control problem of the real case.         

The rest of this paper is organized as follows. In 

section 2, the RO is introduced. In section 3, the proposed 

methodology to construct the RVCA is described. Afterwards, 

the studied sources of uncertainty are presented in section 4 

that is followed by introducing the investigated test system in 

section 5. Then, numerical simulations are carried out in 

section 6 in order to evaluate performance of the proposed 

RVCA. The final conclusion is reported in section 7. 

2. Robust optimization  

In many optimization applications, the problem data 

are assumed to be known with certainty. In practice, however, 

the realistic data are very often subject to uncertainty due to 

their random nature, measurement errors, or other reasons. 

Since the solution of the optimization problem exhibits high 

sensitivity to data perturbations, ignoring the data uncertainty 

could lead to solutions which are infeasible in practice [13]. 

Robust optimization presents methodology for dealing with 

the optimization problem subject to data uncertainty. Under 

this approach, we are willing to accept a suboptimal solution 

for the nominal values of data in order to ensure that this 

solution remains feasible when data change within the 

predefined ranges. In contrast to the stochastic optimization, 

RO formulates the uncertainty assuming that an uncertain 

value varies within a predefined interval rather than 

proposing a probability distribution function for it. Therefore, 

in the RO, uncertainty modelling is not stochastic, but rather 

deterministic and set-based. Consequently, no assumption on 

the distribution of the uncertainty has to be made which is an 

attractive aspect of RO, especially, in the case of lack of full 

information about the nature of the uncertainty [14]. 

In the electric power systems, data uncertainty can be 

arisen from the electricity price change, load or DG power 

variation, measurement noise, state estimation error, 

unobservability of network state, and partial knowledge of 

network model. In the literature, RO techniques have been 

applied to problems such as volt-var control [15], voltage 

constraints management [11], optimal power flow [16-17], 

economic dispatch [18], generation planning [19-20], and 

microgrid planning [21]. 

 

2.1. Robust optimization counterpart 
Consider the generic linear optimization problem 

given in below: 

                                 Min: T
C x                             (1)                                                                      

                          Ax b                               (2) 

                          b bl x u                            (3) 

 

where x is vector of decision variables, CT is the transpose 

vector of coefficients of objective function, A is matrix of 

coefficients of structural constraints (2), and b is vector of 

Right-Hand Side (RHS) of  the structural constraints (2). The 

upper and lower bounds on the control variables are defined 

by ub and lb, respectively. It is assumed that data uncertainty 

affects Left-Hand Side (LHS) and RHS of structural 

constraints (2) [13]. Consider a particular row i of the matrix 

A (i.e., the LHS of (2)) and let Ji be set of column indices in 

row i that are subject to uncertainty. Each entry 𝑎𝑖𝑗  of A (j∈Ji) 

is modelled as a symmetric and bounded random variable 𝑎̃𝑖𝑗 

that takes values from the range [𝑎𝑖𝑗 − 𝑎̂𝑖𝑗 , 𝑎𝑖𝑗 + 𝑎̂𝑖𝑗] where 

𝑎𝑖𝑗 is the nominal value of 𝑎̃𝑖𝑗 and 𝑎̂𝑖𝑗 denotes its maximum 

positive perturbation. The uncertain data 𝑎̃𝑖𝑗 is given by  

                    𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜉𝑖𝑗𝑎̂𝑖𝑗                        (4) 

where 𝜉𝑖𝑗 is a random variable which is subject to uncertainty 

and perturbs in the range [-1,1]. Regarding the RHS 

uncertainty of (2), we have  

                     𝑏̃𝑖 = 𝑏𝑖 + 𝜉𝑖0𝑏̂𝑖                          (5) 

where 𝑏̃𝑖, 𝑏𝑖 and 𝑏̂𝑖 are the uncertain RHS of the ith structural 

constraint, its nominal value, and its maximum perturbation 

respectively. Also, 𝜉𝑖0 is the random variable associated with 

uncertainty of RHS of the ith structural constraint. In order to 

derive the robust counterpart of the presented generic linear 

optimization problem (given in (1) to (3)), the structural 

constraint (2) needs to be modified as below given that the 

data uncertainty affects its RHS and LHS.  

                              (6) 

The above constraint can be reformulated as 
 

              (7) 

In the robust optimization with a predefined 

uncertainty set E, the robust solution is the one that remains 

feasible for any ξ in the given uncertainty set. The 

corresponding structural constraint of the RO problem under 

uncertainty set E is given by [13].   

∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∉𝐽𝑖

+ ∑ 𝑎̃𝑖𝑗𝑥𝑗 ≤

𝑗∈𝐽𝑖

𝑏̃𝑖   ∀𝑖 

 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑗

+ [−𝜉𝑖0𝑏̂𝑖 + ∑ 𝜉𝑖𝑗𝑎̂𝑖𝑗𝑥𝑗

𝑗∈𝐽𝑖

] ≤ 𝑏𝑖    ∀𝑖 
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      (8)  

In the literature, different uncertainty sets have been 

introduced and discussed. The most prominent ones are the 

box [22], ellipsoidal [23] and polyhedral [24] uncertainty sets. 

The RVCA of this work adopts the model under box 

uncertainty set. This choice is motivated by the fact that the 

ellipsoidal robust formulation converts the initial linear 

optimization problem into a non-linear second-order one and 

results in increasing complexity and calculation burden of the 

RVCA [24]. In addition, the polyhedral uncertainty set leads 

to a bi-level nested optimization problem. Although the latter 

has a linear dual model, due to introduction of dual variables, 

the size of the RO counterpart increases in the polyhedral 

model. Consequently, given that under the box uncertainty, 

the RVCA has the same number of variables and constraints 

as the initial problem (with nominal values) and the RVCA 

formulation remains linear similarly to the initial one, the RO 

under the box uncertainty set is adopted in this work.  

In the box uncertainty set, it is assumed that 𝜉𝑖  can 

vary independently between 0 and Ψ𝑖  where Ψ𝑖  represents 

perturbation bounds of the uncertain coefficients in the ith 

row of (2). The interaction of perturbations creates a box-

shaped space, which represents the box uncertainty set. The 

RO counterpart of the structural constraint (8) under box 

uncertainty set is equal to [13] 

                     (9) 

For the bounded uncertainty 𝜉𝑖 ∈  [−1,1], when Ψ𝑖 is 

set to 1, the entire uncertain space is covered by the box. This 

is a special case of the box uncertainty set, which is known as 

the interval uncertainty set, and will result in the most 

conservative solution. On the contrary, Ψ𝑖 equal to zero leads 

to the nominal optimization problem (i.e., (1) to (3)). 

Consequently, the level of the conservatism of the solutions 

can be controlled by adjusting Ψ between 0 and 1.  

