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1 Introduction

The idea of Higher Spin Gravities (HSGRA) is to construct viable models of Quantum
Gravity by looking for extensions of classical gravity with massless higher spin fields. Con-
ceptually, ‘masslessness’ is important for modelling the high energy behaviour of massive
fields. Technically, it also plays a crucial role in constraining interactions by the gauge
symmetries associated with massless spinning fields. An extension of gravity by higher
spin states is one of the key features of string theory and it also seems to be unavoidable in
AdS/CFT scenarios since any CFTd in d ≥ 3 has single-trace operators of any spin. Higher
spin symmetry is supposed to leave no room for relevant counterterms and thus construct-
ing a classical HSGRA is almost sufficient for having a quantum theory. However, there
are many no-go-type results that prevent this simple scenario from happening, leaving us
at present with only a handful of HSGRA’s that avoid them.

Let us mention some Higher Spin Gravities wherein various observables and quantum
corrections can be studied. (Partially-)massless [1–5] and conformal [6–8] higher spin grav-
ities in 3d have to have the Chern-Simons form [5], which facilitates the study thereof, but
there are no local degrees of freedom. There is a higher spin extension of the 4d conformal
gravity [9–11]. The 4d chiral theory [12–15] is the smallest higher spin theory with massless
propagating fields; it is shown to be one-loop finite [16–18]. In this paper, we address a
class of as yet hypothetical 4d HSGRA’s that should be AdS/CFT dual of free/critical
vector models [19–22] and, generally, of Chern-Simons Matter theories [23].

As long as the dynamics of higher spin fields are supposed to be entirely fixed by the
higher spin symmetry, many important questions can be approached from the symmetry
point of view even before a complete theory is constructed (symmetry, if powerful enough,
can even eliminate the need for a theory). In the present paper we classify invariant
and covariant functionals of fields in 4d HSGRA, 3d HSGRA and with some remarks on
HSGRA’s in higher dimensions as well. The functionals are constructed to the lowest
nontrivial order in fields. Various obstructions to extend them to higher orders are also
given and discussed.

The holographic HSGRA’s, we are interested in, are known to exhibit a certain degree
of nonlocality [24–26] that goes beyond the usual field theory approach, but have a perfectly
local closed subsector represented by the chiral theory in 4d. Indeed, free and weakly-
coupled CFT’s, like free and large-N critical vector models, do not have a large gap in the
dimensions of single-trace operators. Therefore, the holographic duals face infinitely many
fields from the onset and infinitely many derivatives starting from the quartic order [24].
This is not yet a concern for the paper since the observables we classify are consistent with
the equations of motion to the lowest order, where such nonlocalities do not arise.

Of interest are either unintegrated observables that are strictly gauge-invariant or
observables that are gauge-invariant up to an exact differential (hence, one can integrate the
these latter over appropriate cycles to produce genuine gauge invariants). On-shell closed
forms (conserved currents) represent another class of dynamical invariants. In fact the
last two classes coincide [27]. As long as covariant, rather than just invariant, functionals
go, cocycles with values in the higher spin algebra determine the interaction ambiguity

– 1 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
0

in the higher spin equations themselves or represent possible deformations of extensions
thereof with higher-degree forms, see e.g. [28, 29]. They can also be contracted with global
symmetry parameters to give conserved p-form currents. All these possibilities are studied
in detail. The spectrum of p-form currents indicates that HSGRA’s can give examples of
higher form symmetries [30].

What is surprising is that there exist a great many higher spin invariant and covariant
functionals, as will be seen from our classification. This should be confronted with the
lower spin gauge theories, e.g. Yang-Mills theory or Gravity, and more generally, with the
Weinberg-Witten theorem [31]. This also contradicts a naive expectation that a bigger
symmetry should be more restrictive. The study of invariants of higher spin symmetry
and of observables in HSGRA was pioneered in [32], where several different classes of
invariants/observables were discovered, with an important prelude in [33]. See also [34–36]
for closely related results and alternative approaches. As different from [32], we ignore all
global aspects of the problem, non-local invariants like Wilson loops and off-shell invariants;
instead, we give a complete classification of local invariants.

More technically, the problem of classification of covariant and invariant functionals
can be reduced to that of computing Chevalley-Eilenberg cohomology. The latter can
further be related to the cyclic and, eventually, to the Hochschild cohomology of a given
higher spin algebra:

Chevalley-Eilenberg =⇒ Cyclic =⇒ Hochschild

The relationship owes its existence to a very special form of the Lie algebra associated to a
given (associative) higher spin algebra. It is the Lie algebra of big matrices with elements
belonging to the higher spin algebra. The matrix extension of higher spin symmetries is
well-motivated by the AdS/CFT correspondence: one can always add global symmetries
to the free (and critical) vector models, i.e., to the CFT duals of HSGRA’s.

The free higher spin fields on a maximally-symmetric backgrounds can be described
by a simple system of equations

dω = ω ? ω +O(C) , dC = ω ?C −C ? ω +O(C2) (1.1)

for a one-form ω and a zero-form C both taking values in a higher spin algebra [37], upon
neglecting the higher-order corrections in C. Here, ? is the product in a properly extended
higher spin algebra. As is seen, the zeroth-order approximation is given by a flat connection
ω associated with a higher spin algebra. The free fields are then described by a covariantly
constant zero-form C.

Therefore, the problem we solve is to classify all nontrivial multi-linear forms

J(ω, . . . ,ω︸ ︷︷ ︸
m

,C, . . . ,C︸ ︷︷ ︸
n

) (1.2)

of ω and C that are on-shell closed or gauge-invariant up to an exact differential. A part
of our results on 4d HSGRA can be summarized by table 1 with derivation and explicit
expressions left to the main text.
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C0 C1 C2 C3 C4 C5 C6 C7

ω0 1 1 1 1 1 1 1
ω1 1 0 0 0 0 0 0 0
ω2 0 2 2 2 2 2 2 2
ω3 3 0 0 0 0 0 0 0
ω4 0 1 1 1 1 1 1 1
ω5 4 0 0 0 0 0 0 0
ω6 0 0 0 0 0 0 0 0

Table 1. Observables in 4d HSGRA to the lowest order (both in the physical and unphysical
sectors). The number in each cell is the number of independent observables that are of ωmCn-type.
The table extends trivially in both directions; here, we kept a part that shows some irregularity (for
higher m and n everything stabilizes). The multiplicities along the diagonal m+ n = const add up
to 2, 1, 6, 3, 8, 4, 8, 4, . . ..

We also make some comments on HSGRA’s in d > 4 and in 3d, even though the
latter are somewhat special in not having propagating degrees of freedom in the higher
spin sector. One interesting finding in 3d is a new invariant of Chern-Simons theory that is
based on the Weyl algebra. This type of invariant does not exist for SU(N), for example.

The outline of the paper is as follows. We begin in section 2 with the concept of formal
equations of motion that any field-theoretic system can be fit in. In section 3, we briefly
discuss the problem of HSGRA in this language. In section 4, we present and discuss our
classification results, the mathematical details being left to the appendices A, B.

2 FDA approach to classical field theory

In this paper, we will study field theories formulated in terms of Free Differential Algebras.
These algebras became popular after the seminal paper by D. Sullivan [38]; in physics, they
were introduced in [39, 40]. Closely related topics include Q-manifolds, L∞-algebras and
AKSZ-models [41].

2.1 FDA, L∞, Q-manifolds and all that

Recall that a Differential Graded Algebra (A, δ) is a graded k-vector space A =
⊕
An

endowed with an associative (dot) product and a differential δ such that

An ·Am ⊂ An+m , δAn ⊂ An+1 , and δ2 = 0 . (2.1)

The two operations are related by the Leibniz rule

δ(a · b) = δa · b+ (−1)|a|a · δb , (2.2)

where |a| = n stands for the degree of a homogeneous element a ∈ An. The cohomology of
δ is denoted by H(A, δ) =

⊕
Hp(A, δ).
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Below we are interested in DGA’s that are free, commutative, and non-negatively
graded. This implies the existence of a finite (or countable) set of generators wA ∈ A

obeying no relations other than graded commutativity:

wAwB = (−1)|A||B|wBwA , |A| = |wA| ≥ 0 . (2.3)

The general element of A is given then by a polynomial a(w) in w’s. In physics, the
DGA’s of this type are usually called Free Differential Algebras (FDA). Given a set of
free generators, the structure of FDA is completely determined by the differentials of its
generators

δwA = QA(w) , QA(w) ∈ A . (2.4)

The r.h.s. of these relations can further be expanded into homogeneous polynomials as

QA = QA1 +QA2 +QA3 + · · · , QAn = lAA1···Anw
A1 · · ·wAn , (2.5)

for some structure constants lAA1···An .
By definition, a FDA (A, δ) is called linear if QAk = 0 for all k > 1. If in addition

H(A, δ) ' H0(A, δ) ' k, then the algebra is said to be linear contractible. An algebra
(A, δ) is called minimal if QA1 = 0.

The main theorem on the structure of FDA’s states that each algebra is decomposed
into the product A = Alc⊗Amin of a linear contractible algebra Alc and a minimal algebra
Amin, see e.g. [42, section 4.5.1]. This implies the existence of a generating set wA =
(uα, vα, w̄a) such that

δuα = vα , δvα = 0 , δw̄a = Qa2(w̄) +Qa3(w̄) + · · · . (2.6)

Here u’s and v’s generate the linear contractible part Alc, while w̄’s are generators for Amin.
In particular, this implies the isomorphism H(A, δ) ' H(Amin, δ).

The nilpotency condition δ2 = 0 for the differential imposes a sequence of quadratic
relations on the structure constants l’s. These read∑

n+m=k
lC(A1···An l

B
CB1···Bm) = 0 , k = 1, 2, . . . , (2.7)

where the round brackets stand for the (graded) symmetrization of the indices enclosed.
The concept of L∞-algebras (aka strongly homotopy Lie algebras) delivers an alterna-
tive interpretation of these relations as generalized Jacobi identities for a system of
multi-brackets [43]. The multi-brackets are naturally defined on the graded vector space
V = A∗[1], that is, the space dual to A and with the degree of homogeneous subspaces
shifted by one.1 In terms of the dual basis eA ∈ V , |eA| = |wA| + 1, the structure of an
L∞-algebra on V is given by the sequence of multi-brackets

[eA1 , . . . , eAk ]k = lAA1···AkeA , k = 1, 2, . . . . (2.8)
1Upon the shift the even subspaces go odd and vice versa; hence, symmetrization in (2.7) becomes

anti-symmetrization from the viewpoint of V .
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It follows from the first identity in (2.7) that the unary bracket [−]1 defines a differential
d : Vn → Vn+1 making V into a cochain complex. Then, the second identity (k = 2) tells us
that d differentiates the binary bracket [−,−]2 by the Leibniz rule. For minimal algebras
the unary bracket is absent and the first nontrivial relation in (2.7) identifies [−,−]2 as a
graded Lie bracket with the structure constants lABC . Hence, with each minimal FDA one
can associate a graded Lie algebra2 L = L(A) on the dual vector space V . This graded Lie
algebra is the starting point for and the most crucial part of the entire L∞-algebra structure
dual to (A, δ). In particular, the next ternary bracket [−,−,−]3 appears to be nothing else
but a 3-cocycle of the Chevalley-Eilenberg cohomology of the graded Lie algebra L with
coefficients in the adjoint representation. We will return to this point in section 2.4.

There is also a nice geometric approach to the algebraic structures above. It treats
the FDA (A, δ) as the algebra of smooth functions on a graded manifold N ‘coordinatized’
by the generators wA ∈ A. Upon this interpretation the differential δ gives rise to an odd
vector field Q on N , whose coordinate expression is as follows:

Q =
∞∑
n=1

wA1 · · ·wAn lAA1···An
∂

∂wA
. (2.9)

Then the whole set of Jacobi identities (2.7) is compactly encoded by a single equation
[Q,Q] = 2Q2 = 0. In mathematics, such an odd vector field Q is called homological and
a pair (N,Q) is referred to as a Q-manifold [41, 44]. The terminology is justified by the
fact that the cohomology of the operator (2.9) acting in the space of smooth functions
C∞(N) = A coincides with the cohomology of the initial FDA (A, δ).

2.2 Formal dynamical systems

In order to formulate a field theory on a space-time manifold M with local coordinates
xµ one introduces the total space of the ‘shifted’ tangent bundle T [1]M , i.e., the tangent
bundle of M with tangent space coordinates θµ assigned degree 1. The algebra C∞(U) of
‘smooth functions’ on a trivializing coordinate chart U ⊂ T [1]M is then a linear contractible
FDA with the generators (xµ, θµ) and the differential

dxµ = θµ , dθµ = 0 . (2.10)

This FDA is clearly isomorphic to the algebra of exterior differential forms on U ∩M upon
the identification

f(x, θ) ⇔ f(x, dx) . (2.11)

Geometrically, one can regard d = θµ ∂
∂xµ as a canonical homolological vector field on T [1]M

that mimics the de Rham differential.
Let N be another Q-manifold with coordinates wA and a homological vector field Q.

Given a triple (M,N,Q), we define classical fields to be smooth maps

W : T [1]M → N (2.12)
2By a graded Lie algebra we mean that the bracket is graded antisymmetric and not just the fact that

the underlying space is graded. More pedantic would be a “graded Lie superalgebra”.
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of degree zero from the source Q-manifold T [1]M to the target Q-manifold N . The true
field configurations (=maps) are, by definition, those relating the homological vector field
on T [1]M to that on N ; in symbols W∗(d) = Q. In terms of local coordinates the last
condition amounts to the differential equations

dWA = QA(W ) , (2.13)

where the functions wA = WA(x, θ) provide the coordinate description of the map (2.12).
With identification (2.11) the l.h.s. of (2.13) is given by the de Rham differential of the form
fields WA, while the r.h.s. involves their exterior products. It is known that any system
of PDE’s can be reformulated in the form (2.13), perhaps, at the expense of introducing
an infinite collection of the forms WA, see e.g. [45]. Numerous examples of the field
equations (2.13) are provided by the AKSZ-models [41]. In the context of HSGRA, bringing
field’s dynamics into the form (2.13) is known as an unfolded representation [37, 46].

Besides apparent general covariance the system (2.13) enjoys the gauge symmetry of
the form

δεW
A = dεA + εB∂BQ

A , (2.14)

εA being infinitesimal gauge parameters (the forms of appropriate degrees). Applying the
de Rham differential to both sides of (2.13) one can also see that the system is formally
consistent whenever Q2 = 0.

It follows from the decomposition theorem (2.6) that the contractible pairs of fields as-
sociated with the generators of Alc completely decouple from the system (2.13). Moreover,
the subsystem dUα = V α, dV α = 0 appears to be tautological, and hence, dynamically
empty: the first equation just introduces the fields V α as names for the differentials dUα

and the second equation trivially follows from the first. Therefore, without loss in general-
ity, one may always assume the FDA underlying the field equations (2.13) to be minimal,
in which case

dWA = lABCW
B ∧WC + lABCDW

B ∧WC ∧WD + · · · . (2.15)

A word of caution is needed about these equations: even though any PDE can be
brought into the form (2.15), only specific infinite-dimensional FDA’s and only very par-
ticular choices of coordinates therein lead to well-defined differential equations. In practice,
most of the fields WA appear to be auxiliary, being expressible via derivatives of a small
(or even finite) subset of dynamical fields. If the number of auxiliary fields is infinite,
they can encode an infinite number of derivatives. As a result, the effective dynamics may
happen to be far from those described by genuine PDE’s. In this paper, we leave aside
all subtle analytical issues related to the field equations (2.15) focusing upon their formal
consistency.

2.3 Q-cohomology vs characteristic cohomology

Suppose we are given a collection of fields φi living on a space-time manifoldM and obeying
a set of PDE’s

Ta(φ, ∂µφ, . . .) = 0 . (2.16)

– 6 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
0

Apart from the equations of motion in themselves, there are many other quantities of
interest (like actions, Lagrangians, conserved currents, surface charges etc.) that can be
attributed to a given field-theoretic system. All these quantities are defined in terms of
differential forms that look like

J = Jµ1···µp(x, φ, ∂µφ, . . .)dxµ1 ∧ · · · ∧ dxµp . (2.17)

Here the coefficients of a p-form J on M are assumed to be smooth functions of the space-
time coordinates xµ, the fields φi and a finite number of their derivatives. On integrating
the form J over a p-cycle Σ ⊂M one gets a local functional of fields of the form

OΣ[φ] =
∫

Σ
J . (2.18)

For want of a better term we refer to (2.17) as a current of degree p (p-current for short)3

and call the functional (2.18) an observable associated to the current J . In general, the
value of OΣ[φ] depends both on a particular field configuration φi and a chosen cycle Σ.
This value, however, does not change if we add to J the differential dI of any other current
I of degree p − 1, since ∂Σ = 0. Therefore, if we are interested in observables alone, it
makes sense to consider currents (2.17) modulo the equivalence relation

J ∼ J + dI . (2.19)

A typical example of a current of top degree is a Lagrangian density; the corresponding
observable is an action functional. A p-current J is said to be conserved if

dJ ≈ 0 , (2.20)

where ≈ means “equal when the equations of motion hold”. Clearly, observables (2.18)
associated to conserved p-currents depend only on homotopy classes of p-cycles Σ when-
ever evaluated on solutions to the field equations (2.16). Such observables are usually
called charges. On restricting to the subspace of conserved currents, a stronger equivalence
relation can be imposed: two conserved p-currents J and J ′ are considered equivalent if

J − J ′ ≈ dI (2.21)

for some (p − 1)-current I. Clearly, equivalent currents result in equal charges for all so-
lutions of the field equations. The equivalence classes of conserved currents associated to
PDE’s were intensively studied in mathematics under the name of characteristic cohomol-
ogy [47, 48], [49, section 6.2].

In the presence of gauge symmetries the above definition of an observable should be
modified a little. To justify its name the functional (2.18) must be invariant under the
gauge transformations δεφi of fields and this implies that

δεJ ≈ dI (2.22)
3Conventional currents correspond to forms of degree dimM − 1. With a metric tensor one can dualize

them to get vector fields of the form Jµ(x, φ, ∂φ, . . .).
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for some (p−1)-current I that depends linearly on the gauge parameters εα. Then δεOΣ = 0
for any cycle Σ. Notice that all conserved currents are automatically gauge invariant in
the sense of (2.22). Indeed, by definition, δεTa ≈ 0 and dδε = δεd; whence it follows that

δεdJ = dδεJ ≈ 0 ⇒ δεJ ≈ dI . (2.23)

For a more systematic discussion of currents and observables in (non-)Lagrangian gauge
theories we refer the reader to [49, 50].

When dealing with formal dynamical systems (2.13) it seems natural to start with
currents and observables associated with certain elements of the underlying FDA (A, δ).
To any element j(w) ∈ Ap or, what is the same, homogeneous function on the Q-manifold
N , we can assign the p-current J = j ◦W :

J =
∑
n

∑
|A1|+···+|An|=p

jA1···AnW
A1 ∧ · · · ∧WAn . (2.24)

As distinguished from the general expression (2.17) these currents do not involve the partial
derivatives of the fields WA and for this reason one may call them algebraic. Checking the
gauge invariance (2.14), we find

δεJ = dεA∂AJ + εA∂AQ
B∂BJ ≈ d(εA∂AJ) + εB∂B(QA∂AJ) (2.25)

(by abuse of notation we omit the wedge product sign). The current J is seen to be gauge
invariant iff the last term vanishes. The forms εA being arbitrary, this means QJ = const.
Since |QJ | > 0 and there are no constants of positive degree, we are lead to conclude that
QJ = 0. In other words, the current J is gauge invariant4 iff the corresponding function
j(w) on N is Q-invariant. On the other hand, for any algebraic current I

dI ≈ QI , (2.26)

and hence, all Q-invariant conserved currents of the form J = QI are trivial and any gauge
invariant current J is conserved. Let us summarize the above considerations as follows:

• the equivalence classes of gauge invariant p-currents of the form (2.24) are in one-to-
one correspondence with the elements of the cohomology group Hp(A, δ);

• all gauge-invariant algebraic currents are conserved and all conserved currents are
gauge invariant.

Thus, the gauge invariant currents (2.17) constitute a part of characteristic cohomology.
The characteristic cohomology of the PDE’s of the form (2.13) was studied in [27]. In that
paper, the authors argue that, under mild assumptions, each gauge invariant current is
equivalent to an algebraic one. This reduces the study of characteristic cohomology and
observables to a pure algebraic problem of computing the cohomology groups H(A, δ).

4We would like to stress that for a current ‘gauge invariance’ means gauge-invariance up to an exact
differential.
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2.4 Homological perturbation theory in action

Generally computation of cohomology groups H(A, δ) is a rather nontrivial problem for
infinite-dimensional algebras. What alleviates the problem significantly for FDA’s is the
use of the natural filtration on A by the polynomial degree of its elements. At this point it is
convenient to switch to the dual picture considering A as the algebra of functions on some
Q-manifold N . The homological vector field associated to a minimal FDA decomposes
then into the sum Q = Q2 + Q3 + · · · of homogeneous components (2.9) and the same
decomposition for the equation Q2 = 0 yields the sequence of relations

[Q2, Q2] = 0 , [Q2, Q3] = 0 , [Q3, Q3] = −2[Q2, Q4] , . . . , (2.27)

which are perfectly equivalent to the generalized Jacobi identities (2.7) for the L∞-
algebra (2.8). As we have mentioned earlier, the leading term Q2 = wAwBlCAB∂/∂w

C

is a homological vector field by itself, the expansion coefficients lCAB being the structure
constants of some graded Lie algebra L. Then the action of Q2 on C∞(N) models the
Chevalley-Eilenberg complex computing the cohomology of the graded Lie algebra L with
trivial coefficients. This action extends naturally from scalar functions to arbitrary ten-
sor fields on N through the operation of Lie derivative LQ2 . The corresponding complex
of tensor fields splits into the direct sum T =

⊕
T p,q of various subcomplexes composed

of (q, p)-type tensors. Moreover, all natural tensor operations (the tensor product, con-
traction and permutation of indices, commutator of vector fields, etc.) pass through the
cohomology, so that we may speak of the tensor algebra of Q2-cohomology H(L, T ). The
scalar functions on N give rise to a graded commutative subalgebra H(L, T 0,0) that we are
most interested in.

Second in importance is the Q2-cohomology with coefficients in vector fields on N .
The space H(L, T 1,0) carries the natural structure of a graded Lie algebra, induced by
the commutator of vector fields, along with the structure of H(L, T 0,0)-module, cf. ap-
pendix A.4.3. Notice that eqs. (2.27) hold true if one rescales the homogeneous components
as Qn → gn−2Qn, g being an arbitrary parameter. This results in a family of homological
vector fields Q(g), which can be viewed as a one-parameter deformation of the quadratic
vector field Q2 = Q(0). In particular, the first-order deformation is determined by a vector
field Q3 that must be a Q2-cocycle as suggested by eq. (2.27). If this cocycle happens to
be trivial, i.e., Q3 = [Q2, X], then one can ‘gauge it out’ by the formal diffeomorphism
egX : N → N . Thus, all the nontrivial first-order deformations are in one-to-one corre-
spondence with the degree-1 elements of the cohomology group H3(L, T 1,0).5 To study
higher-order deformations it is convenient to rewrite eqs. (2.27) in the following form:

LQ2Qn = ∆n(Q3, . . . , Qn−1) ,

∆n = −1
2

n−1∑
m=3

[Qm, Qn−m+2] , n = 3, 4, . . . .
(2.28)

5It is conceivable that all Q3, . . . , Qk−1 vanish and the deformation starts in effect with the k-th order.
Then the leading term Qk defines and is defined by an element of Hk(L, T 1,0). Formal deformations with
k > 3 are called on occasion irregular.

– 9 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
0

These equations can be handled effectively by the ‘step-by-step obstruction’ method of
homological perturbation theory [49, section 7], [51]. Proceeding by induction on n, one can
see that the vector field ∆n is a Q2-cocycle provided all previous equations for Q3, . . . , Qn−1
are satisfied. The existence of the n-th order deformation Qn amounts then to the triviality
of the cocycle ∆n. This allows one to interpret the degree-2 elements of the cohomology
groups Hn(L, T 1,0), n > 2, as potential obstructions to deformation of Q2. If all these
groups are happen to be trivial, then each first-order deformation Q3 extends to all higher
orders giving a family Q(g).

In the context of formal dynamical systems of section 2.2, one may regard the defor-
mation procedure above as inclusion of a consistent interaction, with g playing the role of a
coupling constant. The three- and four-dimensional HSGRA’s that we discuss in section 4
provide major examples of such interactions.

A similar perturbative analysis applies to the cohomology groups H(δ, A) associated
with the algebraic conserved currents (2.24). Writing j = jk + jk+1 + · · · for a j ∈ A, we
find that the function j is Q-invariant if

LQ2jn = −
n−k+2∑
m=3

LQmjn−m+2 , n = k, k + 1, . . . . (2.29)

Again, the r.h.s. of the n-th equation is a Q2-cocycle providing all previous equations are
satisfied. The triviality of this cocycle ensures the existence of a function jn obeying (2.29).
The sequence (2.29) starts with the equation LQ2jk = 0 identifying the leading term jk
as a Q2-cocycle. This may be assumed nontrivial: otherwise one could remove it by the
equivalence transformation j → j − δf with jk = Q2f , so that Taylor’s expansion for j
would start actually with jk+1. In homological algebra, such a perturbative approach to
computation of Q-cohomology is known as a spectral sequence technique [52, Ch. XI].

All in all, much of the structure of a minimal FDA (A, δ) as well as its cohomology
groups are controlled by the cohomology of the associated Lie algebra L(A).

3 Basics of Higher Spin Gravity

We setup the problem of Higher Spin Gravity in the language of formal equations of
motion (2.13), as was first suggested in [37]. An immediate benefit is that we can capture
relevant algebraic structures that are hard to see, if at all, within any standard perturbative
approach like Noether procedure. A drawback is that there is a long way to any such
standard field theory approach. For instance, the problem of extracting proper interaction
vertices appears to be highly nontrivial and may require further structures that are not yet
fully understood. Fortunately, the problem starts to be effective at the second order and
does not affect any result of the present paper.

According to [37] the formal equations of motion for a HSGRA are formulated in terms
of a one-form field ω and a zero-form field C, both taking values in a higher spin algebra hs,
i.e., WA = (ω,C). At this point, hs may be any associative algebra. By the form-degree

– 10 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
0

counting the equations should have the following general form:

dω = ω ? ω + V3(ω, ω,C) + V4(ω, ω,C,C) +O(C3) = Qω(ω, ω|C) , (3.1a)
dC = ω ? C − C ? π(ω) + V3(ω,C,C) +O(C3) = QC(ω|C) . (3.1b)

Here, ? combines the wedge product of forms with the associative product in hs and π is
a certain automorphism of hs.6 Thus, the bilinear vertices are completely determined by
the pair (hs, π), which is a starting point for the deformation problem. As was explained
in the previous section, a formal consistency of the field equations (3.1) implies the r.h.s.
to be given by some homological vector field Q = (Qω, QC) on the target space of fields
(ω,C). A central problem of formal HSGRA is to construct interaction vertices Vk for a
given (hs, π) respecting formal consistency.

The first particular solution of this problem was given in [53]. The general solution
applicable to any higher spin (or arbitrary associative) algebra was proposed in [54]. There
are a number of such and very similar models in the literature [29, 53–62].

Quasi-holographic interlude. We refer to [46, 63, 64] for clarifications on the general
structure of eqs. (3.1). Let us make just a few AdSd+1/CFTd-inspired comments that
hopefully explain the origin of the basic ingredients.

The first and foremost fact about general HSGRA’s is that the graded Lie algebra L
governing the quadratic part of equations (3.1) always comes from an associative algebra
hs of infinite dimension in d ≥ 3. The easiest way to perceive this fact is through the
perspective of AdS/CFT correspondence. All HSGRA’s are thought to be holographically
dual to free CFT’s [19–22, 65, 66] for an appropriate choice of boundary conditions. The
simplest of such CFT’s are free vector models, i.e., free fields valued in vector representa-
tions of some weakly-gauged symmetry group.7 Free CFT’s, e.g. free scalar theory �φ = 0,
always feature an infinite-dimensional algebra of symmetries. Here, by symmetries we un-
derstand [67] just differential operators S = S(x, ∂) that map any solution to a solution
again.8 In particular, the generators of conformal symmetries so(d, 2) are realized by S

that are operators of the first order at most. The composition of differential operators
endows the symmetries with the structure of an associative algebra. Moreover, the sym-
metry algebra most likely to be infinite-dimensional. Indeed, each symmetry operator S
gives rise to an infinite sequence of higher-order symmetries Sn, most of which may happen
to be nontrivial. In this respect linear theories differ greatly from nonlinear ones: in the
latter case, the symmetries form a ‘weaker’ structure of a Lie algebra, which is normally
finite-dimensional.

6In a more general context, where hs is just an associative algebra, the automorphism represents a natural
option to change the adjoint action of hs on itself (assuming that the field content is already fixed to be ω
and C valued in hs). It does not have to be nontrivial, in general, but it is so for the higher spin problem.

7An ambiguity in the choice of boundary conditions for fields in AdSd+1 — Neumann vs. Dirichlet —
allows for more interesting dualities, e.g. the large-N critical vector models [20, 21].

8This is equivalent to ES = S′E, where E is the l.h.s. of the equations of motion (E = � in the example
above) and S′ is some other operator that pops up when S is pushed through the equations of motion.
Indeed, ESφ = S′Eφ = 0 whenever Eφ = 0. Two symmetries S1 and S2 are equivalent if S1 = S2 +RE for
some differential operator R. The symmetries of the form RE annihilate any solution and for this reason
they are called trivial.
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The same symmetries can also be understood as the usual Noether symmetries asso-
ciated with conserved tensors of schematic form9

Ji1···is = φ∂i1 · · · ∂isφ+ · · · . (3.2)

From the AdS/CFT point of view Ji1···is , together with the degenerate member of this
family J = φ2, are single-trace operators. According to the standard AdS/CFT lore, they
should be dual to the fields of the AdS/CFT-dual gravitational theory. Since the tensors
are conserved, the fields have to be gauge fields, and hence, massless.

As with any associative algebra, we may consider the Lie algebra L(hs) generated by
commutators in hs. In the AdS/CFT context, this Lie algebra always contains the con-
formal algebra so(d, 2) as a finite-dimensional subalgebra. The existence of an associative
structure on symmetries allows one to define the higher spin algebra as the quotient of
the universal enveloping algebra of so(d, 2) by a certain two-sided ideal [67]. Denoting the
universal enveloping by U , we can write hs = U/J . The ideal J , called the Joseph ideal,10

is known to be primitive, meaning the existence of a representation ρ : U → End(V )
such that ker ρ = J . The representation ρ is given by a Verma module V = span{|φ〉}
for the Lie algebra so(d, 2). The corresponding lowest weight vector |∆, s〉 is specified by
a conformal weight ∆ — the eigenvalue of the dilatation operator D — and the weight
s = (s1, . . . , s[d/2]) of the Lorentz subalgebra so(d − 1, 1) generated by Lij . By definition,
|∆, s〉 is annihilated by the conformal boosts Ki, so that each vector |φ〉 ∈ V is obtained
from |∆, s〉 by applying translations Pi.11 For the free scalar CFT above, ∆ = (d − 2)/2
and s = 0, i.e., Lij |∆,0〉 = 0.

The higher spin algebra hs associated with the Verma module V is just the algebra of
all (local) operators ρ(U) that act on V . In particular, the conformal algebra generators
belong to hs. As usual, we can represent (some of) operators from End(V ) in the form
|φ〉〈φ′| ∈ V ⊗ V ∗. The single-trace operators, being bilinear in φ, belong to the tensor
product V ⊗V = span{|φ〉|φ′〉}. Normalizable on-shell bulk fields form, basically, the same
representations as the currents (3.2).12

Since the higher spin symmetry hs is a global symmetry on the CFT side, it has to be
gauged in the bulk. To this end, one should begin with a one-form connection ω taking
values in hs, that is, in End(V ). The flatness condition (3.1a) describes then the maximally
symmetric backgrounds with hs symmetry. The bulk degrees of freedom can be described
by taking a zero-form C with values in V ⊗ V and requiring it to be covariantly constant
w.r.t. ω, as in (3.1b). One small tweak in (3.1b) is that the hs-modules V ⊗V , V ⊗V ∗, and
End(V ) are formally isomorphic to each other.13 Therefore, one can choose C to assume

9In the AdS/CFT context one needs to take φ to be vectors of some global symmetry group, e.g. O(N)
or U(N), and take N large. We will ignore this additional complication in a heuristic explanation below.

10The relation to the Joseph ideal was clarified e.g. in [68, 69]. The term higher spin algebra was
introduced in [70].

11Let TAB = −TBA the standard basis for so(d, 2), A,B = 0, . . . , d + 1. In the conformal basis, we split
the indices as A = i,+,− and use the light-cone form of the metric: XAXBηAB = 2X+X− + XiXjηij .
Then, Lij = Tij , D = −Td,d+1, Pi = Ti,d+1 − Ti,d, Ki = Ti,d+1 + Ti,d.

12See e.g. [71, 72] for a careful treatment of the real forms and basis adapted to the so(d, 2) representation
theory at the boundary and in the bulk.

13Of course, care is required in dealing with such tensor products, see e.g. [72, 73] for some subtleties.
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values in the algebra hs itself and account for the difference between |φ〉 and 〈φ| with the
help of a certain automorphism π. In the conformal basis, π is related to the inversion:
π(D) = −D, π(Ki) = Pi, π(Pi) = Ki, and π(Lij) = Lij . In the AdSd+1 setup π acts as
π(PA) = −PA, π(LAB) = LAB, [37, 46, 63].14

Though not rigorous enough, the above consideration should hopefully explain, at
least heuristically, why both ω and C are needed, why either takes values in hs, and what
is the role of the automorphism π in (3.1b). Now, the problem is to look for nonlinear
deformations of (3.1) and to relate them with hs and π. �

We note that one can construct certain higher-spin Lie (super)algebras with the help
of (anti-)automorphisms, see e.g. [74]. These algebras are genuine Lie (super)algebras,
where the Lie bracket does not result from the commutator in an associative algebra.
Nevertheless, they are still obtained as truncations of certain associative algebras. In
these cases, the relation is similar to that between glN and o(N), the latter resulting from
truncation τ(a) = −a of the former, where τ(a) = aT is an anti-automorphism. Therefore,
one always begins with an associative algebra hs. At the end, possible truncations of the
nonlinear equations (3.1) can be studied, if needed.

In accordance with section 2.4 all relevant quantities, e.g. vertices and invariants,
should correspond to the Chevalley-Eilenberg cohomology of the Lie algebra associated
with the higher spin algebra. Nevertheless, the fact that the Lie algebra comes from an
associative algebra is very helpful in computing the cohomology of the former.

As a side remark, let us mention that the problem of completing (3.1) with inter-
action vertices makes sense for any associative algebra, with π being e.g. the identity
automorphism. This leads to a new class of integrable models as the classical equations of
motion (3.1) can be solved explicitly via an auxiliary Lax pair [54].

3.1 Higher Spin Cohomology

Let us explain in a few words, avoiding technical details, how the problem of classifying all
relevant deformations and observables can be approached. The initial data are given by a
higher spin algebra hs, which is always an associative algebra, and by an automorphism π.
These data allow us to write down the free equations of motion15

dω = ω ? ω , dC = ω ? C − C ? π(ω) , ω , C ∈ hs . (3.3)
14In order to relate the two basis we choose ηAB = (−,+, · · · ,+,−). In the AdSd+1 basis we split A as

A = {A, 5}, etc., where A,B = 0, . . . , d are the indices of the AdS-Lorentz algebra so(d, 1) and 5 is an extra
dimension, η55 = −1. Then, the Lorentz and translation generators are LAB = TAB, PA = TA5, so that
[PA, PB] = LAB.