3. Robust voltage control algorithm  

The proposed RVCA of this work modifies active and 

reactive powers of DGs as well as the transformer tap position 

in order to manage the voltage constraints. It aims at finding 

the corrective actions of the abovementioned control 

variables such that the obtained solution remains immunized 

against the uncertainties associated with the network 

component models. The RVCA is developed on the basis of 

an optimization procedure relying on the linear 

approximations of the relations between nodal voltages and 

control variables. The linearization of the voltage control 

problem is carried out using the concept of the voltage 

sensitivity analysis. Thanks to information provided by the 

voltage sensitivity analysis, impacts of control variables on 

node voltages are known. Therefore, there is no need to 

consider the equality constraints relating to balance of the 

nodal active and reactive powers (which are non-linear and 

non-convex) in the optimization formulation. Consequently, 

the simplified linearized optimization formulation of the 

voltage control problem can be solved in a faster and more 

efficient way.   

Figure 1 presents the proposed RVCA of this work, 

which consists of the pre-processing stage, RO formulation 

and post-processing stage. The pre-processing stage 

determines perturbation bounds of the RHS and LHS of the 

RO structural constraints due to the model uncertainty effect 

using Monte Carlo (MC) simulations and Load Flow (LF) 

calculations. The RO formulation is constructed then on the 

basis of information provided by the pre-processing stage. 

The solution of the RO defines needed changes of control 

variables in order to solve the voltage control problem subject 

to model uncertainty. The obtained solution of the RO is 

finally validated in the post-processing stage and robustness 

of the solution is evaluated. The three parts of the proposed 

methodology are discussed further in the following sections.  

 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑗

+ max
𝜉∈𝐸

[−𝜉𝑖0𝑏̂𝑖 + ∑ 𝜉𝑖𝑗𝑎̂𝑖𝑗𝑥𝑗

𝑗∈𝐽𝑖

] ≤ 𝑏𝑖    ∀𝑖 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑗

+ Ψ𝑖 [∑ 𝑎̂𝑖𝑗|𝑥𝑗| + 𝑏̂𝑖

𝑗∈𝐽𝑖

] ≤ 𝑏𝑖    ∀𝑖 

 
 

Fig. 1.  The proposed approach to develop the robust voltage control algorithm 
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3.1. Pre-processing stage 
In the first step of the pre-processing stage, it is aimed 

to characterize the uncertain models of the studied 

components. To this end, MC simulations are utilized to 

create N1 scenarios within the predefined bounds for the 

uncertain variables of the network component models. The 

scenario creation technique in the MC simulations follows the 

same procedure as presented in [12] and [25]. As a result of 

the model uncertainty, in each generated scenario, the 

elements of matrix A (i.e., the voltage sensitivity matrix) as 

well as the RHS of the structural constraints (representing 

node voltages) will be perturbed with respect to their initial 

values. Given that perturbation bounds of the RHS and LHS 

of the structural constraints are not known, in the second step 

of the pre-processing stage, LF calculations are performed for 

each of N1 scenarios created by the MC simulations. The 

Newton-Raphson Load Flow (NRLF) approach is used in this 

regard. Once the perturbation bounds of the RHS and LHS of 

the structural constraints are obtained, the RO formulation of 

the voltage control problem under uncertainty of the network 

model can be constructed as presented in the next section.   

3.2. Robust optimization 
The RVCA aims at minimizing the weighted sum of 

the control variables subject to uncertain voltage constraints 

and restrictions of control variables. It leads to the following 

RO problem [11].  

 
                                                                                          (10)  

                     (11) 

                    (12) 

                    0 ≤ ∆𝑃𝐷𝐺𝑥 ≤ |𝑃𝐷𝐺𝑥|   ∀𝑥, 𝑥 ∈ 𝐺               (13) 

               ∆𝑄𝐷𝐺𝑥
𝑚𝑖𝑛 ≤ ∆𝑄𝐷𝐺𝑥 ≤ ∆𝑄𝐷𝐺𝑥

𝑚𝑎𝑥    ∀𝑥, 𝑥 ∈ 𝐺            (14) 

                   ∆𝑇𝑎𝑝𝑇𝑅
𝑚𝑖𝑛 ≤ ∆𝑇𝑎𝑝𝑇𝑅 ≤ ∆𝑇𝑎𝑝𝑇𝑅

𝑚𝑎𝑥                 (15) 

where OF presents the objective function of the RO, ΔPDGx 

and ΔQDGx are the active and reactive power changes of the 

DG number x (x ∈ G), G is set of DG numbers, and NG is the 

total number of DGs that contribute in the voltage control 

problem. Also, CP and CQ are the weighting coefficients for 

the active and reactive power changes of DGs. ΔTapTR and 

CTR denote the transformer tap changes, and its corresponding 

weighting coefficient, respectively. 
𝜕𝑉̃𝑢

𝜕𝑄𝐷𝐺𝑥
, 

𝜕𝑉̃𝑢

𝜕𝑃𝐷𝐺𝑥
and 

𝜕𝑉̃𝑢

𝜕𝑉𝑇𝑎𝑝
 

stand for uncertain sensitivity coefficients of voltage at bus u 

with respect to reactive power of DGx, active power of DGx, 

and transformer tap position, respectively, where u is index 

for the buses with the voltage rise and set U includes all the 

buses with the voltage rise violations. Similarly, l is index for 

the buses with the voltage drop and set L contains all buses 

with the voltage drop issue. As it can be noticed, inequality 

constraints (11) and (12) take into account the required values 

of voltage modifications at the buses with the voltage rise and 

drop violations in order to bring back those voltages within 

the permitted voltage range. The RHS of the structural 

constraint (11) (or (12)) denoted by ∆𝑉̃𝑢
𝑟𝑒𝑞

 (or ∆𝑉̃𝑙
𝑟𝑒𝑞

) gives 

the uncertain needed voltage modification at bus u (or l) in 

order to return its voltage rise (or drop) within the permitted 

voltage range. The constraints (13) to (15) consider the upper 

and lower bounds of the control variables. Under the box 

uncertainty with Ψ𝑖 = 1 (i.e., the interval uncertainty set), the 

deterministic equivalent of the uncertain constraints (11) and 

(12) can be obtained according to (9) as follows: 

 
                                                                            (16)        

 
                                                                                           (17) 

where 
𝜕𝑉̂𝑢

𝜕𝑄𝐷𝐺𝑥
, 

𝜕𝑉̂𝑢

𝜕𝑃𝐷𝐺𝑥
 and 

𝜕𝑉̂𝑢

𝜕𝑉𝑇𝑎𝑝
 are perturbations of voltage 

sensitivity coefficients of bus u with respect to the control 

variables. Also, ∆𝑉̂𝑢
𝑟𝑒𝑞

is the perturbation of needed voltage 

modification at bus u due to model uncertainty impact. The 

required voltage modifications (i.e., the RHSs of (16) and 

(17)) at buses with the voltage rise and drop violations are 

calculated with respect to the 1.03 pu and 0.97 pu, which are 

considered as the upper and lower permitted voltage limits as 

below. 

                      ∆𝑉𝑢
𝑟𝑒𝑞

= 1.03 − 𝑉𝑢    ∀𝑢, 𝑢 ∈ 𝑈                  (18) 

                      ∆𝑉𝑙
𝑟𝑒𝑞

= 0.97 − 𝑉𝑙    ∀𝑙, 𝑙 ∈ 𝐿                    (19) 

where Vu and Vl are the initial voltages of bus u and l, 

respectively.  

Given that the predefined bounds of the variation for 

the uncertain variables of the network model are not 

necessarily symmetrical (see section 4), the model 

uncertainty does not create always symmetrical variation 

around the nominal value of each entry of the voltage 

sensitivity matrix. In this case, perturbations of sensitivity 

coefficients in (16) or (17) must be selected such that the 

maximum protection against the worst uncertainty scenario is 

𝐌𝐢𝐧: 𝑂𝐹 = ∑(𝐶𝑄|∆𝑄𝐷𝐺𝑥| + 𝐶𝑃∆𝑃𝐷𝐺𝑥)

𝑁𝐺

𝑥=1

+ 𝐶𝑇𝑅|∆𝑇𝑎𝑝𝑇𝑅| 

 

∑ (
𝜕𝑉̃𝑢

𝜕𝑄𝐷𝐺𝑥

∆𝑄𝐷𝐺𝑥 +
𝜕𝑉̃𝑢

𝜕𝑃𝐷𝐺𝑥

∆𝑃𝐷𝐺𝑥)

𝑁𝐺

𝑥=1

 

+
𝜕𝑉̃𝑢

𝜕𝑉𝑇𝑎𝑝

∆𝑇𝑎𝑝𝑇𝑅 ≤ ∆𝑉̃𝑢
𝑟𝑒𝑞

   ∀𝑢, 𝑢 ∈ 𝑈 

 

∑ (
𝜕𝑉̃𝑙

𝜕𝑄𝐷𝐺𝑥

∆𝑄𝐷𝐺𝑥 +
𝜕𝑉̃𝑙

𝜕𝑃𝐷𝐺𝑥

∆𝑃𝐷𝐺𝑥)

𝑁𝐺

𝑥=1

 

+
𝜕𝑉̃𝑙

𝜕𝑉𝑇𝑎𝑝

∆𝑇𝑎𝑝𝑇𝑅 ≥ ∆𝑉̃𝑙
𝑟𝑒𝑞

   ∀𝑙, 𝑙 ∈ 𝐿 

 

∑ [(
𝜕𝑉𝑢

𝜕𝑄𝐷𝐺𝑥

+
𝜕𝑉̂𝑢

𝜕𝑄𝐷𝐺𝑥

) ∆𝑄𝐷𝐺𝑥 + (
𝜕𝑉𝑢

𝜕𝑃𝐷𝐺𝑥

+
𝜕𝑉̂𝑢

𝜕𝑃𝐷𝐺𝑥

) ∆𝑃𝐷𝐺𝑥]

𝑁𝐺

𝑥=1

 

+ [(
𝜕𝑉𝑢

𝜕𝑉𝑇𝑎𝑝

+
𝜕𝑉̂𝑢

𝜕𝑉𝑇𝑎𝑝

) ∆𝑇𝑎𝑝𝑇𝑅] + ∆𝑉̂𝑢
𝑟𝑒𝑞

≤ ∆𝑉𝑢
𝑟𝑒𝑞

  ∀𝑢, 𝑢 ∈ 𝑈 

 

∑ [(
𝜕𝑉𝑙

𝜕𝑄𝐷𝐺𝑥

+
𝜕𝑉̂𝑙

𝜕𝑄𝐷𝐺𝑥

) ∆𝑄𝐷𝐺𝑥 + (
𝜕𝑉𝑙

𝜕𝑃𝐷𝐺𝑥

+
𝜕𝑉̂𝑙

𝜕𝑃𝐷𝐺𝑥

) ∆𝑃𝐷𝐺𝑥]

𝑁𝐺

𝑥=1

 

+ [(
𝜕𝑉𝑙

𝜕𝑉𝑇𝑎𝑝

+
𝜕𝑉̂𝑙

𝜕𝑉𝑇𝑎𝑝

) ∆𝑇𝑎𝑝𝑇𝑅] + ∆𝑉̂𝑙
𝑟𝑒𝑞

≥ ∆𝑉𝑙
𝑟𝑒𝑞

  ∀𝑙, 𝑙 ∈ 𝐿 
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guaranteed (as the interval uncertainty set is adopted). In this 

regard, the perturbation that reduces the absolute value of 

each entry of the sensitivity matrix at most is selected because 

in this way, the biggest value of control variable changes will 

be demanded. Consequently, the highest protection against 

the model uncertainty is provided. In addition, the 

perturbation that creates the biggest voltage violation at the 

lth or uth bus of the system (among N1 scenarios) will be 

chosen since it gives the worst voltage violation scenario at 

bus l or u.  

The voltage sensitivity coefficients with respect to 

nodal active and reactive powers in each of N1 created 

scenarios are obtained through the inverse of the Jacobian 

matrix, which is in our disposal in the NRLF study. The nodal 

voltage sensitivities with respect to transformer tap 

movement are calculated using the perturb-and-observe 

technique. To this end, the voltage variation in the observed 

point is calculated using the NRLF when the transformer tap 

position (i.e., the perturbation point) is moved by one step.  

3.3. Post-processing stage 
Once the abovementioned linear RO problem is solved, 

the new set-points of control variables (i.e., active and 

reactive power changes of DGs as well as the transformer tap 

movement) are determined. As stated, the obtained solution 

of the RVCA must remain immunized against all possible 

realizations of uncertainties associated with the network 

component models. In order to verify the latter, further 

analyses are carried out on the new set-points of control 

variables. In this regard, MC simulations are used to create N2 

scenarios for uncertain parameters of the network component 

models. Then, LF calculations are done on each of the N2 

scenarios considering the set-points of control variables 

obtained by the RO and the rest of the network data. Finally, 

node voltages in N2 scenarios will be in our disposition, which 

will present the robustness of the RVCA solution in N2 

realizations of uncertainties associated with the network 

component models.  