15It is worth stressing, and this is one of the crucial advantages of our approach, that the equations
are not free in the usual sense. They describe propagation of free fields C in the background given by a
flat connection ω of a higher spin algebra. In the simplest case when only the spin-two subsector of ω is
turned on, the equations reduce to the usual Bargmann-Wigner type equations on the Maxwell tensor, Weyl
tensor, and higher spin generalizations thereof (usually called higher-spin Weyl tensors) as well as to the
Klein-Gordon equation for the scalar field. A generic flat ω describes a collection of topological background
Fronsdal fields and ‘free’ equations (3.3) result in equations for the Maxwell-, Weyl-tensors and the scalar
field that are highly nonlinear in the background fields. Probing different backgrounds is a useful way to
probe interactions. Eqs. (3.3) probe the maximally-symmetric backgrounds, of which AdSd+1 is the simplest
case. Within the Noether procedure the higher spin algebra becomes visible at the quartic level only, [75].
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Now, suppose we are interested in deformations of this free system or in the conserved
currents that are d-closed on-shell to the leading order. For example, we can be looking
for an algebraic current

J(ω, . . . , ω, C, . . . , C) ∈ C , (3.4)

or for an interaction vertex
V(ω, ω,C, . . . , C) ∈ hs (3.5)

that can deform the r.h.s. of the first equation in (3.3). In either case, we see that (i) the
free equations take advantage of the associated Lie algebra L(hs); (ii) the second equation
in (3.3) suggests that the field C takes values in the π-twisted adjoint representation hsπ
of L(hs). Therefore, we face quite a difficult problem of computing Chevalley-Eilenberg
cohomology of L(hs) with nontrivial coefficients. One may think of multi-linear functions
of C as functions with values in the symmetric tensor product S(hs∗π) of the module hs∗π
that is conjugate to hsπ. We will reduce the problem to a much simpler one in a few steps:

• Firstly, we would like to consider the matrix extension of the higher spin algebra
Matn(hs) = hs ⊗Matn, i.e., n × n-matrices with entries in hs. The associated Lie
algebra gln(hs) ≡ L(Matn(hs)) is much more handy: for n big enough the Chevalley-
Eilenberg cohomology of gln(hs) can be effectively reduced to the Hochschild coho-
mology of hs, see appendix A.7. Apart from being just a simplifying assumption, the
matrix extension is well-motivated by the AdS/CFT correspondence. Indeed, with
appropriate boundary conditions each HSGRA is dual to a certain free CFT and in
a free CFT there is always an option to add global symmetries.16

• Secondly, we absorb π by extending the higher spin algebra to the smash product
algebra A = hs o Z2, where the cyclic group Z2 is generated by κ and imitates
the action of the involutive automorphism π: κfκ = π(f), κ2 = 1, [72]. The
multiplication in A is given by formula (B.10). Upon such an extension π becomes
an inner automorphism of A. The fields are, however, doubled

C = K + Cκ , ω = ω + ω′κ . (3.6)

The free equations (3.3) can be rewritten as

dω = ω ? ω , dC = ω ?C −C ? ω , ω ,C ∈ A (3.7)

16For example, one can take the U(N)-vector model with free complex conjugate fields φ̄i and φi. In
the simplest case the higher spin fields are dual to the conserved currents Js = φ̄i∂sφi. The bulk coupling
constant is of order 1/

√
N , which justifies taking the large-N limit (even though the CFT is free and not

much can change with N). The dual HSGRA gauges the higher spin symmetry algebra hs that is induced
by Js. There is always a simple extension: one takes vector fields φ̄I,i and φJ,j of U(M) × U(N), then
U(N) is to be weakly gauged, while U(M) is left as a global symmetry. Therefore, the higher spin currents
Js
I
J = φ̄I,i∂sφJ,i are U(M) valued and the higher spin algebra is glM (hs) = hs ⊗MatM (its appropriate

real form, to be precise). Now the dual HSGRA has to gauge glM (hs).
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without any mentioning of π. The problem of completing (3.1) with vertices is now
reduced to a more concise problem of completing

dω = ω ? ω + V3(ω,ω,C) + V4(ω,ω,C,C) +O(C3) , (3.8a)
dC = ω ?C −C ? ω + V3(ω,C,C) +O(C3) , (3.8b)

(no π in the second equation). Once we solve any higher spin problem for A, we get
the sought for solution for hs by setting ω′ = 0 and K = 0. As we discuss below, K
from (3.6) can also be useful sometimes.

• Finally, we need to take into account that (3.7) comprises two fields, ω and C. As
was discussed at length in section 2, the quadratic vertices of any formal dynamical
system (2.15) define and are defined by a graded Lie algebra L. It is easy to see that
the graded Lie algebra at hand can be modelled by taking the tensor product of A
with the Grassmann algebra Λ on one generator, Λ = C[θ], θ2 = 0. This allows us
to combine the fields ω and C into a single ‘superfield’ Φ = ω + θC subject to the
equation

dΦ = Φ ? Φ + V3(Φ,Φ,Φ) +O(Φ4) . (3.9)

The superfield Φ being odd, the star-product reduces in fact to the commutators of
component fields inducing thus the graded Lie algebra structure L.

We may now summarize that the majority of HSGRA problems boil down to computing
the Chevalley-Eilenberg cohomology of the graded Lie algebra L = gln(A ⊗ Λ), where
A = hs o Z2. The matrix extension allows one to reduce the complicated Chevalley-
Eilenberg problem to a much simpler problem of Hochschild cohomology;17 the details are
left to appendices A, B. The following general arguments will be used repeatedly below:

• Given that the form-degree should not exceed the space-time dimension, it is impor-
tant to decompose the cohomology groups H(L, T ) into representatives ωmCn that
have a definite degree in C and ω.

• If a relevant structure corresponds to a cohomology class of H(L, T ) in form-degree
p, then the same cohomology group in degree p+ 1 contains possible obstructions to
extending this structure to higher orders in deformation. Depending on the situation
the same cohomology class can give either a nontrivial (p+1)-current or an obstruction
to the deformation of some other p-current.

• As we compute the cohomology of the extended higher spin algebra, A = hs o Z2,
there is an extra information that may be helpful. Both ω and C consist of the

17An important question is how big the matrices are, i.e., what is the lower bound on n such that the
Chevalley-Eilenberg cohomology can be reduced to the Hochschild one. Theorem A.1 implies that n has to
be greater or equal to the number of arguments that a given cocycle has. However, our preliminary study
of the Chevalley-Eilenberg cohomology of the Weyl algebra A1 indicates that all the results in the paper
are true all the way down to n = 1, i.e., without any matrix extension (the whole Chevalley-Eilenberg
cohomology of A1 is induced from the Hochschild one).
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physical and unphysical parts (3.6). Upon setting ω′ = 0, so that ω = ω, we see that
the second equation in (3.7) reduces to18

dC = ω ? C − C ? π(ω) , dK = ω ? K −K ? ω . (3.10)

C appears as expected and K takes values in the adjoint representation of L(hs).
Therefore, K corresponds to a global symmetry parameter in the ω-background.19

First of all, it is important to see if a given cocycle survives upon projecting onto
the physical sector: ω′ = 0 and K = 0. If it does so, we have a physically relevant
p-form current. If it does not, then setting ω′ = 0 to zero, all but one C to C, and
the remaining one to K gives a nonvanishing form of the type

J(ω, . . . , ω, C, . . . , C,K) . (3.11)

This can be interpreted as a collection of conserved p-currents parameterized by a
global symmetry parameter K. One can also project several C’s onto K’s, which
gives a conserved p-current that depends on a global symmetry with values in the
tensor product of several adjoint representations of the higher spin algebra.20

• Instead of scalar p-form currents one may be interested in the Chevalley-Eilenberg
cocycles with values in a given higher spin algebra. They correspond either to possible
deformations of the free equations or to introducing higher-degree forms with values
in the higher spin algebra and adding some sources there, see e.g. [29, 76]. In order
to get such cocycles, one can simply remove one C factor from the scalar ones, i.e.,
by representing them as Tr(f(ω, . . . ,C)?C). This agrees, of course, with the honest
computation of cohomology in the present paper.

Supersymmetric extensions of the bosonic 4d HSGRA can also be of some interest, see [19,
77] for discussion. In practice, these are obtained [77] by appending hs with the generators
of the Clifford algebra. This is equivalent to taking the tensor product with an additional
matrix factor, which does not change the cohomology. Therefore, all the results on the
higher spin cohomology below apply to various supersymmetric extensions as well.

3.2 Algebraic structure of interactions

The general solution of the problem on how to construct the interaction vertices in (3.1)
was given in [54]. Let us recall a few details from that work as we are going to discuss not
only the observables of the free theory, but also possible obstructions to their deformation
by interaction.

The problem of constructing the vertices Vn in (3.8) can be solved whenever the algebra
A which determines the bilinear terms in (3.8) admits a nontrivial deformation as an

18So far we have not been able to take advantage of one-forms ω′ in the twisted-adjoint representation.
They do not seem to have any physical interpretation.

19Indeed, suppose we have a flat connection ω (maximally-symmetric background). Global symmetries
are the gauge transformations that leave ω invariant, δξω = 0. This leads to the equation dξ = ω ?ξ− ξ ?ω,
which is identical to the second equation in (3.10).

20In the actual examples we find below, the nonlinearity in C is of simple form Ck.
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associative algebra. This means that there exists a one-parameter family of associative
algebras with the product

a ∗ b = a ? b+
∑
k>0

φk(a, b)uk , (3.12)

u being a formal deformation parameter. As usual associativity requires the first-order
deformation φ1 to be a Hochschild two-cocycle. According to the general definition (A.2)
it obeys

(∂φ1)(a, b, c) = a ? φ1(b, c)− φ1(a ? b, c) + φ1(a, b ? c)− φ1(a, b) ? c = 0 . (3.13)

Given the φk’s, one can write down immediately all the vertices. For example,

V3(ω,ω,C) = φ1(ω,ω) ?C (3.14)

and

V4(ω,ω,C,C) = φ2(ω,ω) ?C ?C + φ1(φ1(ω,ω),C) ?C . (3.15)

Of course, the vertices are determined up to an isomorphism of the corresponding L∞-
algebra (or FDA), which corresponds to field redefinitions in the field theory language or
to a change of coordinates in the language of Q-manifolds.

Eq. (3.13) and φ1 is the simplest example of the higher spin cohomology and the size
of the cohomology group has a clear physical meaning:21

dimH3(L, T 1,0) =

AdS-side: # independent coupling constants ,
CFT-side: # marginal deformations + 1 .

(3.16)

It is worth stressing that the deformation of equations (3.8), i.e., the condition for V3, leads
to a more complicated Chevalley-Eilenberg problem for the Lie algebra L = gln(A ⊗ Λ).
Under the assumptions discussed briefly above and in more detail in appendices A, B, this
problem can be reduced to a much simpler problem of Hochschild cohomology. Therefore, in
many instances we expect that the higher spin cohomology is obtained from the Hochschild
cohomology HH•(A,A) in the sense that the knowledge of HH•(A,A) and applying the
standard cohomological operations allows one to reconstruct H•(L, T ).

This means that the number of independent deformations of the star-product on A is
equal to the number of independent coupling constants in the HSGRA that gauges A.22

On the dual CFT side the same number is equal to the number of marginal deformations
plus one. Indeed, one coupling constant in the bulk just counts the degree in C and it is

21The superscript n in Hn(L, T 1,0) denotes the number of arguments that representative cocycles have.
The deformation of (3.8) has to be cubic, therefore n = 3. We can prove, under the assumptions above,
that this cohomology is equivalent to the second Hochschild cohomology of A, that is, HH2(A,A).

22It is important to check whether these deformations survive on physical configurations ω = ω and
C = Cκ, i.e., whether the deformation is along κ or it is the higher spin algebra hs itself that gets
deformed. In the latter case, deformation has nothing to do with interaction, see the 3d example below.
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proportional to 1/
√
N on the CFT side. The rest of the couplings should parameterize the

space of CFT’s, i.e., the marginal deformations (at least in the large-N limit).
In general dimHH2(A,A) = 1, so that there is a single bulk coupling constant of

order 1/
√
N . An interesting example with dimHH2(A,A) = 2 is provided by Chern-

Simons Matter theories that feature one more coupling constant — the Chern-Simons level
k — and the corresponding effective t’Hooft coupling λ = N/k becomes a continuous
parameter in the large-N limit. Accordingly, the extended higher spin algebra A admits a
two-parameter deformation. For more detail we refer to [78, 79].

That all nonlinear terms in (3.8) follow, up to equivalence, in a simple way from a
one-parameter family of associative algebras is an enormous simplification of the problem.
There is a variety of nonlinear equations of type (3.8) in the literature that do not seem
to use this structure at all [56, 58, 60], use it implicitly [29, 53, 55, 57, 59], and use
it explicitly [54, 61].23 There are some general methods to deform associative algebras
in a constructive way, e.g. deformation quantization [42, 82] and the injective resolution
technique [83, 84], which help to construct models of this kind.

4 Characteristic cohomology and observables

The main case of interest for us is 4d HSGRA wherein the higher spin algebra is based on
the Weyl algebra A2, i.e., the noncommutative algebra of functions in two pairs of creation
and annihilation operators. Nevertheless, all the observables turn out to be made out of
the building blocks that exist already for the smallest Weyl algebra A1. This is due to the
obvious isomorphism A2 ' A1 ⊗ A1. Therefore, we first go through the case of A1, which
can be of some interest by itself, e.g. in the context of 3d HSGRA or specific Chern-Simons
theories.

4.1 Three-dimensional HSGRA: warming up with A1

Let us consider the algebra of complex polynomials in creation and annihilation operators:

[â, â†] = 1 ⇐⇒ [ŷα, ŷβ ] = −2εαβ , ŷα = (
√

2â†,
√

2â) . (4.1)

We prefer to work with f(ŷα) instead of f(â, â†). As one more improvement, one can
consider commuting variables yα and endow the algebra of polynomial functions in yα with
the Weyl-Moyal star-product:

(f ? g)(y) = exp [p1 · p2] f(y + y1)g(y + y2)
∣∣∣
y1,2=0

, (4.2)

where p0 ≡ y, pαi = ∂/∂yi,α, and the symplectic inner product is defined as p1 · p2 ≡
−pα1 εαβp

β
2 . Note that the derivatives are defined to act as pα1 y

β
1 = εαβ and the indices are

raised and lowered according to yα = εαβyβ , yβ = yαεαβ .24 The star-product (4.2) can be
23There are two more models: the collective dipole approach, see e.g. [80], which we discuss below, and

the higher spin IKKT model of [81], whose relation to the above is yet to be clarified.
24The same rule applies to derivatives. Starting from the canonical ∂αyβ = δα

β we get ∂αyβ = εαβ ,
which is not the same as to lower the index on yα and then take the derivative. Note, ε12 = 1, εαβεγβ = δα

γ .
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rewritten in a more concise form as25

(f ? g)(y) = exp [p0 · p1 + p0 · p2 + p1 · p2] f(y1)g(y2)
∣∣∣
y1,2=0

. (4.3)

In general, any operator R (cochain) that takes a number of elements from the Weyl algebra
— complex polynomial functions f(y) — can be written as

R(f1, . . . , fn)(y) = R(p0, p1, . . . , pn)f1(y1) · · · fn(yn)
∣∣∣
y1=···=yn=0

. (4.4)

Let us assume for a moment that the higher spin algebra of interest is hs = A1. It
is well known that the algebra A1 is rigid, i.e., it cannot be deformed nontrivially as an
associative algebra. This is due to the fact that HH2(A1, A1) = 0, so that eq. (3.13) has
only trivial solutions φ1 = ∂ψ. The only nonzero cohomology group of HH•(A1, A1) is
HH0(A1, A1) ' C. It is naturally identified with the center of the Weyl algebra C ⊂ A1,
see appendix B.1.

A more interesting case is the groups HH•(A1, A
∗
1). This time dimHH2(A1, A

∗
1) = 1

and most of nontrivial cohomology considered in the present paper takes its origin in this
fact. This means that there is a nontrivial two-cocycle with values in the module dual to
A1. It is this cocycle that will lead to the deformation of the extended higher spin algebra
in the case of 4d HSGRA. Therefore, it is important to discuss it in more detail. The dual
module A∗1 can be realized in two different ways.

1. With the help of the supertrace26 Strf = f(0) one can define a nondegenerate pairing
Str(f ? g), which identifies A∗1 with A1. The action of A1 on A∗1 can be derived from
the equalities Str(f ? g) = Str(π(g) ? f) = Str(g ? π(f)), where π is the involutive
automorphism of A1 defined by

π(f)(y) = f(−y) . (4.5)

The group HH2(A1, A
∗
1) is now generated by a nontrivial solution to

a ? φ(b, c)− φ(a ? b, c) + φ(a, b ? c)− φ(a, b) ? π(c) = 0 , a, b, c ∈ A1 . (4.6)

It is illuminating to see how far from the star-product (4.3) such φ is. It can be written
in two different forms. First, there is an explicit expression of the form (4.4):

φFFS(y ≡ p0, p1, p2)a1(y1)a2(y2)
∣∣∣
y1,2=0

, (4.7)

where

φFFS = z
[
(x− z)ex+y+z + (y + z)e−x−y+z − (x+ y)ex−y−z

]
4(x+ y)(x− z)(y + z) . (4.8)

25The only trick here is that exp[p0 · p1]f(y1) ≡ exp[yν( ∂
∂y1

)ν ]f(y1) ≡ f(y + y1).
26It is a supertrace in the sense that even/odd functions f(y) are considered to be even/odd elements of

the superalgebra A1, which is the same A1, but understood as a Z2-graded associative algebra.
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Note that φFFS is nonsingular despite the way it is written. The cocycle condition (4.6)
can be rewritten in terms of the symbols of operators as

φ(p0+p1,p2,p3)ep01−φ(p0,p1+p2,p3)ep12 +φ(p0,p1,p2+p3)ep23−φ(p3+p0,p1,p2)e−p03 = 0 .

For reference, the symbol of the star-product is just ex+y+z. Second, the cocycle φFFS
can be rewritten as an integral over a two-simplex,27 namely,

φFFS = z

∫
0<t1<t2<1

exp [x(1− 2t1) + y(1− 2t2) + z(1 + 2(t1 − t2))] . (4.9)

2. Operators with values in A∗1 can be thought of as linear functionals on A1:

φ(a0, a1, a2) = φ( ∂
∂y0
≡ p0, p1, p2)a0(y0)a1(y1)a2(y2)

∣∣∣
y0,1,2=0

. (4.10)

The first argument a0 accounts for taking values in A∗1. The cocycle condition now reads

φ(a ? b, c, d)− φ(a, b ? c, d) + φ(a, b, c ? d)− φ(d ? a, b, c) = 0 . (4.11)

With the help of the pairing between A1 and A∗1 via Str, we can express the cocycle
with three-arguments (still called two-cocycle since the first argument is of a different
nature) as

φ(a, b, c) = Str(a ? φ(b, c)) . (4.12)

The last formula links representations (4.7) and (4.10).

Associated to the Hochschild cocycle (4.10) is a cyclic cocycle, which is a representative
of cyclic cohomology, see appendix A.2 for precise definitions. The cyclic complex is
a subcomplex of the Hochschild one, where the cochains are invariant under the cyclic
permutations of arguments up to sign. In particular, our cyclic two-cocycle has to obey

φC(a, b, c) = φC(c, a, b) . (4.13)

Note that (4.12) is not a cyclic cocycle. Moreover, one cannot obtain φC by averag-
ing (4.12) over the cyclic permutations. Nevertheless, both the cocycles are known to
be cohomologous to each other. In our case, it is possible to find a cyclic representative
directly:

φC(x, y, z) =
(
y2 − x2) ex−y−z +

(
x2 − z2) ex+y+z +

(
z2 − y2) e−x−y+z

8(x+ y)(x− z)(y + z) . (4.14)

One can also represent it as the sum of integrals over two- and one-simplices:

φC = φFFS + 1
4

∫
0<t<1

{
e[(1−2t)(y+z)+x] − e[(1−2t)(x+y)+z] + e[(1−2t)(x−z)−y]

}
. (4.15)

27It follows from the Kontsevich-Shoikhet-Tsygan Formality [85], but implicitly was found for A1 even
earlier in [37].

– 20 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
0

Extended higher spin algebra. Let π be the involutive automorphism (4.5) of our
higher spin algebra A1 and we would like to deform the free equations (3.3).28 According
to the general recipe we should introduce a new algebra generator κ such that

κ2 = 1 , κ ? f(y) ? κ = f(−y) ⇔ κ ? yα = −yα ? κ .

Now, the extended algebra A is A1oZ2 and its generic element reads f = f1(y)+f2(y)κ.29

From now on, somewhat strange structures on A1 that we defined above — the supertrace
Str and the two-cocycle φ with values in A∗1 — acquire a simple interpretation for A (or
for its π-invariant subalgebra Ae1).

A trace Tr on A is given by a cyclic zero-cocycle, which may be viewed either as an
element of A∗ or a linear functional on A. The cocycle condition takes the familiar form
Tr[a ? b] = Tr[b ? a]. The supertrace on A1 gives rise to the usual trace on A defined by

Tr[f ] = Str[f ? κ] = f2(0) , f = f1(y) + f2(y)κ ∈ A . (4.16)

That the group HH2(A1, A
∗
1) is nonzero translates into the fact that dimHH2(A,A) = 1

and the algebra A admits a nontrivial deformation. The second cohomology group is
generated by the two-cocycle φ1(a, b) = φ(a, b) ? κ, where φ from (4.6) can be taken to be
φFFS . Now, φ1 obeys the condition

a ? φ1(b, c)− φ1(a ? b, c) + φ1(a, b ? c)− φ1(a, b) ? c = 0 , a, b, c ∈ A , (4.17)

and determines an infinitesimal deformation of A. Since HH3(A,A) = 0, the deforma-
tion is not obstructed and there exist all higher-order corrections φk(−,−) that define an
associative ∗-product (3.12). It is also true that the π-invariant subalgebra, Ae1, admits a
one-parameter deformation.30

Relation to HSGRA in three dimensions. Although the structures discussed above
are intended to be building blocks for a more complex case of 4d HSGRA, it is also of
interest to adapt them to 3d HSGRA. As is well-known, due to the isomorphisms so(2, 2) ∼
sp2 ⊕ sp2, sp2 ∼ sl2 the Einstein-Hilbert action for 3d gravity can be rewritten as the
difference of two sl2 Chern-Simons actions [88]:

SEH = k

4πSCS[AL]− k

4πSCS[AL] , SCS[A] =
∫

Tr
(
A ∧ dA− 2

3A ∧A ∧A
)
. (4.18)

This admits a straightforward generalization to the case where sl2 is replaced by any Lie
algebra bigger than sl2 [1–4] with a specific embedding of sl2 such that decomposition

28An alternative point of view is that we would like to ‘gauge’ the discrete Z2-symmetry and to project
onto the π-invariant subalgebra, i.e., to consider ω and C assuming values in the even subalgebra Ae1 ⊂ A1.

29It makes sense to omit ? between y and κ whenever no confusion arises. Such κ’s are called the Klein
operators [86] sometimes.

30The one-parameter family of algebras that goes through Ae1 is not mysterious and can be obtained as
the quotient of the universal enveloping algebra U(sl2) by the two-sided ideal associated with the quadratic
Casimir operator C2 − (−3/4 − u) [87]. The even subalgebra Ae1 corresponds to C2 = −3/4. This family
was dubbed glλ in [87] as it interpolates between gln in some sense.
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into sl2-modules contains representations bigger than the adjoint one. In particular, one
may consider the even subalgebra Ae1 ⊂ A1. The associated Lie algebra L(Ae1) contains
sp2 ∼ sl2 as a subalgebra generated by quadratic polynomials {yα, yβ}?. Decomposition
into sp2-modules looks as

Ae1 = V0 ⊕ V1 ⊕ V2 ⊕ · · · , dim Vj = 2j + 1 . (4.19)

The singlet V0 corresponds to the unit of Ae1 and results in the direct u(1)-factor in L(Ae1).
V1 is given by the embedding of sp2. All HSGRA’s with massless, partially-massless, and
conformal higher spin fields in 3d must be of the Chern-Simons form [5]. One can try to
look for more complicated theories with matter fields (scalars or fermions). As was shown
in [89, 90], the matter fields (we consider the scalar field for simplicity) can be described
by the equations

dAL = AL ? AL , dAR = AR ? AR , dC = AL ? C − C ? AR , (4.20)

where AL, AR, and C take values in Ae1. This system can be reduced to the standard
one (3.7) with the help of an additional extension by 2× 2-matrices [89, 90].31 Finally, the
relevant algebra is A = (A1oZ2)⊗Mat2, where Z2 is to be gauged to reduce the equations
to even functions of yα. As was discussed in section 3.1, all our results are obtained in
conditions where the matrix extension is always possible.32 Therefore, we can go back
to A = A1 o Z2 at any time as the matrix factor does not make any difference for the
classification of observables.

4.1.1 Conserved currents and interactions

In this section, we present a complete classification of conserved (and hence, gauge-invariant
up to an exact differential) currents for the free system

dω = ω ? ω , dC = ω ?C −C ? ω , ω ,C ∈ A , (4.21)

associated with the extended higher spin algebra A = A1 o Z2. The results can be sum-
marized by table 2, which can be extracted from table 4 in appendix B and where we do
not list those currents that have more than five ω’s.

Now, we give an account of the expressions that explain the multiplicities here-above.

Class Cn. This is the simplest class comprising the zero-form invariants33

J0,n = Tr[Cn] ≡ Tr[
n︷ ︸︸ ︷

C ? · · · ?C] (4.22)

31Representing Mat2 as the Clifford algebra γ2
0 = γ2

1 = 1, γ0γ1 + γ1γ0 = 1, one can associate AL,R
with the entries on the diagonal and C as a component along the matrix [(0, 1), (1, 0)]. The remaining
components are similar to the those considered around (3.6).

32There might exist some sporadic Chevalley-Eilenberg cocycles for L(hs⊗Matn) with small n’s, but we
are not aware of any example.

33Note that the supertrace Str on A1 reduces to a trace on Ae1.
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C0 C1 C2 C3 C4

ω0 1 1 1 1
ω1 1 0 0 0 0
ω2 0 1 1 1 1
ω3 2 0 0 0 0
ω4 0 0 0 0 0
ω5 2 0 0 0 0

Table 2. On-shell closed/gauge-invariant currents in the A1 toy model. The table shows the number
of independent currents that are of ωmCn-type, i.e., involve m one-forms ω and n zero-forms C.

that are obviously gauge invariant and d-closed on-shell. For an appropriately chosen wave-
function C it can give correlation functions of O = χ2, where χ is a generalized free scalar
field on the 2d CFT boundary of AdS3. The significance of this is unclear since the dual
CFT is expected to have a much bigger W -symmetry.34 These invariants are unobstructed.

Class ω2k+1, Chern-Simons forms. This class consists of the on-shell closed Chern-
Simons forms

J̃2k+1,0 = Tr[ω2k+1] ≡ Tr[
2k+1︷ ︸︸ ︷

ω ? · · · ? ω ] . (4.23)

It is easy to see that they are gauge invariant up to an exact differential. In fact, the
Chern-Simons forms with k > 0 are all generated from Tr[ω] by the standard S-operation,
see appendix A.4.5. The k = 0 member is obstructed, but the others are not.

Class φC(ω, ω, ω). The importance of the cyclic cocycle φC found in section 4.1 is that
it allows us to construct a new 3-current, namely,

J3,0(ω) = φC(ω,ω,ω) . (4.24)

It is closed on-shell:

dJ3,0(ω) ≈ 3φC(ω ? ω,ω,ω) = 0 . (4.25)

Here we used the equations of motion (4.21), the cyclic property (4.13), and the cocycle
condition (4.11). One should also take into account that ω is a one-form. Equivalently, we
can show that the current (4.24) is gauge-invariant on-shell up to an exact differential:

1
3δξJ3,0(ω) = φC(dξ,ω,ω)− φC([ω, ξ]?,ω,ω) ≈ dφC(ξ,ω,ω) . (4.26)

Therefore, J3,0(ω) can be integrated to give a gauge-invariant observable in Chern-Simons
theory. This current is specific to the gauge algebra being the Weyl algebra (its even

34There are a number of important differences between HSGRA in d ≥ 4 and d < 4. In the latter case
higher spin fields do not have propagating degrees of freedom, while the higher spin algebra does not seem
to play much role on the CFT side since the conformal symmetry gets extended to the Virasoro algebra
and even further to W -algebras [3, 4, 91].
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subalgebra). For the classical Lie algebras we have just Tr[ω3]. We can use this additional
observable to modify the Chern-Simons action as follows:

k

4π

∫
Tr
(
ω ∧ dω − 2

3ω ∧ ω ∧ ω
)

+ g

∫
φC(ω,ω,ω) +O(g2) . (4.27)

The new current J3,0 owes its existence to the fact that the algebra Ae1 admits a one-
parameter deformation and the same deformation gives the one-parameter family (4.27)
of Chern-Simons theories. The cyclic cocycle φC determines the first-order deformation at
the action level, while the corresponding Hochschild cocycle φ does the same at the level
of algebra. Lastly, J3,0 is unobstructed.

Class SkφC(ω, ω, ω). With the help of the S-operation on cyclic cohomology one can
generate a family of forms of the type ω2k+3 by applying S to φC . Applied ones, it gives

J5,0 = (SφC)(ω,ω,ω,ω,ω) = 3φC(ω3,ω,ω)− φC(ω2,ω2,ω) . (4.28)

In order to check the gauge-invariance of the resulting current directly one may use the
following identities, which are obtained by splitting ω6 into the four arguments that enter
the cocycle condition:

2φC(ω4,ω,ω)− φC(ω3,ω2,ω) + φC(ω3,ω,ω2) = 0 , (4.29)
φC(ω2,ω2,ω2)− φC(ω3,ω,ω2) + φC(ω3,ω2,ω) + φC(ω4,ω,ω) = 0 . (4.30)

As the S-operation can be applied repeatedly, cyclic cohomology is unbounded from above
as distinct from the case of Hochschild cohomology. We do not discuss invariants whose
form degree is significantly higher than the space-time dimension. All members of this
class, including the case k = 0, are unobstructed.

Class φC(ω, ω,Ck). All members of this class are two-forms. The first its representative
is obtained by replacing one ω with C in φC(ω,ω,ω). This yields

J2,1 = φC(ω,ω,C) . (4.31)

It can also be rewritten through the Hochschild two-cocycle as

J2,1 ∼ Tr[φ(ω,ω) ?C] (4.32)

and the cyclic property (4.13) is not needed anymore to check that dJ2,1 ≈ 0. The other
members of this family are obtained by replacing C with Ck:

J2,k = φC(ω,ω,Ck) ≡ φC(ω,ω,
k︷ ︸︸ ︷

C ? · · · ?C) . (4.33)

The family contains infinitely many two-forms and all of them are unobstructed. Canon-
ically, on-shell closed two-forms in 3d lead to conserved charges and we seem to have too
many of them. The physically relevant charges should be finite. However, quite generally
one can show that the charges built out of J2,k are divergent. We leave the discussion of
possible applications of these observables to future publications.

Lastly, all of the here-above p-forms serve as the generators of the algebra of scalar
invariants, i.e., the exterior product thereof gives new invariants.
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H(L,T 1,0), class φ(ω, ω)Ck. So far we discussed the scalar observables, i.e., H(L,T 0,0),
but cocycles with values in the higher spin algebra are also of interest as they determine the
deformation of equations. They can be obtained by undressing one C in the observables
above. Since this is rather a trivial exercise, we consider just one example — the leading
deformation of the equation

dω = ω ? ω + φ(ω,ω) ?Ck +O(Ck+1) . (4.34)

If k = 0 the r.h.s. comes form the deformation of the algebra itself. This case is also covered
by the deformation with k = 1 as the field C can be set constant in space and proportional
to the unit of A. This is a major difference with the case of 4d HSGRA. The 3d higher
spin algebra Ae1 admits a nontrivial deformation and this is the only deformation of the
extended algebra A as well. Therefore, one can tell straight away that the end result of
this deformation is a system of the form

dω = ω ∗ ω , dC = ω ∗C −C ∗ ω , (4.35)

where the only difference is that the fields assume their values in the deformed algebra
with the ∗-product (3.12), see also [90]. This system is clearly inconsistent with AdS/CFT
since there is no backreaction from matter fields C to the gravitational sector of ω. The
backreaction cannot be captured by the formal consideration and requires locality to be
taken into account.35

Everything we said about the observables above holds true for any generic point of
the one-parameter family of algebras that passes through Ae1 or A = A1 o Z2. Indeed, at
any generic u there is a Hochschild two-cocycle φu(a, b) = ∂u(a ∗ b). This φu can be used
in place of φ above provided the ?-product is replaced with ∗ at u. One only needs to be
careful about whether or not a given observable descends to the physical sector.

4.2 HSGRA in four dimensions

As was known already to Dirac [94], the algebra that naturally acts on the free 3d massless
scalar field is the even subalgebra Ae2 of the next to the smallest Weyl algebra A2 = A1⊗A1.
This algebra is the same as in [67, 70]. Also, this is the same as the algebra of symmetries
of the free 3d massless fermion field, which is a necessary condition for the 3d bosonization
duality [23, 95–99] to work at least in the large-N limit. To realize A2 we simply double the
variables, as compared to the previous section, and introduce the star-product language
from the onset:

[yα, yβ ]? = −2εαβ , [yα̇, yβ̇ ]? = −2εα̇β̇ . (4.36)
35One obvious difference between the formal scheme and the physical one is that the stress-tensors are

formally exact, i.e., do not correspond to nontrivial cocycles. Indeed, the stress-tensor contribution has to
be a cocycle of type ω2C2. The exactness of such stress-tensors for ω being the AdS3 vacuum was shown
in [92] and discussed further in [93]. If (4.34) begins with the k = 1 deformation and the ω2C2-deformation
is also added, the latter can be obtained via C → C +C ?C redefinition from the ω2C-deformation and is
no longer a nontrivial deformation. Vertices with k > 1 are examples of irregular deformations mentioned
in footnote 5.
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The higher spin algebra hs is the star-product algebra of even functions, f(y, ȳ)=f(−y,−ȳ).
Note that both A2 and Ae2 are rigid and do not have nontrivial deformations as associative
algebras (cf. A1 vs. Ae1, the latter being deformable).

The π-automorphism is defined to flip the sign of the AdS4-translation generators
Pαα̇ [37, 46, 63]. Given that Pαα̇ ∼ yαyα̇, one can realize π either as π1(f)(y, ȳ) = f(−y, ȳ)
or as π2(f)(y, ȳ) = f(y,−ȳ). Both π1 and π2 are equivalent on Ae2, but not on A2. Since
A2 = A1 ⊗ A1, the extended higher spin algebra A is constructed by taking the tensor
product of two copies of A = A1 o Z2. Therefore, we introduce the pair of generators k
and k̄ such that k2 = k̄2 = 1 and36

{yα, k} = 0 , [ȳα̇, k] = 0 , {ȳα̇, k̄} = 0 , [yα, k̄] = 0 . (4.37)

As for A1, there is a unique supertrace Str on A2. It induces the usual trace Tr on Ae2.
Projection onto the subspace spanned by kk̄ gives a trace on A.

In order to extract the physical sector of fields associated with (Ae2, π) one has to gauge
the diagonal Z2 in A⊗A. In practice, one takes

ω = 1
2(1 + kk̄)ω(y, ȳ) and C = 1

2(k + k̄)C(y, ȳ) ,

where ω and C are even functions. The relation to footnote36 is that the element E =
1
2(1 + kk̄) is central on the subalgebra of even functions and κ = 1

2(k + k̄) plays the role
of κ on this subalgebra, κ2 = E. If one wishes to keep the global symmetry parameters,
then C = EK(y, ȳ) for any even K.

4.2.1 Conserved currents and interactions

The conserved currents associated with the free system

dω = ω ? ω , dC = ω ?C −C ? ω , ω ,C ∈ A , (4.38)

are summarized in table 3, which can be extracted from table 6 of appendix B. The structure
of cyclic cohomology here is such that, translating it to the physics language, there are
representatives of arbitrarily high form degree. Those that have the form degree much
above the space-time dimension are hardly relevant for HSGRA studies.