In the proposed approach shown in figure 1, in the pre-

processing stage (prior to composing the RO problem), when 

choosing needed number of scenarios (i.e., N1) for 

characterizing uncertainties and defining their impacts, the 

requirement regarding the execution time of the RVCA must 

be taken into account. Such a limit does not exist when N2 

scenarios are created to validate the RVCA results since the 

corrective decisions have been already made. Consequently, 

N2 can be much bigger than N1. In this way, the RVCA results 

will be tested for extra scenarios that are not necessarily 

included among N1 generated scenarios in the first stage of 

the MC simulations. It is worth noting that the defined 

variation ranges for uncertain parameters of network 

component models are identical when creating scenarios in 

the pre-processing and post-processing stages. 

4. Studied sources of uncertainty  

In this paper, it is considered that exact values of load 

powers, line resistances and admittances as well as 

transformer internal resistance are not known at the specific 

studied time. Therefore, the above parameters are taken into 

account as uncertain variables changing within the predefined 

bounds. The uncertainty in parameters of network model is 

arisen from the voltage dependency of loads, power factor of 

loads, thermal dependency of lines, shunt admittances of lines 

and internal resistance of substation transformer. The 

abovementioned sources of uncertainty are described in 

below and the variation bounds of the uncertain variables are 

presented.  

The power consumption of an electric load is known 

at the nominal voltage (i.e., 1 pu). Depending on the nature of 

the load, its real consumption however can be different when 

the voltage is not equal to the nominal value due to the voltage 

dependency effect. In the Medium-Voltage (MV) distribution 

systems, nodal load powers are aggregated from the low-

voltage side and consist of various load types. Since load 

powers are changing continuously and we do not have 

information about the aggregate voltage-power dependency 

of loads at the studied time, we cannot obtain the exact values 

of load powers. Voltage dependency of load powers is taken 

into account here with the exponential load model [12]. It is 

supposed that the exponent for active power (denoted by α) 

can change within the interval of [0, 2.6] and the one 

regarding the reactive power (shown by β) varies between 0 

and 4 [26]. The NRLF formulation is modified according to 

the approach presented in [12] in order to consider the voltage 

dependency of loads.   

Due to insufficient measurements in the electric 

distribution systems, load power factors are not available 

accurately. Consequently, an uncertainty is added to the load 

model relating to the power factor. Supposing that the load 

active power is known, the power factor uncertainty changes 

the reactive power consumption of load. In this work, it is 

assumed that the load power factor (denoted by PF) can vary 

between 0.9 (lagging) and 1.    

The resistance of line depends not only on the 

conductor size and type, but also on the temperature at which 

the conductor is operating [12]. The conductor temperature, 

by itself, is in function of the line loading and the ambient 

temperature. In practice, the relation between the line loading 

variation and conductor temperature change is unknown. 

Also, the real ambient temperature of the conductor is not 

available. Therefore, the line resistances cannot be obtained 

with certainty due to the thermal dependency effect. In the 

network studied in this paper, total powers of DGs are almost 

3 times bigger than sum of the load powers [12]. Therefore, 

the temperature variations of cable conductors as a function 

of the cable loadings in the voltage rise case are expected to 

be bigger than ones of the voltage drop state. According to 

experiments which have been performed on a 15 kV 

underground cable in [27], we suppose that the line 

resistances can increase up to 11% and decrease to 4% of their 

nominal values due to temperature variations of the cable 

conductors in the voltage rise case as explained in [12]. In the 

voltage drop case, temperature variations create resistance 

changes (denoted by ΔR) equal to ±5.8% of their nominal 

values [12].  

In the electric distribution systems, lines are usually 

considered with their series impedances while their shunt 

admittances are neglected. Shunt admittances however can 

have important impacts on the node voltages in case of long 

cable lines [12]. Shunt admittances of the lines can be 

calculated theoretically if we know the cable characteristics 

and its exact installation configuration. Such data are not 

always available in practice. Considering line capacity equal 

to 0.25 µF/km [8] and having length of the lines in the studied 

network, the upper bound of the predefined range for the 
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admittance variation in all the lines can be determined. In the 

case that shunt admittances of lines are ignored, the lower 

bound of the admittance variation is obtained, which is equal 

to 0.  

The power transformer is generally modelled with a 

series impedance. Given that the internal resistance of the 

transformer (denoted by RT) is very small compared to its 

reactance, RT is mostly considered to be negligible. The 

internal resistance of transformer however can have 

considerable effects on the node voltages as shown in [12]. 

The nominal value of transformer resistance can be obtained 

by doing specific electrical tests on the transformer. However, 

the transformer resistance can vary in an unknown manner 

due to temperature variations arisen from the transformer 

loading changes and ambient temperature variations. The 

typical reactance to resistance ratio of the power transformers 

is within the range of 20 to 40 [28]. Assuming that the 

reactance of the transformer is known, the variation bounds 

of RT can be determined. It is considered here that the 

resistance of the transformer can vary based on its loading 

conditions. In this regard, an extension of ±10% with respect 

to the aforementioned range is adopted. Therefore, it is 

supposed that the resistance of the transformer can take 

values from the interval starting at 2.25% (1/40×0.9) and 

ending at 5.5% (1/20×1.1) of the transformer reactance [12].  

5. Investigated test system  

Performance of the proposed RVCA is tested on the 

77-bus, 11 kV radial distribution system shown in figure 2 [2], 

[12], [29]. It is the so-called ‘‘HVUG’’ test case of the United 

Kingdom Generic Distribution System (UKGDS). In the 

investigated network, bus number 1 is considered as the slack 

node while all other buses are of PQ (load) type. The 

substation transformer located between nodes 1 and 2 is 

modelled with a pure reactance equal to    12.5% pu in the 

transformer base power (80 MVA). The studied network 

feeds 75 loads which have total active and reactive powers 

equal to 24.27 MW and 4.85 Mvar, respectively. It also hosts 

22 DGs, which are identical with the rated powers equal to 

3.5 MW. The capability curves of DGs are obtained from the 

points given in [9]. In the studied network, loads are of power 

constant type, lines are modelled with the series impedances, 

and DG active power is considered as a negative load.  