H(L,T 1,0). We will also discuss (obstructions to) the extension of observables to higher
orders. Before doing that it is important to understand what are the options to deform the
free equations (4.38). Since either factor in A = A⊗A admits a nontrivial deformation, it

36Instead of taking the tensor product one could define a single κ satisfying κ2 = 1 and κ?Pαα̇?κ = −Pαα̇.
However, there are general theorems that allows one to compute the cohomology of the tensor product A⊗A
whenever the cohomology of A is known. The higher spin cohomology corresponds to A0 = Ae2 o Z2 and,
as is shown in appendix B.5, it coincides with that of A = A⊗A, which is more natural to compute. Note
that the algebra with k and k̄ was introduced in [100] as N = 2 SUSY higher spin algebra, which is not an
interpretation we use here.
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C0 C1 C2 C3 C4 C5 C6 C7

ω0 0 + 1 1 + 0 0 + 1 1 + 0 0 + 1 1 + 0 0 + 1
ω1 1 + 0 0 0 0 0 0 0 0
ω2 0 2 + 0 0 + 2 2 + 0 0 + 2 2 + 0 0 + 2 2 + 0
ω3 1 + 2 0 0 0 0 0 0 0
ω4 0 0 + 1 1 + 0 0 + 1 1 + 0 0 + 1 1 + 0 0 + 1
ω5 2 + 2 0 0 0 0 0 0 0
ω6 0 0 0 0 0 0 0 0

Table 3. On-shell closed/gauge-invariant currents in 4d Higher Spin Gravity to the lowest order.
The sum in each cell gives the number of independent currents that are of ωmCn-type, i.e., involve
m one-forms ω and n zero-forms C, cf. table 6. The (first) boldface number is the number of
currents that do not vanish upon projection to the physical sector.

is not surprising that the there are two independent cubic vertices37

dω = ω ? ω + g1φ(ω,ω) ?C + g2φ̄(ω,ω) ?C + · · · . (4.39)

The notation is that the cocycle φ entering in V3 acts on y’s, while the Weyl-Moyal star-
product is taken over ȳ. More explicitly,

V3(a⊗ ā, b⊗ b̄, c⊗ c̄) = φ(a, b) ? c⊗ ā ? b̄ ? c̄ , (4.40)

where a, b, c depend on y and ā, b̄, c̄ depend on ȳ. Both the vertices descend to the physical
sector and give V3 = φ(ω, ω)?π(C) and likewise for V̄3. There are two independent coupling
constants g1,2. Unless we need one of the two deformations, φ or φ̄, we will assume that
Φ = g1φ+ g2φ̄ is the most general one.

The 4d case should be confronted with the 3d one. Here, the higher spin algebra does
not have any deformations. Only its Z2-extension does; the deformation happens along
any of the k or k̄ directions, that is, along C in the π-twisted representation. Therefore, we
do not include bare φ(ω,ω) in (4.39) since its projection onto the physical sector vanishes.

The cocycles φ and φC , being inherited from A1, can always be made to respect the sp2-
subalgebra. Identifying the Lorentz algebra with sl2(C), one can realize it by the complex
conjugate generators yαyβ and yα̇yβ̇ . In particular, the spin-connection is represented by its
self-dual $αβ and anti-self-dual $α̇β̇ parts. The Hochschild two-cocycle φ can be adjusted
such that φ($,ω) + φ(ω,$) = 0 whenever $ ∈ sp2 and ω is arbitrary. This guarantees
that the equations are manifestly Lorentz-covariant, i.e., the spin-connection appears only
inside the Lorentz-covariant differential D = d − [$ + $̄,−]? and its curvature two-form
Rαβ = d$αβ −$α

γ ∧$γβ , idem. R̄α̇β̇ . This is a form of the Equivalence Principle.
Now we explain the multiplicities in the table with concrete expressions.

37These vertices were found in [37], but the proof of uniqueness was not given there. The uniqueness is
important in view of the 3d bosonization duality conjecture. Had we found more nontrivial deformations,
Chern-Simons Matter theories would have had more free parameters. The deformations can be extracted
from table 5 of appendix B.
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Class Cn, holographic correlation functions. This is the simplest class of invariants
and the only class of gauge-invariant functionals that are strictly gauge-invariant:

I0,n = Tr[Cn] ≡ Tr[
n︷ ︸︸ ︷

C ? · · · ?C] . (4.41)

Therefore, these are the only observables that do not have to be integrated. I0,n are of
physical significance since, for appropriately chosen wave-functions C, they compute the
correlation functions of the single-trace operators in the free CFT duals (these are the free
3d scalar or free 3d fermion) [35, 101–105].38 Invariants of this type were first proposed
in [33] to distinguish between different solutions, were related to topological string theory
in [106] and were explored further in [32, 34, 35].

We note, however, that what is plugged in are zero-forms C = ΠK in the adjoint
representation that are obtained from those in the twisted-adjoint as K = C ? δ, where
δ is the star-product delta-function. This transformation between the adjoint and the
twisted-adjoint representations takes the form of the Fourier transform and is ill-defined
in general. Nevertheless, the fact that it needs to be employed to compute the correlation
functions and is well-defined for certain physical configurations indicates that there is no
sharp difference between the two representations. Therefore, the above splitting into the
physical and unphysical configurations, as in table 3, has to be treated with care.

Another important property of the invariants I0,n is that they do not depend on x.
Indeed, dI0,n = 0 by construction. It is also instructive to see how the x-dependence gets
washed away. In general, C can be solved as g−1 ? C0 ? g, where ω = −g−1 ? dg and
C0 is an x-independent element of the (extended) higher spin algebra. Upon taking the
trace the x-dependence of I0,n, which is in g, gets erased. As a consequence, all I0,n are
diffeomorphism invariant. This is an example of ‘gravitationally dressed’ observables, see
e.g. [107]. In this case, the dressing is via Wilson’s line.

Being x-independent, the invariants I0,n are implicitly nonlocal. The relation to the
correlation functions implies that I0,n can be represented as an integral of a certain n-point
‘contact vertex’ in AdSd+1 [24]. This is not in contradiction with I0,n being seemingly local
as they are obtained by sewing several C(x), all taken at the same point x. Indeed, C is a
generating function of auxiliary fields that are expressed by virtue of the equations of motion
as derivatives (of unbounded order) of the higher-spin Weyl tensors. A knowledge of all on-
shell derivatives of the higher spin fields allows one to compute certain space-time integrals
as star-products (and other functionals in the Y -space), i.e., on the higher spin algebra.

The zero-form invariants are also very close to the vertices of the collective dipole
action, see e.g. [80], which by definition gives the correlation functions of higher spin
currents, see [104, 105] for details. The collective dipole action should correspond to the
sum of all I0,n with certain numerical prefactors. Other ideas to employ I0,n as building
blocks of an action can be found e.g. in [108].

38The correlation functions of the higher spin currents (Js, s > 0) in the critical vector model and in the
Gross-Neveu model are given by the same formulas in the large-N limit. Those with insertions of the scalar
operator J0 differ structurally between free and critical models. For three-point functions those with two
and three scalar operators J0 are fixed by the conformal symmetry up to a constant.
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The second raw in table 3 shows that there are no obstructions to the extension of
I0,n in the nonlinear theory. The deformed I0,n are expected to give correlation functions
in Chern-Simons Matter theories [78]. This was conjectured in [78], while the new results
prove the uniqueness of these invariants. Therefore, if the slightly-broken higher spin
symmetry [95] is realized in Chern-Simons Matter theories, then the deformed observables
I0,n seem to provide a unique answer for the correlation functions.

Class ω2k+1, Chern-Simons forms. This class consists of the on-shell closed Chern-
Simons forms

I2k+1,0 = Tr[ω2k+1] ≡ Tr[
2k+1︷ ︸︸ ︷

ω ? · · · ? ω ] . (4.42)

Clearly, I1,0 = Tr[ω] is just the spin-one gauge potential Aµ dxµ ≡ ωµ(y = 0, ȳ = 0) dxµ.
This first member of the family does not survive the inclusion of interaction. Indeed, a
simple computation with the help of (4.39) gives

dTr[ω] ≈ Tr[Φ(ω,ω) ?C] , (4.43)

which is a nontrivial cocycle.39 The next current I3,0 is not obstructed at the first order

dTr[ω ? ω ? ω + Φ(ω,ω) ?C ? ω +O(C2)] ≈ 0 , (4.44)

where the ‘expansion parameter’ is C; hence, we use (4.39) for dω and (4.38) for dC.
However, it is obstructed at the second order for g1g2 6= 0 in (4.39). The obstruction is of
ω4C2-type, which is clear from table 3 and is discussed below.

The invariant I3,0, being a three-form, looks like a conventional conserved current. It
is felt that I3,0 can appear as a boundary term. The projection of I3,0 onto the physical
sector can be uplifted to an off-shell invariant, which is the Chern-Simons action for the
higher spin algebra hs = Ae2:

k

4π

∫
Tr
[
ω ∧ dω − 2

3ω ∧ ω ∧ ω
]
. (4.45)

It gives the action of one of the 3d conformal higher spin gravities [6–8]. The higher
Chern-Simons forms can lead to exotic higher spin theories discussed recently in [109].
The Chern-Simons forms are unobstructed.

Classes φC(ω, ω, ω) and φ̄C(ω, ω, ω). In addition to Tr[ω3] there are two more three-
forms. They can be constructed by applying the cyclic cocycle (4.14) to either A-factor of
A = A⊗A and tracing over the rest of the variables:

J3,0 = φC(ω,ω,ω) , J̄3,0 = φ̄C(ω,ω,ω) . (4.46)

According to table 3, there is only one obstructing cocycle. Therefore, depending on the
values of g1,2 in (4.39) or which linear combination of φC and φ̄C is taken, we can face

39It is a nontrivial cocycle for the free equations of motion. Here, we used the first-order deformation of
the free equations.
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an obstruction. The obstruction is of type φφ̄, see below. Therefore, at g2 = 0 the
cocycle φC is unobstructed (the interaction vertex contains only φ), but at g1 = 0 it is
obstructed. We are lead to conclude that there is a linear combination of J3,0 and J̄3,0
that survives switching on interaction. Together with Tr[ω3] we have three candidates for
global symmetry currents, but only Tr[ω3] projects to the physical sector.

Classes SkφC(ω, ω, ω) and Skφ̄C(ω, ω, ω). With the help of the S-operation on cyclic
cohomology one can generate two families of type ω2k+3 by applying S to φC and φ̄C . For
example,

J5,0 = SφC [ω] = 3φC(ω3,ω,ω)− φC(ω2,ω2,ω) , (4.47)
J7,0 = S2φC [ω] = 2φC(ω5,ω,ω)− φC(ω3,ω2,ω2) , (4.48)

and likewise for φ̄C . They vanish upon the physical projection and are unobstructed.

Classes φC(ω, ω,Ck) and φ̄C(ω, ω,Ck). It is easy to see that the following families
of two-forms are closed on-shell:

J2,k = φ(ω,ω,Ck) , J̄2,k = φ̄(ω,ω,Ck) . (4.49)

They can also be rewritten in an equivalent, if not identical, way

Tr[φ(ω,ω) ?Ck] , Tr[φ̄(ω,ω) ?Ck] . (4.50)

These are candidates for the role of surface currents and there are infinitely many of them.
We do not expect those with k > 1 to give a finite charge in general. All these currents are
unobstructed and can easily be continued to higher orders. Those with k odd do not vanish
when projected onto the physical sector. For example, the current Tr[φ̄(ω,ω) ? C] gives
Tr[φ̄(ω, ω)?π(C)]. To the lowest order we obtain hαα̇ ∧hβα̇Cαβ , which is the self-dual part
of the Maxwell tensor Fµν and likewise for the anti-self-dual part and φ. See also [32, 36]
for other discussions and proposals of two-forms.

Class φC(ω, ω, ω, ω, ω). The fourth Hochschild cohomology group HH4(A2, A
∗
2) of the

second Weyl algebra A2 is one-dimensional. This fact implies that the corresponding
cyclic cohomology group HC4(A2) is one-dimensional too. It is quite difficult to find an
explicit expression for the Hochschild four-cocycle of A2. It was first obtained in [85]
as a consequence of the Kontsevich-Shoikhet-Tsygan formality theorem. An alternative
construction was proposed in our paper [79]. The cocycle can be represented as a function
of four arguments in A2 with values in A2. The cocycle condition reads

a ? φ(b, c, d, e)− φ(a ? b, c, d, e) + φ(a, b ? c, d, e)+
− φ(a, b, c ? d, e) + φ(a, b, c, d ? e)− φ(a, b, c, d) ?Π(e) = 0 .

(4.51)

Here, Π[f(y, ȳ)] = f(−y,−ȳ), the effect that can also be achieved with kk̄. The automor-
phism Π ≡ π1π2 takes into account the difference between A2 and A∗2 understood as A2
bimodules.
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The Hochschild four-cocycle φ is known to be cohomologous to a cyclic cocycle φC .
The latter is defined by the conditions

φC(a, b, c, d, e) = −φC(e, a, b, c, d) , (4.52)

φC(a ? b, c, d, e, f)− φC(a, b ? c, d, e, f) + φC(a, b, c ? d, e, f)+
− φC(a, b, c, d ? e, f) + φC(a, b, c, d, e ? f)− φC(f ? a, b, c, d, e) = 0 .

(4.53)

Since A2 = A1 ⊗ A1, the cyclic four-cocycle φC can be obtained as the cup product of
the two-cocycles φC and φ̄C , see eq. (A.32). However, this representative enjoys the sp2
symmetry only. A manifestly sp4-invariant cocycle can be written as a sum of integrals
over 4-, 3-, and 2-simplicies, cf. (4.15). With the help of the cyclic four-cocycle we define
the five-form

J5,0 = φC(ω,ω,ω,ω,ω) , (4.54)

which is on-shell closed and nontrivial. This form is a well-defined observable in the five-
dimensional Chern-Simons theory based on hs = Ae2 whenever we consider solutions to
the zero-curvature equation F = 0 rather than F ∧ F = 0. The five-form descends to the
physical sector and is unobstructed.

Class SkφC(ω, ω, ω, ω, ω) Applying the S-operation to the four-cocycle above one can
generate ω5+2k-forms. For example, applying S once we get a nontrivial seven-form

J7,0 = 5φC
(
ω3,ω,ω,ω,ω

)
+ φC

(
ω2,ω,ω2,ω,ω

)
− 3φC

(
ω2,ω2,ω,ω,ω

)
. (4.55)

All these forms survive the projection onto the physical subsector and are unobstructed.

Class ω4C. This class is obtained by replacing one ω in the cyclic four-cocycle with C:

J4,1 = φC(ω,ω,ω,ω,C) . (4.56)

Its physical projection vanishes as C has to be in the adjoint representation of the higher
spin algebra. At the same time, this implies that there is an on-shell closed four-form that
depends on a global symmetry parameter. In this case, there is no need to use a cyclic
representative and we can replace (4.56) with the equivalent current40

J4,1 = Tr[K ? φ(ω, ω, ω, ω)] . (4.57)

This four-form current does not have any physical interpretation at the moment.
There is a general property of FFS cocycles [85], which we have already used for the

A1 case. In the case being considered it says that

φ(Ω, ω, ω, ω) + φ(ω,Ω, ω, ω) + φ(ω, ω,Ω, ω) + φ(ω, ω, ω,Ω) = 0 (4.58)

40In checking dJ4,1 = 0 one should remember that Π leaves Ae2 invariant. Therefore, φ also determines a
representative of HH4(Ae2, Ae2).
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whenever Ω belongs to the sp4-subalgebra generated by yαyβ , yα̇yβ̇ , and yαyβ̇ . As a
consequence, J4,1 = 0 on purely gravitational backgrounds. The flat connection Ω of
sp4 ∼ so(3, 2) describes the empty AdS4 space provided that the vierbein component of
Ω is nondegenerate. To make J4,1 nontrivial ω is required to contain genuine higher spin
components. Another comment is that similar to the zero-form invariants, one can map
certain field configurations C to the adjoint representation and still take the advantage of
J4,1. This class is unobstructed.

Class ω4C2. This is obtained by inserting the product C?C into the cyclic four-cocycle:

J4,2 = φC(ω,ω,ω,ω,C ?C) . (4.59)

The importance of this current is that it is the first four-form that does not vanish on
generic physical configurations. Upon projecting onto the physical sector it can also be
written as

J4,2 = Tr[φ(ω, ω, ω, ω) ? C ? π(C)] . (4.60)

In view of the property (4.58), J4,2 vanishes whenever ω is purely gravitational, i.e., for
ω ∈ sp4. This four-form is unobstructed.

Class ω4Ck. The two classes above are the first members of the family

J4,k = φC(ω,ω,ω,ω,Ck) , (4.61)

of which we make no special comments, except we do not expect those with k > 2 to lead
to convergent integrals in general.

The expression for the cyclic four-cocycle φC in terms of its two-cocycle constituents
is quite cumbersome. Nevertheless, there is a much simpler expression for J4,k in terms of
the Hochschild two-cocycle φ, which is equivalent to

J4,k = Tr[ωφ(ω,X) + φ(ω,Xω)] , (4.62)

where the two-formX can be chosen simply asCnφ(ω,ω) orCn−kφ(ω,ω)Ck, k = 0, . . . , n.
A general comment about the invariants J4,k that do not vanish identically on physical

configurations is that they are natural building blocks for the on-shell action. In particular,
we see that there is no analog of the cosmological term of ω4-type in 4d HSGRA. Also
there is no tadpole of ω4C-type. All J4,k are unobstructed and extend to higher orders.

Final note. It is worth stressing that all the invariants presented above form a multi-
plicative basis for the graded-commutative algebra of invariants under the exterior product
of differential forms, see Proposition B.4. Therefore, we have even more invariants.

Coming back to the deformation of the equations of motion (3.8) by interaction. Ac-
cording to our classification the two-form currents Tr[φ(ω,ω) ? Ck] with one C removed
determine all the possible deformations of the free equations. Those that remain nontrivial
upon the physical projection are of the form

φ(ω, ω) ? π(C) ? (C ? π(C))n (4.63)
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and the same for φ̄. This interaction ambiguity was first observed in [110]. The terms with
n > 0 are similar to the zero-form invariants41 and are too nonlocal, as interaction vertices,
even for HSGRA [111, 112].

Lastly, after the complete classification of invariants is presented, it is worth comment-
ing on which are the new ones. All invariants that contain the cyclic cocycles φC , ΦC

are new and have never been mentioned in the literature. In particular, this leads to a
new invariant of Chern-Simons theory that is based on the Weyl algebra. The zero-form
invariants are definitely not new, but they do not a priory coincide with those in [32, 33],42

except for the leading order where one or another prescription adopted in [35, 103] gives
the same results. Surprisingly, what we call the Chern-Simons forms are also new, at
least in this context. In addition, there are infinite series of invariants generated via the
S-operation. All these are new as well. Nevertheless, there are other types of invariants
proposed in [32], which are not captured by the present analysis: off-shell invariants, (dec-
orated) Wilson lines and observables that are invariant under the Lorentz subalgebra of
the higher spin algebra. It would be interesting to obtain a complete classification of these
classes as well.

5 Discussion

After the classification is presented, it is high time to glance over table 3 and notice that
we have many more observables than we expected to find for a theory of quantum gravity,
see e.g. [113]. Surprisingly, the higher spin symmetry, being much bigger than the gauge
symmetries in Yang-Mills theory or GR, enjoys a wealth of conserved p-form currents that
the low spin theories do not normally have.

For example, the surface charges are known to correspond to reducibility parameters,
that is, those gauge parameters that leave the field configuration invariant on-shell, see
e.g. [114] in the higher spin context. The surface charges are of no surprise in free gauge
theories, but it is hardly probable to find them in nonlinear models. In GR and YM, the
surface charges can be defined only in the asymptotic region, where they correspond to the
symmetries of the asymptotically free background. However, most of the conserved p-form
currents we found are not obstructed and their nonlinear completion does exist in the full
theory. This might indicate that the nonlinear theory is still free in a sense. Indeed, this
is just what AdS/CFT duality between HSGRA’s and free CFT’s suggests. Interacting
higher spin fields, if not free in themselves, are dual to ‘mesons’ Ji1···is = φ∂i1 · · · ∂isφ+ · · ·
that are bilinear in the free ‘parton’ fields φ of the corresponding CFT.

This also reincarnates in the bulk as hidden integrability of any formal HSGRA. As
was shown in [54] all solutions to the nonlinear equations (3.8) can be obtained from a ‘free

41The y = ȳ = 0 component of (C ? π(C))n is just Tr[(C ? π(C))n]; hence, it does not even depend on x,
which is not what is expected from an interaction vertex.

42We note that there is a doubly-infinite series of zero-form invariants introduced in [32]. The classification
in the present paper reveals that not all of them are independent and/or reduce to finite zero-form invariants
in terms of C.
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system’ of the same form

dω̂ = ω̂ ∗ ω̂ , dĈ = ω̂ ∗ Ĉ − Ĉ ∗ ω̂ . (5.1)

The only difference is that ω̂ and Ĉ take now values in the deformed higher spin alge-
bra (3.12) and depend on the deformation parameter u. There is an explicit map that
takes solutions of eqs. (5.1) to those of eqs. (3.8), see also [90]. The existence of such a
map is due to an inevitable nonlocality of HSGRA that goes far beyond what is allowed in
conventional field theory. The presence of infinitely many conserved surface charges also
agrees with general conclusions of [36].

Another comment is about local gauge invariant operators: there are plenty of such
operators in YM and none in GR. In GR, however, we find infinitely many local scalars
(they are scalars under diffeomorphisms) that are built out of the Riemann tensor and
its covariant derivatives. Our results imply that there are no local ‘curvature invariants’
in HSGRA. The only true scalars are Tr[Cn], but they are (i) nonlocal and (ii) do not
actually depend on the point and thus are diffeomorphism invariant. The reason is that
the diffeomorphisms are actually part of gauge transformations (2.14).

It is possible to foresee the higher dimensional generalization of table 3. Generically,
there is just one Hochschild two-cocycle φ on a higher spin algebra [78]. Associated to it is
a cyclic two-cocycle φC . Together with the trace Tr they generate the following families:

Tr[Ck] , Tr[ω2k+1] , SkφC(ω3+2k) , φC(ω,ω,Ck) .

In addition, there should be a Hochschild cocycle ψ of degree d − 2 (in 4d this results in
that we have φ and φ̄), which also gives rise to families similar to those originating from φ,
i.e., Skψ(ωd+2k−1) and ψ(ωd−2,Ck). The cup products φt· · ·tφ do not seem to generate
nontrivial classes. Nevertheless, we expect χ = φtψ to give a nontrivial d-cocycle and the
corresponding two families: Skχ(ωd+2k+1) and χ(ωd,Ck).

Finally, all conventional gauge theories do not have any characteristic cohomology in
degree less than d−2 provided that gauge symmetries are irreducible [49]. On the contrary
in HSGRA we always have zero-form invariants and for d > 4 there is an infinite family of
two-form currents at the very least. Therefore, HSGRA’s may give interesting examples of
higher form symmetries [30].
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A The essentials of Hochschild, cyclic, and Lie algebra cohomology

This appendix collects, in a highly condensed form, some basic facts on different cohomol-
ogy theories for graded algebras. A systematic exposition of the material can be found
in [87, 115, 116]. For a quick introduction to the subject we refer the reader to [117].

Throughout, k is a ground field of characteristic zero and M is a bimodule over a
graded associative k-algebra A, that is, A =

⊕
n∈ZAn and M =

⊕
n∈ZMn such that

An ·Am ⊂ An+m and Am ·Mn ⊂Mm+n ⊃Mn ·Am .

The degrees of homogeneous elements a ∈ An and m ∈ Mn will be denoted by |a| = n,
|m| = n. Both the algebra and bimodule are supposed to be unital. All unadorned tensor
products ⊗ and Hom’s are taken over k. Given two graded algebras A and B, we define
the tensor product A⊗B to be a graded algebra with

(A⊗B)n =
⊕

p+q=n
Ap ⊗Bq and (a⊗ b) · (a′ ⊗ b′) = (−1)|b||a′|aa′ ⊗ bb′ .

In a similar way one can define the tensor product of graded bimodules over A and B.
Notice that the sign in the definition of the product above agrees with the Koszul sign
convention: if in manipulation with monomial expressions involving graded objects an
object a jumps over an object b, then the sign (−1)|a||b| appears in front of the expression.
For example, if f and g is a pair of homomorphisms of graded modules, then (f⊗g)(a⊗b) =
(−1)|g||a|f(a)⊗ g(b) and the dual bimodule M∗ = Hom(M,k) is defined by the relation

(afb)(c) = (−1)|a|(|f |+|b|+|c|)f(bca) , ∀f ∈M∗ ∀a, b, c ∈ A . (A.1)

We follow this sign convention throughout the paper. Many formulae below are simplified
significantly if one uses the shifted degree ā = |a| − 1 that results from the desuspension
A→ A[−1], where A[−1]n = An−1.

Finally, we will use Z2 to denote the cyclic group Z/2Z and Sp2n(k) to denote the
symplectic group Sp(n, k) since this is notation prevalent in the physical literature.

A.1 Hochschild cohomology

The Hochschild cohomology HH•(A,M) of a graded algebra A with coefficients in M is
the cohomology of the Hochschild cochain complex C•(A,M):

0 // C0 ∂ // C1 ∂ // C2 ∂ // · · ·

with
Cp = Hom(A⊗p,M) , A⊗p = A⊗ · · · ⊗ A︸ ︷︷ ︸

p

,

and the differential

(∂f)(a1, . . . , ap+1) = (−1)(ā1+1)(f̄+1)a1f(a2, . . . , ap+1)− (−1)ā1+···+āpf(a1, . . . , ap)ap+1

+
p∑

k=1
(−1)ā1+···+ākf(a1, . . . , akak+1, . . . , ap+1) . (A.2)
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The complex C•(A,M) contains a large subcomplex C̄•(A,M) of cochains that vanish
whenever at least one of their arguments is equal to unit e ∈ A. The latter is called the
normalized Hochschild complex. It is not hard to see that the inclusion map i : C̄(A,M)→
C(A,M) induces an isomorphism in cohomology. On restricting to normalized cochains,
one concludes immediately that HH•(k,M) ' HH0(k,M) 'M , where the ground field k
is regarded as a one-dimensional unital k-algebra.

Of particular interest are two special cases of bimodules: M = A and M = A∗. The
cohomology groups HH•(A,A) arise naturally in deformation theory of the algebra A,
while the groups HH•(A,A∗) behave functorialy in A: each k-algebra homomorphism
h : A→ B indices a homomorphism in cohomology h∗ : HH•(B,B∗)→ HH•(A,A∗).

Upon identification Cp(A,A∗) ' Hom(A⊗(p+1), k), formula (A.2) takes the form

(∂g)(a0, a1, . . . , ap+1) =
p∑

k=0
(−1)ā0+···+ākg(a0, a1, . . . , akak+1, . . . , ap+1)

+ (−1)(ā0+1)(ā1+···+āp+1)g(a1, . . . , ap, ap+1a0) ,
(A.3)

where g(a0, . . . , ap−1, ap) = (−1)|ap|f(a0, . . . , ap−1)(ap).

A.2 Cyclic cohomology

The complex C•(A,A∗) contains a subcomplex C•cyc(A) of cyclic cochains, i.e., cochains
g ∈ Hom(A⊗(p+1), k) satisfying the symmetry condition

g(a0, a1, . . . , ap) = (−1)ā0(ā1+···+āp)g(a1, . . . , ap, a0) . (A.4)

The cohomology of the complex C•cyc(A) is called the cyclic cohomology of A and the
corresponding cohomology groups are denoted by HC•(A). Upon restricting to cyclic
cochains, one can bring the differential (A.3) into a more familiar form43

(∂g)(a0, a1, . . . , ap+1) =
p∑

k=0
(−1)ā0+···+ākg(a0, a1, . . . , akak+1, . . . , ap+1)

+ (−1)āp+1(ā0+···+āp+1)g(ap+1a0, a1, . . . , ap) .
(A.5)

Let us consider the ground field k as a one-dimensional algebra over itself. It follows
from the cyclicity condition (A.4) that C2n

cyc(k) ' k and C2n+1
cyc (k) = 0. Hence, HC2n

cyc(k) '
k and HC2n+1

cyc (k) = 0. On the other hand, HH•(k, k∗) ' HH0(k, k∗) ' k. We thus
conclude that HH•(A,A∗) 6= HC•(A) in general. In particular, the cyclic subcomplex
C•cyc(A) is not a retract of C•(A,A∗).

There is a general construction to produce cyclic cocycles. It is based on Connes’ notion
of a cycle over an algebra [116, Ch. III]. Recall that each differential graded algebra (Ω, d)
possesses a canonical decreasing filtration Ω ⊃ F 1Ω ⊃ F 2Ω ⊃ · · · , where the differential
subalgebra F pΩ is given by the p-th power of the ideal generated by dΩ. In other words,
the k-space F pΩ is spanned by elements of the form a = a0da1 · · · dap.

43Notice that the signs in either form obey the Koszul rule if one shifts the degree of all a’s by −1, so
that the dot product acquires degree 1. Upon this interpretation the dot product and cyclic permutation
of a’s go first and the map g after.
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Following Connes, we define a p-cycle to be a triple (Ω, d,
∫

) consisting of a differential
graded algebra endowed with a closed trace

∫
: Ω→ k vanishing on F p+1Ω, that is,∫

[a, b] = 0 ,
∫
da = 0 ,

∫
c = 0 , ∀a, b ∈ Ω , ∀c ∈ F p+1Ω .

By definition, a p-cycle over an algebra A is given by a p-cycle (Ω, d,
∫

) together with a
homomorphism ρ : A→ Ω of graded algebras. Let us denote â = ρ(a) for all a ∈ A.

Given a p-cycle over an algebra A, we define its character τ : Ap+1 → k by the rule

τ(a0, a1, . . . , ap) =
∫
â0dâ1 · · · dâp .

One can check that τ is a cyclic p-cocycle. When manipulating with cycles the following
multiplication formulae are useful:

â(â0dâ1 · · ·dâp) = âa0dâ1 · · ·dâp , (A.6)

(â0dâ1 · · ·dâp)âp+1 = â0dâ1 · · ·dâpap+1−(−1)|ap|(â0dâ1 · · ·dâp−1)âpdâp+1

=
p∑

k=1
(−1)|ak+1|+···+|ap|+p−kâ0dâ1 · · ·dâkak+1 · · ·dâp+1+(−1)|a1|+···+|ap|+pâ0a1dâ2 · · ·dâp+1 .

With the help of these relations one readily finds

(∂τ)(a0, . . . , ap+1) = (−1)ā0+···+āp
∫

[â0dâ1 · · · dâp, âp+1] = 0 . (A.7)

It can be shown that each cyclic cocycle can be represented by a character of an appropriate
cycle over A, see [116, III.1.α, Prop. 4].

A.3 Cohomology of Lie algebras

Let V =
⊕
V n be a Z-graded module over a Z-graded Lie algebra L =

⊕
Ln. We use

the square brackets [−,−] to denote both the Lie bracket in L and the action (represen-
tation) of L in V . The Chevalley-Eilenberg cochain complex consists of the sequence of
groups Cp(L, V ) = Hom(ΛpL, V ) endowed with a coboundary operator d : Cp(L, V ) →
Cp+1(L, V ). By definition,

c(a1, . . . , ak, ak+1, . . . , ap) = (−1)ākāk+1c(a1, . . . , ak+1, ak, . . . , ap) (A.8)

and

(dc)(a1, . . . , ap+1) = −
p+1∑
k=1

(−1)εk [c(a1, . . . , âk, . . . , ap+1), ak]

+
∑

1≤k<l≤p+1
(−1)εklc([ak, al], a1, . . . , âk, . . . , âl, . . . , ap+1) ,

(A.9)

where

εk = ā1 + · · ·+ āk−1 + āk+1 + · · ·+ āp+1 + āk(āk+1 + · · ·+ āp+1) ,
εkl = āk + āk(ā1 + · · ·+ āk−1) + āl(ā1 + · · ·+ āk−1 + āk+1 + · · ·+ āl−1) .

The hats indicate omitting of the corresponding arguments. For trivial coefficients V = k

the sum in the first line of (A.9) is absent. By definition, the Lie algebra cohomology with
coefficients in V is the cohomology of the Chevalley-Eilenberg complex above. The corre-
sponding cohomology groups are denoted by H•(L, V ) or just H•(L) for trivial coefficients.
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A.4 Cohomological operations

A.4.1 Cotrace map and Morita invariance

Let Matn(k) denote the algebra of n × n-matrices over k. One may regard the tensor
product Matn(A) = A ⊗Matn(k) as the algebra of n × n-matrices with entries in A and
endow the k-space Matn(M) = M ⊗ Matn(k) with the natural bimodule structure over
Matn(A). Define the cotrace map

cotr : Cp(A,M)→ Cp(Matn(A),Matn(M)) , p = 0, 1, . . . , (A.10)

by the relation

cotr(f)(a1 ⊗m1, . . . , ap ⊗mp) = f(a1, . . . , ap)⊗m1 · · ·mp (A.11)

for f ∈ Cp(A,M) and ai ⊗mi ∈ A ⊗Matn(k). It is stated that (A.10) is a cochain map
inducing an isomorphism

cotr∗ : HHp(A,M)→ HHp(Matn(A),Matn(M)) , (A.12)

in Hochschild cohomology [115, section 1.5.6]. In the case of cyclic p-cochains (A.4) the
map (A.11) takes the form

cotr(g)(a0 ⊗m0, . . . , ap ⊗mp) = g(a0, . . . , ap)tr(m0 · · ·mp) (A.13)

and gives rise to the isomorphism

cotr∗ : HCp(A)→ HCp(Matn(A)) (A.14)

of cyclic cohomology groups [115, section 2.4.6].
The isomorphisms above are particular manifestations of the Morita invariance of

Hochschild and cyclic cohomology. By definition, two algebras A and B are said to be
Morita equivalent (A ∼ B) if there is an isomorphism between their categories of (left)
modules. In other words, there exist a B-A-bimodule M and an A-B-bimodule N such
that M ⊗A N ' B and N ⊗B M ' A. For example, A ∼ Matn(A) for any associative
algebra A and two commutative algebras are Morita equivalent iff they are isomorphic.
Hence, the phenomenon of Morita equivalence is essentially noncommutative. It is known,
see e.g. [115, section 1.2], that the Hochschild and cyclic cohomology functors are Morita
invariant, that is,

HH•(A,A∗) ' HH•(B,B∗) and HC•(A) ' HC•(B) (A.15)

whenever A ∼ B.

A.4.2 The Gerstenhaber algebra structure on HH•(A,A)

Given a pair of cochains f ∈ Cp(A,A) and g ∈ Cq(A,A), we set

(f∪g)(a1, . . . ,ap+q) = (−1)(ḡ−1)(ā1+···+āp)f(a1, . . . ,ap)g(ap+1, . . . ,ap+q) , (A.16)

f{g}=
p−1∑
k=0

(−1)ḡ(ā1+···+āk)f(a1, . . . ,ak,g(ak+1, . . . ,ak+q),ak+q+1, . . . ,ap+q−1) ,

(A.17)
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and
[f, g] = f{g} − (−1)ḡf̄g{f} . (A.18)

The first operation (A.16), called the cup product, makes C•(A,A) into a graded associative
algebra, while the commutator (A.18) equips the space C•(A,A) with the structure of a
graded Lie algebra. As is seen, the latter structure makes no use of the associative product
on the k-space A. The product, however, gives rise to a Maurer-Cartan element of the
graded Lie algebra. Setting

m(a, b) = (−1)āab , ∀a, b ∈ A , (A.19)

one can easily see that [m,m] = 2m{m} = 0. With the help of m the Hochschild differen-
tial (A.2) for M = A can be written as

∂f = [f,m] , (A.20)

so that the condition ∂2 = 0 becomes a simple consequence of the Jacobi identity. As
another consequence, one finds that the operator ∂ differentiates the Lie bracket (A.18).
A straightforward calculation shows that it is also a (right) derivation of the cup product:

∂(f ∪ g) = f ∪ ∂g + (−1)|g|∂f ∪ g . (A.21)

As a result both the multiplication operations pass through cohomology. Furthermore, at
the level of cohomology, the cup product appears to be graded commutative and compatible
with the bracket in the sense of the graded Poisson relation. This follows from the identities

f∪g−(−1)|f ||g|g∪f =−(∂f){g}−(−1)|g|∂(f{g})+(−1)|g|f{∂g} , (A.22)

[f,g∪h]−[f,g]∪h−(−1)f̄ |g|g∪[f,h] =−∂(f){g,h}±∂(f{g,h})±f{∂g,h}±f{g,∂h} .
(A.23)

The r.h.s. of the second identity involves a higher cohomological operation, called a two-
brace, whose definition can be found in [118]. In such a way the space HH•(A,A) is
endowed with the structure of a Gerstenhaber algebra [119].