 
Fig. 2.  77-bus radial distribution system 

6. Simulation results  

The proposed RVCA including MC simulation, NRLF 

calculation, and the presented RO formulation is 

implemented in the MATLAB environment. Performance of 

the RVCA is tested on the UKGDS shown in figure 2 

considering two different working points corresponding to 

the voltage drop and rise states. In the voltage drop condition, 

it is assumed that load demands are maximum (equal to their 

nominal values) while active powers of DGs are zero. In the 

voltage rise state, it is supposed that the load demands are low 

(equal to 10% of their nominal values) while active powers 

of DGs are at 90% of their rated values. The initial reactive 

powers of DGs in both cases are set to zero.  
In order to consider the constraint regarding the 

calculation time of the RVCA, in the pre-processing stage 

(prior to forming the RO problem), 500 scenarios (N1=500) 

are created by the MC simulations. However, to validate the 

RO results, number of scenarios is increased to 2000 

(N2=2000). In the voltage control procedure, it is supposed 

that the transformer tap changer action has the smallest 

weighting coefficient compared to other control variables 

which is equal to 1 (CTR=1) while the reactive power changes 

of DGs are weighted by a coefficient which is 50% bigger 

than the tap changer one (CQ=1.5). Also, active power 

curtailment of DGs is assigned to a coefficient which is 100% 

bigger than the tap changer one (CP=2).  
Table 1 presents the demanded contributions of DGs 

and necessary transformer tap movements in order to manage 

voltage violations in the voltage drop and rise cases when the 

model uncertainty is neglected. In table 1 and hereafter, NA 

is used to indicate that a specific control action is not applied. 

In addition, DGs with the power changes are only mentioned 

in the table and for the rest of DGs (which are not listed), 

power changes are equal to zero. The initial system voltages 

(with voltage violations) as well as the ones obtained after the 

voltage regulation using the simple VCA (which considers 

the nominal network model) are depicted in figure 3.   

 

From figure 3, it can be noticed that if there is no 

uncertainty in the parameters of network model, the simple 

VCA can bring back the initial voltage violations inside the 

permitted voltage range. However, for any realization of 

uncertainty (i.e., inevitable in reality), the node voltages will 

be different from those depicted in figure 3. In what follows, 

the RVCA is utilized to manage the voltage constraints of the 

same working points (corresponding to the voltage rise and 

drop cases) under uncertainty of the network component 

models. The RVCA results are compared with the ones 

obtained through the simple VCA (which does not consider 

the model uncertainty and relies on the simplified 

deterministic network model). The proposed RVCA firstly 

manages the voltage constraints under uncertainty arisen 
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Table 1 VCA results considering the simplified 

deterministic models of network components   

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-1.266 DG5=1.363 

ΔPDGx (MW) NA NA 

ΔTapTR 2 -4 

OF 3.897 6.044 

 

ReView by River Valley Technologies IET Generation, Transmission Distribution

2019/07/05 11:14:56 IET Review Copy Only 7

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



    7 

   

from each of the sources mentioned in section 4 (individually). 

Then, all studied sources of uncertainty are considered to be 

present simultaneously and the RVCA solves the voltage 

control problem under uncertainties of load, line and 

transformer models. In the end, the proposed RVCA is 

adapted for voltage management of 3-phase unbalanced 

systems. 

 
Fig. 3.  Initial nodal voltages as well as the corrected ones 

obtained by the simple VCA relying on the simplified 

deterministic models of network components  

6.1. On the uncertainty linked with the voltage 
dependency of loads 

In the first studied case of this work, the uncertainty 

due to the voltage dependency of loads is taken into 

consideration. The RVCA manages the node voltages in the 

voltage drop and rise conditions under uncertainty of the 

load-voltage dependency. Table 2 presents the control 

variable changes demanded by the RVCA. Moreover, figure 

4 shows the boxplots of initial and corrected voltages subject 

to the studied uncertainty of this section as well as the initial 

and corrected voltages obtained by relying on the simplified 

deterministic component models. The boxplots of initial 

voltages show the possible perturbations of node voltages due 

to the model uncertainty, which correspond to the uncertainty 

in RHS of the structural constraints. The boxplots of 

corrected voltages give the voltage results obtained in N2 

scenarios considering the solution of the RO problem. 

Hereafter, boxplots of the initial voltages are shown in blue 

while ones related to the corrected voltages are illustrated in 

black.  

In the voltage drop condition, the voltage control 

problem considering the uncertainty linked with the voltage 

dependency of loads has been solved with a smaller value of 

objective function compared to the one obtained by the 

simple VCA using the simplified (power constant) load 

model (see tables 1 and 2). This is due to the fact that in the 

voltage drop condition, node voltages are smaller than 1 pu; 

therefore, the load-voltage dependency reduces the load 

powers. Consequently, the load-voltage uncertainty decreases 

the severity of the voltage control problem. In other words, 

perturbations caused by the studied uncertainty release 

(smooth) the structural constraints of the RO problem such 

that less control effort is needed to solve the voltage control 

problem in the voltage drop condition. Similar interpretation 

can be also done on the basis of the voltage results shown in 

figure 4(a) where it is seen that boxplots of initial voltages are 

placed above the initial voltages obtained by the simplified 

load model. 

 

 
a 

 
b 

Fig. 4.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainty associated with the 

voltage dependency of loads  

(a) in the voltage drop case, (b) in the voltage rise case 

Furthermore, it can be concluded that the uncertainty 

impact due to the load-voltage dependency in the voltage rise 

condition is negligible since the RVCA and simple VCA have 

led to almost similar results (see tables 1 and 2). The latter 

point can be verified further considering the figure 4(b) where 

it is seen that boxplots of initial and corrected voltages have 

very narrow bounds.    

6.2. On the uncertainty linked with the power factor 
of loads  

Performance of the RVCA under uncertainty of load 

power factors is investigated here on the studied voltage rise 

and drop conditions. Similar to the previous case, it can be 

expected that the power factor uncertainty impact appears 

mostly on the voltage drop condition since the load powers 

are maximal in this case. Table 3 and figure 5 present the 

RVCA results under uncertainty of the load power factors. 

The average power factor of loads in the studied 

UKGDS is equal to 0.98 [12]. Considering the defined range 

for the power factor variation from 0.9 to 1, the load reactive 

powers will (mostly) increase because of the power factor 

Table 2 Robust VCA results considering uncertainty 

associated with voltage dependency of loads  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-2.577 DG5=1.364 

ΔPDGx (MW) NA NA 

ΔTapTR NA -4 

OF 3.845 6.046 
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uncertainties. Consequently, in figure 5(a), it is observed that 

boxplots of the initial node voltages are noticeably lower than 

the initial voltages obtained by neglecting load power factor 

uncertainties. The difference between the former and latter 

can reach almost 0.01 pu. Therefore, a bigger value of control 

variable changes (with respect to the simple VCA results) is 

needed to manage the voltage control problem under 

uncertainty of load power factors in the voltage drop case as 

it can be seen in table 3.  

 
 

 
a 

 
b 

Fig. 5.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainty associated with the 

power factor of loads  

(a) in the voltage drop case, (b) in the voltage rise case 

In figure 5(b) regarding the voltage rise condition, it is 

seen that as a result of the load power factor uncertainty, 

boxplots of the initial voltages are placed under the voltages 

obtained by the simplified load model. It is due to the fact that 

power factor uncertainties have increased the load reactive 

powers with respect to their initial values. Consequently, in 

the voltage rise condition, the voltage control problem under 

load power factor uncertainties has been solved with a smaller 

value of objective function in comparison with the one of the 

simple VCA (see tables 1 and 3). 