A.4.3 Operations in Lie algebra cohomology

There are various multiplicative structures on the Lie algebra cohomology depending on
coefficients. For instance, the natural multiplication of scalar cochains C•(L, k) as exterior
forms on L• makes C•(L, k) a differential graded algebra with the same differential (A.9).
As a result, the cohomology space H•(L) acquires the structure of graded commutative
algebra:

[c1] · [c2] = [c1 · c2] = (−1)c̄1c̄2 [c2 · c1] , (A.24)

ci being cocycles representing the cohomology classes [ci].
Denoting H•+(L) =

⊕
p>0H

p(L), we define the space of indecomposable elements of
the algebra H•(L) as the quotient IndecH•(L) = H•(L)/H•+(L) ·H•+(L).
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Another type of multiplication arises in the case of cohomology with coefficients in the
adjoint representation. By analogy with (A.17) we put

c1〈c2〉(a1, . . . , aq+p) =
∑

ij-unshuffles

(−1)εijc1(c2(ai1 , . . . , aiq), aj1 , . . . , ajp) . (A.25)

Here the sum is taken over all unshuffle sequences

i1 < i2 < · · · < iq , j1 < j2 < · · · < jp ,

of {1, 2, . . . , q + p} and (−1)εij is the Koszul sign of the permutation

(a1, . . . , aq+p) 7→ (ai1 , . . . , aiq , aj1 , . . . , ajp) ,

where the degree of each homogeneous element ai ∈ A is shifted by −1, cf. (A.8). Then
the bracket

[c1, c2] = c1〈c2〉 − (−1)c̄1c̄2c2〈c1〉 (A.26)

gives C•(L,L) the structure of a differential graded Lie algebra with the differential (A.9).
Passing to cohomology, one can speak of the graded Lie algebra of cohomology H•(L,L).

Using the above formulae for the dot (A.24) and composition (A.25) products and
taking the algebra of functions and vector fields on a graded manifold as a model, one can
easily guess how to endow H•(L,L) with the structure of H•(L)-module and turn H•(L)
into a module over the graded Lie algebra H•(L,L).

Observe that multiplication (A.24) makes sense for [c1] ∈ H•(L) and [c2] ∈ H•(L, V ),
since the L-module V is simultaneously a k-vector space. This allows one to regard
H•(L, V ) as a (left) module over H•(L) and to identify the space of indecomposable ele-
ments of H•(L, V ) with the quotient IndecH•(L, V ) = H•(L, V )/H•+(L) ·H•(L, V ).

A.4.4 Cup products in Hochschild and cyclic cohomology

These cup products44 relate the cohomology groups of algebras A and B with those of the
tensor product A⊗B. The case of Hochschild cohomology appears to be simpler than the
cyclic one as it is possible to define the desired product at the level of cochains. Let M
and N be bimodules over algebras A and B, respectively. Then one puts

(f t g)(a1 ⊗ b1, . . . , aq+p ⊗ bq+p)
= (−1)εf(a1, . . . , aq)aq+1 · · · aq+p ⊗ b1 · · · bqg(bq+1, . . . , bq+p)

(A.27)

for any f ∈ Cq(A,M) and g ∈ Cp(B,N). Here (−1)ε is the Koszul sign resulting from
permutations of a’s, b’s, and g. By construction, f t g ∈ Cq+p(A ⊗ B,M ⊗ N). The
cup product (A.27) is differentiated by the Hochschild coboundary operator (A.2) thereby
inducing a product in cohomology:

t : HHq(A,M)⊗HHp(B,N)→ HHq+p(A⊗B,M ⊗N) . (A.28)
44Do not mix with the cup product of A.4.2.
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By way of example let us consider the case wherein B is the matrix algebra Matn(k)
viewed as a bimodule over itself. Then A ⊗ B = Matn(A) and M ⊗ N = Matn(M). In
view of the Morita equivalence Matn(k) ∼ k, we have

HH•(Matn(k),Matn(k)) ' HH•(k, k) ' HH0(k, k) ' k . (A.29)

The group HH0(Matn(k),Matn(k)), being the center of the matrix algebra, is generated by
the unit matrix 1 ∈ Matn(k). Then one can see that f t1 = cotr(f) for any f ∈ Cp(A,M).
Thus, the cotrace map (A.12) is induced by the cup product with the generator of the
group HH•(Matn(k),Matn(k)).

The simplest way to introduce the cup product for cyclic cohomology is through the
notion of a cycle over an algebra, see section A.2. Given a pair of cycles Ω and Ω′ of
dimensions p and p′, one can define their tensor product Ω′′ = Ω⊗ Ω′, which is a cycle of
dimension p+ p′. As a differential graded algebra Ω′′ is given by the tensor product of the
algebras Ω and Ω′ and the closed trace is defined by∫

ω ⊗ ω′ = (−1)|ω||ω′|
∫
ω

∫
ω′ , ∀ω ∈ Ω, ∀ω′ ∈ Ω′ .

This definition naturally extends to the tensor product of cycles over algebras inducing a
cup product in cyclic cohomology:

t : HCq(A)⊗HCp(B)→ HCp+q(A⊗B) . (A.30)

Specifically, the cup product of cyclic cocycles is defined as the product of their characters:
If

φ(a0, a1, . . . , aq) =
∫
â0dâ1 · · · dâq , ψ(a0, a1, . . . , ap) =

∫
â0dâ1 · · · dâp ,

then

(φ t ψ)(a0 ⊗ b0, . . . , ap+q ⊗ ap+q) =
∫

(â0 ⊗ b̂0)d(â1 ⊗ b̂1) · · · d(âp+q ⊗ b̂p+q) . (A.31)

Consider for example the cup product of 1-cocycles φ and ψ reresented by the characters

φ(a0, a1) =
∫
a0da1 , ψ(b0, b1) =

∫
b0db1 .

(To simplify expressions we omit hats.) One can find

(φ t ψ)(a0 ⊗ b0, a1 ⊗ b1, a2 ⊗ b2) =
∫

(a0 ⊗ b0)d(a1 ⊗ b1)d(a2 ⊗ b2)

=
∫

(a0 ⊗ b0)(da1 ⊗ b1 + (−1)|a1|a1 ⊗ db1)(da2 ⊗ b2 + (−1)|a2|a2 ⊗ db2)

=
∫ (

(−1)|b0|(|a1|+|a2|+1)+|a2|(|b1|+1)a0da1a2 ⊗ b0b1db2

+ (−1)|a1|(|b0|+1)+(|a2|+1)(|b0|+|b1|+1)a0a1da2 ⊗ b0db1b2
)

=
∫ (

(−1)|b0|(|a1|+|a2|+1)+|a2|(|a0|+|a1|+|b1|)a2a0da1 ⊗ b0b1db2

+ (−1)|a1|(|b0|+1)+(|a2|+|b2|+1)(|b0|+|b1|+1)a0a1da2 ⊗ b2b0db1
)

= (−1)ε1
∫
a2a0da1

∫
b0b1db2 + (−1)ε2

∫
a0a1da2

∫
b2b0db1

= (−1)ε1φ(a2a0, a1)ψ(b0b1, b2) + (−1)ε2φ(a0a1, a2)ψ(b2b0, b1) ,
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where

ε1 = (|b1|+ |b2|+ 1)(|a0|+ |a1|+ |a2|+ 1) + |a2|(|a0|+ |a1|+ |b1|) + |a0||b0| ,
ε2 = |b2|(|a0|+ |a1|+ |a2|+ |b0|+ |b1|) + |a0|(|b0|+ |b1|+ 1) + |a1||b1| .

Note that it is impossible to define the cup product at the level of cyclic cochains. Cyclicity
takes place only for cocycles.

For reference we also present the cup product of two cyclic 2-cocycles

φ(a0, a1, a2) , ψ(b0, b1, b2)

for the case of nongraded algebras A = A0 and B = B0. Applying the general for-
mula (A.31), one can find

(φ t ψ)(a0 ⊗ b0, a1 ⊗ b1, a2 ⊗ b2, a3 ⊗ b3, a4 ⊗ b4) (A.32)
= φ(a3a4a0, a1, a2)ψ(b0b1b2, b3, b4) + φ(a4a0a1, a2, a3)ψ(b1b2b3, b4, b0)

+ φ(a1a2a3, a4, a0)ψ(b4b0b1, b2, b3) + φ(a0a1a2, a3, a4)ψ(b3b4b0, b1, b2)
− φ(a4a0a1, a2, a3)ψ(b0b1b2, b3, b4)− φ(a0a1a2, a3, a4)ψ(b4b0b1, b2, b3)
+ φ(a0a1a2, a3, a4)ψ(b4b0, b1b2, b3) + φ(a4a0, a1a2, a3)ψ(b0b1b2, b3, b4)
− φ(a4a0, a1a2, a3)ψ(b0b1, b2b3, b4)− φ(a0a1, a2a3, a4)ψ(b4b0, b1b2, b3) .

As one more example, consider the group HC0(Matn(k)) ' HC0(k) ' k. The group
is clearly generated by the matrix trace tr : Matn(k)→ k. Then A⊗Matn(k) = Matn(A)
and one can check that gttr = cotr(g) for any g ∈ Cp(A), where the cotrace map is defined
by (A.13).

Suppose now that A is a bialgebra. Then the comultiplication ∆ : A→ A⊗ A, being
a k-algebra homomorphism, induces the map

∆∗ : HC•(A⊗A)→ HC•(A)

(recall that HC•(−) is a contravariant functor of algebra). Composing this map with the
cup product in cyclic cohomology (A.30), we get a new product

∆∗ ◦ t : HC•(A)⊗HC•(A)→ HC•(A) (A.33)

that makes HC•(A) into a graded associative algebra.

A.4.5 Periodicity map

As was mentioned in section A.2, HC2n(k) = k. Let σ ∈ HC2(k) be a generator in degree
2 and let (Ω, d,

∫
) be a cycle over k = ke such that

1 = σ(e, e, e) =
∫
edede .

Note that for each k-algebra A, there is the isomorphism A ⊗ k ' A. Using this
isomorphism and the generator σ ∈ HC2(k), we can define a homomorphism

S : HCp(A)→ HCp+2(A) (A.34)
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by setting
Sf = σ t f = f t σ , ∀f ∈ HCp(A) . (A.35)

The homomorphism S of degree 2 is called the periodicity map. For example, applying S
to a 1-cocycle φ, we get

(Sφ)(a0,a1,a2,a3) =
∫

(a0⊗e)d(a1⊗e)d(a2⊗e)d(a3⊗e)

=
∫

(a0⊗e)(da1⊗e+(−1)|a1|a1⊗de)(da2⊗e+(−1)|a2|a2⊗de)(da3⊗e+(−1)|a3|a3⊗de)

= (−1)|a2|+|a3|
∫

(a0⊗e)(da1⊗e)(a2⊗de)(a3⊗de)

+(−1)|a1|+|a3|
∫

(a0⊗e)(a1⊗de)(da2⊗e)(a3⊗de)

+(−1)|a1|+|a2|
∫

(a0⊗e)(a1⊗de)(a2⊗de)(da3⊗e)

= (−1)|a2|
∫
a0da1a2a3⊗edede+(−1)|a1|

∫
a0a1a2da3⊗ededee

= (−1)|a3|+(|a2|+|a3|)(|a0|+|a1|)
∫
a2a3da1

∫
edede+(−1)|a1|

∫
a0a1a2da3

∫
edede

= (−1)|a3|+(|a2|+|a3|)(|a0|+|a1|)φ(a2a3a0,a1)+(−1)|a1|φ(a0a1a2,a3) .

The above calculations are simplified if one uses the following identities, which hold for
any idempotent e:

de = de2 = dee+ ede ⇒ edee = 0 .

Actually, treating k = ke as a bialgebra, one can make HC•(k) into a graded commutative
algebra w.r.t. the product (A.33). This algebra appears to be isomorphic to k[σ] with
the generator σ of degree 2. Eq. (A.35) defines then the action of the algebra HC•(k)
on HC•(A). This allows us to view HC•(A) as a module over the graded commutative
algebra HC•(k).

A.5 Example: the cyclic cohomology of Λ = k[θ]

By way of illustration let us consider a simple, yet important, example of a graded algebra.
This is given by the Grassmann algebra Λ = k[θ] with the only generator θ of degree 1
subject to the relation θ2 = 0.

Using the normalized Hochschild complex shows that HHn(Λ,Λ∗) ' k2 for all n ≥ 0.
Indeed, since the Hochschild differential vanishes identically upon normalization, one can
define a basis of n-cocycles ϕ±n ∈ Hom(Λ⊗(n+1), k) by the relations

ϕ+
n (e, θ, . . . , θ) = 1 , ϕ+

n (θ, θ, . . . , θ) = 0 ,
ϕ−n (e, θ, . . . , θ) = 0 , ϕ−n (θ, θ, . . . , θ) = 1 ,

(A.36)

e being the unit of Λ. For the same reason, HHn(Λ,Λ) ' k2 and we can choose the basis
n-cocycles ψ±n ∈ Hom(Λ⊗n,Λ) to satisfy the normalization condition and

ψ+
n (θ, . . . , θ) = e , ψ−n (θ, . . . , θ) = θ . (A.37)
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In particular, the equalities

HH0(Λ,Λ) = Z(Λ) = Λ , HH1(Λ,Λ) = Der(Λ) (A.38)

trivially follow from the graded commutativity of Λ. Notice that the odd derivation ψ+
1

makes Λ into a differential graded algebra and

ψ+
n ∪ ψ+

m = ψ+
n+m , ψ−n ∪ ψ+

m = ψ−n+m , ψ−n ∪ ψ−m = 0 , (A.39)

where the cup product ∪ is defined in section A.4.2. Geometrically, one may regard ψ±n
as n-vector fields on a graded manifold with the only (odd) coordinate θ. Then the cup
products (A.39) become the exterior products of polyvector fields.

The cyclic cohomology of Λ is also known [120, Prop. 3.1.1]:

HC2n(Λ) ' k2 , HC2n+1(Λ) ' k , n = 0, 1, 2, . . . (A.40)

Writing the elements of Λ as a = a+e + a−θ, where a± ∈ k, we can choose the following
basis cocycles:

λ+
2n(a0, a1, . . . , a2n) = a+

0 a
+
1 · · · a

+
2n , λ−n (a0, a1, . . . , an) = a−0 a

−
1 · · · a

−
n . (A.41)

The cyclicity condition (A.4) is obviously satisfied for λ±’s.
Actually, Λ is a bialgebra with the coproduct defined by ∆θ = θ⊗e+e⊗θ. As explained

in section A.4.4, the space HC•(Λ) is given the structure of a graded commutative algebra.
Multiplying the generators (A.41) according to (A.33), one can find [87, Prop. 5.1.4]:

λ+
2nλ

+
2m = λ+

2m+2n , λ+
2kλ
−
m = 0 , k > 0 , λ−mλ

−
n = 0 . (A.42)

The element λ+
0 plays the role of unit in HC•(Λ). It is easy to see, that all λ−’s are in the

kernel of the homomorphism
HC•(Λ)→ HC•(k) (A.43)

induced by the inclusion k → Λ. An earlier discussion of Hochschild and cyclic cohomology
for Grassmann algebras can be found in [121, 122].

A.6 Künneth theorems for Hochschild and cyclic cohomology

Let N be a bimodule over a k-algebra B such that all the groups of Hochschild cohomology
HHp(B,N∗) are finite-dimensional k-vector spaces. Then the cup product (A.28) defines
a natural isomorphism

HHn(A⊗B,M ⊗N) '
⊕

p+q=n
HHp(A,M)⊗HHq(B,N) (A.44)

for any A-bimodule M . This statement is just the dual version of the Künneth formula for
Hochschild homology, see [52, Ch. X, Thm. 7.4].

The cyclic analog of the isomorphism (A.44) is given by the exact sequence

0→ HC•(A)
⊗

HC•(k)
HC•(B) t→ HC•(A⊗B) α→ TorHC•(k)(HC•(A), HC•(B))→ 0

(A.45)
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under the assumption that all groups HCp(B) are finite-dimensional, see [123, Thm. 1].
Here α is a homomorphism of degree −1. In general, the cup product (A.30) defines
only an injective homomorphism from the tensor product of HC•(k)-modules. This ho-
momorphism, however, becomes an isomorphism whenever either of the HC•(k)-modules
is torsion free.

A.7 Relations between various cohomology theories

The fact that the cyclic complex C•cyc(A) is a subcomplex of the Hochschild complex
C•(A,A∗) gives rise to the long exact sequence in cohomology

· · · // HHp(A,A∗) B // HCp−1(A) S // HCp+1(A) I // HHp+1(A,A∗) // · · · .