From figures 5(a) and 5(b), it is noticed that the 

boxplots of the corrected voltages in the voltage drop and rise 

conditions do not violate the permitted voltage range in all N2 

created scenarios. Therefore, it is verified that the RVCA 

solution remains immunized against all realizations of the 

studied uncertainty. It is worth noting that the solution of the 

simple VCA is optimal and feasible for the nominal value of 

the uncertain variable. If the latter takes any other value than 

its nominal one, the solution of the simple VCA would be 

either infeasible or non-optimal. In the current studied case, 

the solution of the simple VCA is infeasible in the voltage 

drop case and non-optimal in the voltage rise case (for any 

value of the uncertain variable other than the nominal one). 

In contrast, the solution of the RVCA remains feasible for all 

realizations of uncertainty (within the predefined range) and 

is optimal with respect to the worst uncertainty scenario. 

 
6.3. On the uncertainty linked with the thermal 

dependency of lines  
In this section, thermal dependency of lines is taken 

into consideration as the source of uncertainty. The RVCA is 

utilized to manage the voltage control problem of the studied 

working points under uncertainty of the line resistances due 

to the thermal dependency effect. Table 4 and figure 6 present 

the RVCA results corresponding to the voltage rise and drop 

conditions. 

In the voltage drop case, as stated in section 4, it is 

considered that the line resistances can vary within the range 

of ±5.8% of their nominal values due to the thermal 

dependency effect. This creates voltage variations around the 

initial voltages (obtained by neglecting thermal dependency 

of branch resistances) as seen in figure 6(a). The RVCA 

solution must remain immunized against the worst possible 

realization of the uncertainty. Therefore, the perturbations 

that create the worst uncertainty scenarios are selected to 

compose the structural constraints of the RO problem. The 

worst uncertainty scenario in the voltage drop condition 

corresponds to the case in which the initial voltages are equal 

to their minimum in boxplots shown in figure 6(a) and the 

absolute values of voltage sensitivity indexes are reduced at 

most by the thermal dependency impact. Figure 6(a) confirms 

that when the RVCA solution is applied to N2 simulated 

scenarios (that take the model uncertainty impact into 

account), the boxplots of the corrected voltages do not violate 

the permitted voltage range. In order to be protected against 

the uncertainty associated with the thermal dependency of 

line resistances, the reactive power changes of DG5 has 

changed from -1.266 Mvar (i.e., the simple VCA results given 

in table 1) to -1.403 Mvar as it can be seen in table 4.  
 

 

Table 3 Robust VCA results considering the 

uncertainty associated with power factor of loads  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-1.327  DG5=1.317 

ΔPDGx (MW) NA NA 

ΔTapTR 4 -4 

OF 5.991 5.976 

 

Table 4 Robust VCA results considering the 

uncertainty associated with thermal dependency of lines  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-1.403 
DG5=1.876 

DG18=0.544 

ΔPDGx (MW) NA NA 

ΔTapTR 2 -4 

OF 4.103 7.631 
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In the voltage rise condition, thermal dependency 

effect creates bigger voltage variations compared to the ones 

in the voltage drop situation as it can be noticed from boxplots 

of initial voltages shown in figures 6(a) and 6(b). It is 

explained by the fact that the defined range for the resistance 

variation (due to the thermal dependency effect) is wider in 

the voltage rise condition. In order to have a protected 

solution against the uncertainty effect in the voltage rise 

condition, the reactive powers of DG18 and DG5 are 

increased by 0.544 and 0.513 Mvar, respectively, with respect 

to the results of the simple VCA (given in table 1). Figure 6(b) 

verifies that the solution of the RVCA is immunized against 

realization of N2 scenarios in the voltage rise condition. 

 
a 

 
b 

Fig. 6.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainty associated with thermal 

dependency of lines  

(a) in the voltage drop case, (b) in the voltage rise case 

6.4. On the uncertainty linked with the shunt 
admittances of the lines 

The RVCA performance is tested here when shunt 

admittances of the lines are considered as the source of 

uncertainty. Table 5 and figure 7 present the RVCA results 

under uncertainty of shunt admittances of the lines. 

In table 5 regarding the RVCA results in the voltage 

drop condition, it is seen that as a result of incorporation of 

shunt admittances, objective function of the RVCA is reduced 

with respect to the one of the simple VCA (given in table 1) 

from 3.897 to 3.81. It is due to the fact that shunt admittances 

of lines increase the initial node voltages with respect to the 

ones obtained by the simple line model as it can be seen in 

figure 7(a). Therefore, the severity of the voltage control 

problem is decreased when shunt admittances are taken into 

account. Consequently, a smaller value of control variable 

changes is needed for managing the voltage violations in the 

voltage drop condition. 

 

 
a 

 
b 

Fig. 7.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainty associated with shunt 

admittances of lines 

(a) in the voltage drop case, (b) in the voltage rise case 

Unlike the voltage drop condition, in the voltage rise 

situation, in order to have a protected solution against the 

uncertainty of shunt admittances, the objective function of the 

RVCA increases with respect to that of the simple VCA as it 

can be seen in tables 1 and 5. From figure 7(b), it is noticed 

that boxplots of initial voltages in N1 scenarios are found to 

be in above of the initial voltages obtained by the simple line 

model meaning that the studied uncertainty has raised the 

nodal voltages. As a consequence, the RO solution must have 

a bigger value to provide the needed protection against the 

worst uncertainty case. Figure 7(b) confirms that the solution 

of the RVCA remains protected under N2 realizations of shunt 

admittance values.   

6.5. On the uncertainty linked with the internal 
resistance of transformer 

The internal resistance of the substation transformer is 

considered to be an uncertain variable in this section. The 

RVCA is employed to manage the voltage constraints in the 

voltage rise and drop conditions when the internal resistance 

Table 5 Robust VCA results considering the 

uncertainty associated with shunt admittances of lines  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-1.207 
DG5=1.485 

DG18=0.062 

ΔPDGx (MW) NA NA 

ΔTapTR 2 -4 

OF 3.81 6.281 
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of the transformer has a random but bounded value given in 

section 4. Table 6 and figure 8 present the RVCA results 

under uncertainty of the transformer resistance. 

 

From table 6, it can be noticed that in both voltage 

drop and rise cases, the RVCA solution has a bigger objective 

function value compared to its counterpart obtained by the 

simple VCA (given table 1). This means that in practice, the 

solution obtained by the simple VCA will not be sufficient to 

solve the voltage control problem of the considered points 

due to the uncertainty that exists in the value of the 

transformer internal resistance. Figure 8 demonstrates that the 

solution of the RVCA remains immunized against N2 

realizations of the transformer resistance in both voltage rise 

and drop conditions since boxplots of the corrected voltages 

do not exceed the permitted voltage range. 

 

 
a 

 
b 

Fig. 8.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainty associated with the 

internal resistance of transformer 

(a) in the voltage drop case, (b) in the voltage rise case 
 

In order to be protected against the uncertainty of the 

transformer resistance, the objective function of the RVCA 

has increased by 0.401 in the voltage drop and 1.82 in the 

voltage rise conditions (with respect to the objective function 

of the simple VCA given in table 1). Therefore, it can be 

concluded that the studied uncertainty has a more important 

effect on the voltage rise case though the defined range for 

variation of the transformer resistance is identical in both 

voltage rise and drop cases. It is explained by the fact that in 

the studied UKGDS, total powers of DGs are almost three 

times bigger than sum of the load powers. Therefore, in the 

voltage rise case where DG powers are maximal, internal 

resistance of transformer can create bigger impacts on the 

node voltages compared to the voltage drop case where the 

load powers are at their maximum values.   

 

6.6. On the uncertainty linked with the load, line 
and transformer models  

In the last case study, the uncertainties are considered 

to be arisen simultaneously from the load, line, and 

transformer models. The RVCA performance under 

uncertainties of the network component models is evaluated 

on the same working points as before corresponding to the 

voltage rise and drop conditions. Prior to forming the RO 

formulation, in order to characterize the uncertainties and to 

evaluate their impacts, it is needed to create scenarios for the 

considered uncertain variables, which are α, β and PF for the 

loads, ΔR and b/2 for the lines and RT for the substation 

transformer. Considering the voltage dependency of load, the 

load power factor will be in function of α and β since by 

changing the voltage dependency exponents, active and 

reactive powers of load, as well as the load power factor will 

be changed. Therefore, in the current case, once the scenarios 

for α, β and PF are created, the load powers are calculated 

considering the uncertainties linked with the power factor and 

voltage dependency of loads according to the formulation 

presented in [12].  

Given that there are more uncertain variables in the 

current case, number of 500 scenarios (N1=500) that is used 

in the previous cases would not be sufficient to capture all the 

important possible realizations of the mentioned uncertainties. 

On the other hand, due to the constraint regarding the 

execution time of the RVCA, it is not possible to increase N1. 

In order to deal with this issue, in the pre-processing stage of 

the RVCA, the uncertain variables that have bigger impacts 

on the voltage control problem are only taken into 

consideration. In the voltage rise condition, it was shown that 

the transformer resistance and thermal dependency of line 

resistances have led to the biggest changes of the RVCA 

objective function (with respect to the one of the simple 

VCA). In the voltage drop condition, the uncertainties 

associated with the load models and transformer resistance 

have resulted in the biggest variations of the RVCA objective 

function. Therefore, the RO is constructed considering the 

selected sources of the uncertainty as mentioned in above in 

each of the voltage rise or drop case. Once the RO problem 

of the RVCA is solved, then, in order to validate the results, 

the nodal voltages are evaluated considering the solution of 

the RO when all uncertain variables of the network 

component models are taken into account simultaneously. In 

the post-processing stage, we increase the total number of 

scenarios to 5000 (N2=5000) since the RVCA decision is 

already made. It should be noted that the total number of 

scenarios created in the pre-processing stage remains 

unchanged equal to 500. Table 7 presents the RVCA results 

under uncertainties of network component models, and figure 

9 shows the boxplots of node voltages. 

Table 6 Robust VCA results considering the uncertainty 

associated with internal resistance of transformer  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-1.534 
DG5=1.911 

DG18=0.644 

ΔPDGx (MW) NA NA 

ΔTapTR 2 -4 

OF 4.298 7.864 
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As it can be noticed from table 7, the objective 

function of the RVCA has raised in both voltage rise and drop 

conditions (compared to that of the simple VCA given in table 

1) due to presence of the model uncertainty. This means that 

the solution of the simple VCA can be insufficient to solve 

the voltage control problem of the real case. The voltage 

results shown in figure 9 reveal that the considered 

simplification of the uncertainty sources in the pre-processing 

stage of the RVCA does not create voltage violation when all 

uncertainties are included in the result validation (post-

processing) stage since the boxplots of the corrected voltages 

are within the permitted voltage limits. Therefore, it can be 

concluded that within the considered variation range of the 

uncertain variables in this work, uncertainties linked with the 

thermal dependency of lines and internal resistance of 

transformer have the most important effects on the voltage 

control problem of the studied system in the voltage rise 

condition. For the voltage management in the voltage drop 

case, load and transformer models are recognized as the most 

important sources of the model uncertainty.    

 
a 

 
b 

Fig. 9.  The voltages obtained using simplified network 

component models as well as boxplots of initial and corrected 

voltages considering the uncertainties associated with the 

load, line, and transformer models 

(a) in the voltage drop case, (b) in the voltage rise case 

6.7. On the robustness level of the solutions 
The result obtained by the RVCA considering the 

interval uncertainty set (Ψ=1) appears to be conservative 

since it is protected against the worst realization of 

uncertainty. In order to moderate the conservatism of the 

interval uncertainty set, the border of the uncertainty space 

can be reduced. In this regard, we investigate performance of 

the RVCA when the border of the box uncertainty space (i.e. 

Ψ) is reduced to 0.5 and to 0. It should be noted that the latter 

case corresponds to the deterministic formulation of the VCA 

and its relevant results have been reported in table 1. The 

RVCA results in the voltage drop and rise conditions when 

Ψ=0.5 are given in table 8.  

Comparing the results given in table 7 (related to Ψ =1) 

with the ones of table 8 (related to Ψ =0.5) and table 1 (where 

Ψ =0), it is confirmed that the objective function of the RVCA 

with the reduced uncertainty space (Ψ <1) is smaller than that 

of the RVCA with the interval uncertainty set (Ψ =1) in both 

voltage rise and drop conditions. Therefore, the conservatism 

of the interval uncertainty set is moderated by decreasing the 

size of the box uncertainty space. However, in such a case, 

the solution of the RVCA will not be any more protected 

against all possible realizations of uncertainty. In other words, 

when changing Ψ from 1 to zero, on the one hand, the 

conservatism of the interval uncertainty set is reduced, but on 

the other hand, the voltage violations may appear in the 

system nodes. 

 

6.8. On the adaptation of the proposed RVCA for 
the voltage management of 3-phase 
unbalanced systems   

In most of studies carried out on the MV distribution 

systems, the phase imbalance factor has been neglected and 

the single-phase equivalent model of the 3-phase system has 

been taken into account [1-3], [5-12]. Although in the MV 

level, 3-phase power lines are symmetrical and injected 

powers from DG units (i.e. mostly wind turbines) are 

balanced within the three phases, the node powers aggregated 

and transferred from the low-voltage level are not balanced 

due to single-phase consumptions and generations in the low-

voltage level. As a result, the MV distribution systems are not 

perfectly balanced in reality. In order to quantify the 

magnitude of the phase imbalance phenomenon within the 

studied system, we can compute the Voltage Unbalance 

Factor (VUF). According to the IEEE definition [30], the 

voltage unbalance is expressed as the ratio of the negative 

sequence voltage component Vn to the positive sequence 

voltage component Vp. The negative sequence voltages 

mainly result from unbalanced loads or single-phase 

Table 7 Robust VCA results considering the uncertainties 

associated with models of load, line and transformer 

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-2.666 

DG4=0.0702 

DG5=2.31 

DG18=1.194 

ΔPDGx (MW) NA NA 

ΔTapTR 2 -4 

OF 5.993 9.361 

 

Table 8 Robust VCA results considering the 

uncertainties associated with models of load, line and 

transformer with Ψ =0.5  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) DG5=-2.601 
DG5=1.843 

DG18=0.592 

ΔPDGx (MW) NA NA 

ΔTapTR 1 -4 

OF 4.902 7.654 
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components that infer asymmetric currents flowing in the 

network. 

In this section, it is attempted to modify the proposed 

RVCA so that it can consider the phase imbalance factor. The 

limitation that we have in this regard is that voltage control 

methods in the MV level (e.g.: adjustment of transformer tap 

position and management of DG active and reactive powers) 

act equally on the three phases of the system. This means that 

we cannot separately correct the voltage of each phase in an 

optimal manner. Consequently, in order to ensure that voltage 

violations of three phases will be removed completely, we 

need to find the phase with the worst voltage violation, and 

then to apply the corrective solution corresponding to that 

phase to all three phases. Within this framework, the 

proposed RVCA shown in figure 1 is modified as follows in 

order to be able to manage the voltage violations of the 

unbalanced MV systems.   

Firstly, in the pre-processing stage, the NRLF study 

method is replaced with a new algorithm that is capable of 

analysing the 3-phase unbalanced systems. The load flow 

method developed in [31] is used in this regard. It enables us 

to find the phase with the worst voltage violation while being 

able to compute the VUF at each node of the system. In the 

second stage, the RO principles as explained in section 3.2 

are applied to the phase with the worst voltage violation. 

Solution of the RO formulation defines the new set-points of 

control variables which are obtained according to the phase 

with the worst voltage violation. This solution is then applied 

to the (3-phase) voltage control devices of the under-study 

network. Finally, in order to verify that the RO solution 

manages correctly the voltage violations of all phases, we use 

again the load flow method for the unbalanced systems in the 

post-processing stage. 

In order to validate the efficiency of the modified 

RVCA in voltage management of a 3-phase unbalanced 

system, its performance under uncertainty of line resistances 

is tested when the 77-bus UKGDS feeds unbalanced 3-phase 

loads. The working point related to the voltage drop condition 

is considered here. It is assumed that the load power at each 

phase and each node can randomly take values ranging from 

70% to 100% of its nominal value. It should be noted that in 

the voltage rise case, the load powers are small; consequently, 

impacts of imbalance factor are proved to be negligible in the 

latter case. 

In the first step, before application of the robust 

optimization, VUF is computed for each node of the studied 

MV network, and for each of the N1 scenarios in the pre-

processing stage. Obtaining an average VUF of 0.05%, it is 

concluded that the voltage imbalance is not an important issue 

in the MV level. According to the standard EN50160 (i.e. 

European standard defining the requirements in distribution 

systems), the VUF shall be within the range of 0–2% over 95% 

of a weekly period. In the studied MV network, the VUF is 

always considerably inferior to this 2% limitation. 

Regarding the RVCA results, by doing the load flow 

calculations in the pre-processing stage, it is found that the 

biggest voltage drop occurs in phase B of bus 27. Therefore, 

the RO formulation is built according to voltage violations of 

phase B. Solution of the RO defines that the reactive power 

of DG5 should be changed by -1.14 Mvar and transformer tap 

position should be moved to one higher position. Figure 10 

presents the corrected voltages in the 3 phases of bus 27 

obtained in the post-processing stage. As it can be seen, the 

corrective solution of the RVCA determined according to 

phase B manages the voltage violations of the three phases in 

all the N2 scenarios of the post-processing stage. This 

confirms the robustness of the modified voltage control 

algorithm in presence of the voltage imbalance phenomenon.  

 
Fig. 10.  The CDFs of three phase voltages at bus 27 obtained 

by the RVCA in the voltage drop condition. 

Moreover, it is worth observing that in figure 10, the 

corrected voltage of phase B is closer to the lower permitted 

voltage limit (i.e. 0.97) since the RO solution is obtained with 

respect to voltage violations of this phase. Finally, by 

computing the VUF after the RVCA action, we observe that 

the defined control solution improves slightly (by around 3%) 

the quality of the voltage balance in the considered MV 

network (the mean VUF is moved from 0.05% to 0.0485% 

when the RVCA process has been executed).  

7. Conclusion  

This paper addresses the voltage control problem of 

the MV distribution systems under uncertainty of the network 

parameters. A RVCA is developed in order to manage the 

voltage constraints considering uncertainties associated with 

the parameters of load, line and transformer models. On the 

basis of the simulation results, it is found that although the 

model uncertainty in most of the studied cases has led to an 

increase of the objective function of the RVCA with respect 

to that of the simple VCA, in certain cases, the severity of the 

voltage control problem is reduced when considering the 

model uncertainty. For instance, the uncertainty linked with 

the voltage dependency of loads smooths the structural 

constraints of the RVCA such that the voltage control 

problem considering that source of uncertainty is solved with 

a smaller value of objective function compared to the case of 

neglecting the load-voltage uncertainty in the simple VCA. 

However, it is observed that when cumulative effects of the 

studied uncertainties are taken into account, in both voltage 

rise and drop conditions, the objective function of the RVCA 

is raised with respect to the simple VCA one. This indicates 

that the solution of the simple VCA can be insufficient to 

solve the voltage control problem of the real cases. Moreover, 

it has been shown that border of the uncertainty space can be 

adjusted in order to control the conservatism of the RO 

solution. In the end, the proposed RVCA has been modified 

for the voltage management of the 3-phase unbalanced 

systems. As the future work, application of the chance 

constrained optimization can be studied. It enables us to 

define the desired probability of satisfying the operational 

constraints in order to eventually control the conservatism of 

the solution.     
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