The sequence involves the periodicity map (A.34) and is known as Connes’ Periodicity
Exact Sequences. In many interesting cases it reduces the problem of computation of cyclic
cohomology to that of Hochschild cohomology. The map I is induced by the inclusion
C•cyc(A) → C•(A,A∗), while the definition of B is more complicated, see [116]. In low
dimensions, Connes’ exact sequence takes the form

0→ HC0 → HH0 → 0→ HC1 → HH1 → HC0 → HC2 → HH2 → · · · , (A.46)

hence, HC0(A) ' HH0(A,A∗) (which is clear from the definition of cyclic cohomology).
Suppose for instance that HHp(A,A∗) = 0 for all p > n. Then applying the exact se-

quence above, one readily concludes that the periodicity map S : HCq(A)→ HCq+2(A) is
an isomorphism for all q ≥ n and an epimorphism for q = n−1. If the whole Hochschild co-
homology of A is concentrated in degree n, then the nontrivial groups of cyclic cohomology
are

HCn+2k(A) ' HHn(A,A∗) , k = 0, 1, 2, . . . . (A.47)

Given an associative algebra A, denote by L(A) the associated Lie algebra with the
Lie bracket given by the commutator in A. Any bimodule M over A turns naturally into
a (left) module over L(A) by setting [a,m] = am− (−1)|m||a|ma for m ∈M and a ∈ L(A).
Restricting a Hochschild p-cochain f : A⊗p →M to the subspace of antisymmetric chains
ΛpA ⊂ A[−1]⊗p gives then a cochain of the Chevalley-Eilenberg complex associated to the
Lie algebra L(A), see section A.3. Moreover, the restriction appears to be a cochain map,
so that

(∂f)(a1 ∧ a2 ∧ . . . ∧ ap+1) = (df)(a0 ∧ a1 ∧ . . . ∧ ap+1)

for any f ∈ Cp(A,M). As a result we have a homomorphism of cohomology groups

ε∗p : HHp(A,M)→ Hp(L(A),M) (A.48)

induced by the inclusion εp : ΛpA → A[−1]⊗p. This is known as an antisymmetrization
map [115, section 1.3.4].

Similarly, restricting the cyclic p-cochains onto the subspace Λp+1A ⊂ A[−1]⊗(p+1), one
gets the cochain space Cp+1(L(A)). Again, the restriction map appears to be a morphism
of complexes inducing a homomorphism in cohomology,

ε∗p+1 : HCp(A)→ Hp+1(L(A)) . (A.49)
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Notice that the antisymmetrization map is compatible with cyclicity:

g(a0 ∧ a1 ∧ . . . ∧ ap) = (−1)ā0(ā1+···+āp)g(a1 ∧ . . . ∧ ap ∧ a0) ,

cf. (A.4).
Recall that Matn(A) denotes the associative algebra of n× n-matrices with entries in

A. When equipped with matrix commutator it becomes a Lie algebra denoted by gln(A).
The same matrix commutator turns the k-space Matn(M) into an adjoint module of the
Lie algebra gln(A) for any A-bimodule M .

Composing now the antisymmetrization map with the cotrace of section A.4.1, one can
define a homomorphism from the Hochschild or cyclic cohomology of A to the cohomology
of the Lie algebra gln(A):

φ∗ = ε∗ ◦ cotr∗ : HH•(A,M)→ H•(gln(A),Matn(M)) , (A.50)
ϕ∗ = ε∗ ◦ cotr∗ : HC•−1(A)→ H•(gln(A)) . (A.51)

At the level of cochains the maps are defined by the formulae

φ(g)(a1⊗m1, . . . ,ap⊗mp) =
∑
σ∈Sp

(−1)εσg(aσ(1), . . . ,aσ(p))⊗mσ(1) · · ·mσ(p) , (A.52)

ϕ(g)(a0⊗m0, . . . ,ap⊗mp) =
∑
σ∈Sp

(−1)εσg(a0,aσ(1), . . . ,aσ(p))tr(m0mσ(1) · · ·mσ(p)) . (A.53)

Here (−1)εσ is the Koszul sign caused by elementary transpositions (A.8) of arguments.
(There is no need to antisymmetrise all p + 1 arguments in the second relation due to
cyclicity of g and tr.)

Among important applications of cyclic cohomology is computation of the cohomology
of the Lie algebra gl(A) of ‘big matrices’. By definition, the algebra gl(A) consists of
infinite matrices with only finitely many entries different from zero. Formally, it is defined
through the inductive limit gl(A) = lim

→
gln(A) corresponding to the natural inclusions

gln(A) ⊂ gln+1(A) (an n×n-matrix is augmented by zeros). A precise relationship between
the cohomology of the Lie algebra of matrices and cyclic cohomology is established by the
following Tsygan-Loday-Quillen theorem [124, 125].

Theorem A.1. The image of the map (A.51) lies in the indecomposable part of the algebra
H•(gln(A)) and induces an isomorphism

HCp−1(A) ' IndecHp(gln(A))

for all n ≥ p. As an exterior algebra, H•(gl(A)) is freely generated by the graded vector
space HC•−1(A).

In other words, the cohomology group Hp(gln(A)) does not depend on the size of
matrices provided it is large enough.
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There is also an analogue of the above theorem for cohomology with coefficients in
the adjoint representation, see [115, 126, section 10.4]. Denoting Mat(M) = lim

→
Matn(M),

we have

Theorem A.2. For any A-bimodule M ,

H•(gl(A),Mat(M)) ' HH•(A,M)⊗H•(gl(A)) .

This theorem says that, viewed as an H•(gl(A))-module, H•(gl(A),Mat(M)) is freely
generated by the spaces of indecomposable elements

IndecHp(gl(A),Mat(M)) ' HHp(A,M) . (A.54)

A.8 Example: the cohomology of gl(A⊗ Λ)

In studying invariants of a HSGRA associated with a given higher spin algebra A we are
interested in cohomology of the Lie algebra gl(A) with coefficients in symmetrized tensor
powers of the coadjoint module gl(A)∗. There is a trick that allows one to incorporate the
tensor module into the structure of a Lie algebra reducing thus the problem to the case of
trivial coefficients. The construction goes as follows.

Let Λ = k[θ] be the Grassmann algebra of section A.5. Tensoring it with A, we define
the graded Lie algebra

gl(A⊗ Λ) = θgl(A)+⊃ gl(A) . (A.55)

Here the commutative ideal θgl(A) may be regarded as an adjoint module over the subal-
gebra gl(A). The semi-direct sum decomposition (A.55) leads to the obvious isomorphism

H•
(
gl(A⊗ Λ)

)
' H•

(
gl(A), S•(gl(A)∗)

)
(A.56)

for the Lie algebra cohomology groups. Here S• stands for the symmetric tensor powers
of the coadjoint module. Theorem A.1 states now that the groups on the left form an
exterior algebra freely generated by the graded vector space HC•(A⊗Λ). As to the latter
cohomology, we have the following

Theorem A.3. For any k-algebra A

HCp(A⊗ Λ) ' HCp(A)⊕
( p⊕
n=0

HHn(A,A∗)
)
.

See [87, Prop. 5.1.4] and [123] for the proof.
Since the groups HCp(Λ) are finite-dimensional, one can apply the Künneth exact

sequence (A.45) to establish the isomorphism above. Suppose the Hochschild cohomology
of A is concentrated in one degree, say n. Then the cyclic cohomology groups are given
by (A.47) and HCn+2k(A) = SkHCn(A). The periodicity map S defines the action of the
algebra HC•(k) ' k[S] on HC•(A). Clearly, this action gives HC•(A) the structure of a
flat module over HC•(k). As a result,

TorHC•(k)(HC•(A), HC•(Λ)) = 0
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and the cup product defines an isomorphism in the short exact sequence (A.45). Taking
now the cup product of the elements of HCn(A) with the generators (A.41) of the algebra
HC•(Λ), we find that HCp(A⊗ Λ) = 0 for all p < n and

HCn+2k(A⊗ Λ) ' HHn(A,A∗)⊕HHn(A,A∗) ,
HCn+2k+1(A⊗ Λ) ' HHn(A,A∗) , k = 0, 1, 2, . . .

(A.57)

This is in line with the statement of Theorem A.3. Therefore, H•(gl(A⊗Λ)) is an exterior
algebra freely generated by the graded spaces (A.57) above.

B The cohomology of the Weyl algebra and its smash products

B.1 Polynomial Weyl algebras

The polynomial Weyl algebra A1 over k is a unital algebra on two generators q and p

subject to the relation
qp− pq = e , (B.1)

e being the unit of A1. It is known to be a simple Noetherian domain with a k-basis
consisting of the ordered monomials qnpm, see e.g. [127].

The Hochschild cohomology of A1 can easily be computed from the Koszul resolution:

0 // A1 ⊗W ⊗A1
∂2 // A1 ⊗ V ⊗A1

∂1 // A1 ⊗A1
m // A1 // 0 . (B.2)

Here V is the two-dimensional k-vector space spanned by u and v,W is the one-dimensional
space generated by u⊗ v − v ⊗ u, and the differentials act as follows:

m(a1⊗a2) = a1a2 ,

∂1(a1⊗u⊗a2) = a1q⊗a2−a1⊗qa2 , ∂1(a1⊗v⊗a2) = a1p⊗a2−a1⊗pa2 ,

∂2
(
a1⊗(u⊗v−v⊗u)⊗a2

)
= a1q⊗v⊗a2−a1⊗v⊗qa2−a1p⊗u⊗a2+a1⊗u⊗pa2 .

Thus, the exact sequence (B.2) provides us with a resolution of A1 by free A1-bimodules. If
now M is a unital A1-bimodule, then applying the functor HomA1−A1(−,M) to the above
sequence without the last term A1 yields the complex

0 // M
∂′1 // Hom(V,M)

∂′2 // Hom(W,M) // 0

computing the Hochschild cohomology groups HH•(A1,M). Here

∂′1m = (qm−mq, pm−mp) , ∂′2(f(u), f(v)) = qf(v)− f(v)q − pf(u) + f(u)p . (B.3)

As a result one concludes immediately that HHp(A1,M) = 0 for all p > 2 and any A1-
bimodule M .

Let us take for instanceM=A1. Then the first equality in (B.3) identifiesHH0(A1, A1)
with the centre of A1, which is given by ke. Introducing now the pair of k-linear operators

h1 : A1 ⊕A1 → A1 , h2 : A1 → A1 ⊕A1 ,

h1(qnpm, qlpk) = 1
m+ 1q

npm+1 , h2(qnpm) =
(

0, 1
m+ 1q

npm+1
)
,

(B.4)
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one can find
∂′1h1 + h2∂

′
2 = 1 , ∂′2h2 = 1 . (B.5)

Hence, HH1(A1, A1) = HH2(A1, A1) = 0 and we conclude that

HHp(A1, A1) =
{
k if p = 0 ,
0 otherwise .

(B.6)

Vanishing of the second cohomology group HH2(A1, A1) means that the first Weyl algebra
A1 is rigid, i.e., admits no nontrivial deformation, while the equality HH1(A1, A1) = 0
says that all derivations of A1 are inner.

Taking the n-fold tensor product A1 ⊗ · · · ⊗ A1, one gets the n-th Weyl algebra An.
This is generated by 2n elements qi and pj satisfying Heisenberg’s commutation relations

[qi, qj ] = 0 , [pi, pj ] = 0 , [qi, pj ] = δije . (B.7)

The groups (B.6) being finite-dimensional, we can apply the Künneth theorem (A.44)
to get45

HH•(An, An) ' HH0(An, An) ' k . (B.8)

Therefore, all the Weyl algebras An are rigid, have no outer derivations, and their centers
are generated by the unit element. The symmetrized quadratic monomials in q’s and p’s
form the Lie algebra sp2n(k) w.r.t. the commutator.

The Koszul resolution for An is constructed in a way similar to above and can be used
to establish the isomorphism

HHp(An,M) ' HH2n−p(An,M∗) , (B.9)

which holds for any bimodule M . Actually, it is the composition of two isomorphisms:

HHp(An,M)∗ ' HHp(An,M∗) , HHp(An,M) ' HH2n−p(An,M) ,

see e.g. [129, section 4.1].

B.2 Skew group algebras and twisted bimodules

Let A be an associative k-algebra and G ⊂ Aut(A) a finite group of automorphisms of A.
The skew group algebra A o G (aka smash product algebra) is defined to be the k-vector
space A⊗ k[G] with multiplication

(a1 ⊗ g1)(a2 ⊗ g2) = a1a
g1
2 ⊗ g1g2 . (B.10)

Here ag denotes the result of action of g ∈ G on a ∈ A.
With any element g ∈ G one can associate a g-twisted bimodule Ag over A. As a

k-vector space, Ag is isomorphic to A and the action of A on Ag is given by

a1(a)a2 = a1aa
g
2 . (B.11)

45Alternatively, one can use the fact that the algebra A1 is Noetherian and apply Theorem 3.1 of [128,
Ch. XI].
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As is seen, the left action is the usual action of A on itself, while the right action is twisted
by the automorphism g.

The following statement relates the Hochschild cohomology of a skew group algebra
AoG with the G-invariant cohomology of the g-twisted bimodules Ag.

Theorem B.1. If a finite group G acts by automorphisms on an algebra A, then

HH•(AoG,AoG) '

⊕
g∈G

HH•(A,Ag)

G .

The poof can be found in [130, Lemma 9.3].
We are going to apply the general constructions above to the n-th Weyl algebra An.

The automorphism group of An contains a subgroup Sp2n(k) acting by linear transforma-
tions on the 2n-dimensional vector space V spanned by the generators q’s and p’s. Clearly,
the action of Sp2n(k) preserves the commutation relations (B.7) inducing thus automor-
phisms of the whole algebra An. Now let G be a finite subgroup of Sp2n(k) and suppose
the ground field k to be algebraically closed, say C. Then g|G| = 1 for any g ∈ G and the
action of g is diagonalizable in V . Denote by 2µg the multiplicity of the eigenvalue 1 of
the operator g : V → V . The groups of Hochschild cohomology HH•(An, Ang) were first
computed by Alev, Farinati, Lambre and Solotar in [129] (see also [131]).

Theorem B.2 (AFLS). With the definitions and assumptions above

HH•(An, Ang) ' HH2(n−µg)(An, Ang) ' k .

When g = e, this yields (B.8). As is seen the odd cohomology groups are all zero.
Let us combine the last theorem with Theorem B.1. The elements of the direct sum⊕

g∈GHH
•(An, Ang) are represented by cocycles

τγ =
∑
g∈G

γ(g)τg , (B.12)

where τg are basis cocycles46 for nontrivial groups HH2µg(An, Ang) ' k. G-invariance
implies that (τγ)h = τγ for all h ∈ G. On the other hand, it follows from the definition
that (τg)h = τhgh−1 and µg = µhgh−1 . The latter equality means that the set of all element
g ∈ G with 2µg = p is invariant under conjugation. Hence, the G-invariance condition
amounts to γ(hgh−1) = γ(g), that is, γ : G → k is a class function on G. In such a way
we arrive at the second AFLS theorem.

Theorem B.3 (AFLS). Let np(G) denote the number of conjugacy classes of elements
g ∈ G with 2µg = p, then

dimHH2n−p(An oG,An oG) = dimHHp(An oG, (An oG)∗
)

= np(G) .
46An explicit expression for τg can be found in [79].
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By way of illustration, consider the involutive automorphism κ ∈ Aut(An) defined by

(qi)κ = −qi , (pi)κ = −pi . (B.13)

This equips An with the natural Z2-grading. Associated to this Z2-grading is the supertrace
Str : An → k defined as a unique homomorphism of unital k-algebras (projection on the
unit). By definition, the supertrace vanishes on supercommutators, i.e., Str

(
[a, b]κ

)
= 0,

where
[a, b]κ = ab− baκ , ∀a, b ∈ An . (B.14)

The associated bilinear form κ(a, b) = Str(ab) is known to be nondegenerate [132]. This
allows one to identify the dual An-bimodule A∗n with the κ-twisted bimodule Anκ. Clearly,
2µκ = 0 and applying Theorem B.2 yields

HH•(An, A∗n) ' HH2n(An, A∗n) ' k . (B.15)

The coincidence of the cohomology groups (B.8) and (B.15) is a particular manifestation
of the duality (B.9).

B.3 The Feigin-Felder-Shoikhet cocycle

An explicit formula for a nontrivial 2n-cocycle τ2n generating the group (B.15) has been
found by Feigin, Felder, and Shoikhet [85] as a consequence of Shoikhet’s proof [133] of
Tsygan’s formality conjecture. In order to write it down we need a couple of definitions.

First, we identify the elements of the Weyl algebra An with polynomials a(q, p) in
(commuting) variables qi and pj endowed with the Weyl-Moyal product

a ? b = m expα(a⊗ b) , (B.16)

where
α = 1

2

(
∂

∂pi
⊗ ∂

∂qi
− ∂

∂qi
⊗ ∂

∂pi

)
∈ End(An ⊗An) (B.17)

and m(a⊗ b) = ab. Next, we introduce the maps

αij(a0 ⊗ · · · ⊗ am) = 1
2

(
a0 ⊗ · · · ⊗

∂ai
∂pl
⊗ · · · ⊗ ∂aj

∂ql
⊗ · · · ⊗ am

− a0 ⊗ · · · ⊗
∂ai
∂ql
⊗ · · · ⊗ ∂aj

∂pl
⊗ · · · ⊗ am

)
∈ End(A⊗(m+1)

n )
(B.18)

and

π2n(a0⊗·· ·⊗a2n) =
∑
σ∈S2n

(−1)|σ|a0⊗
∂a1
∂yσ(1)⊗

∂a2
∂yσ(2)⊗

∂a2n
∂yσ(2n) ∈End(A⊗(2n+1)

n ) , (B.19)

where y2i = qi and y2i−1 = pi, 1 ≤ i ≤ n. Finally, we define the homomorphisms µm :
A
⊗(m+1)
n → k by

µm(a0 ⊗ · · · ⊗ ak) = a0(0)a1(0) · · · am(0) . (B.20)
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Here a(0) is the constant term of the polynomial a(q, p). Notice that all the operators
introduced are Sp2n(k)-invariant.

The formula for the Feigin-Felder-Shoikhet cocycle now reads

τ2n(a0, . . . ,a2n) =µ2n

∫
∆2n

du1∧·· ·∧du2n
∏

0≤i<j≤2n
e(2ui−2uj)αijπ2n(a0⊗·· ·⊗a2n) . (B.21)

Here the integral is taken over the standard 2n-simplex: 0 = u0 < u1 < · · · < u2n < 1. The
exponential function is to be expanded in the Taylor series and integrated term by term.

The integral in the definition of τ2n can be done explicitly. When n = 1 we have
π2 = α12 and τ2 = µ2 ◦φFFS where the symbol of the operator φFFS(α01, α12, α02) is given
by (4.8). As the choice of a representative cocycle is not unique, we are free to impose some
additional conditions on it. For example, it follows from the long exact sequence (A.46)
that the natural embedding I : HC2(A1) → HH2(A1, A

∗
1) is an isomorphism. Therefore,

the cocycle τ2n has to be cohomologous to a cyclic cocycle τ cyc
2n . An explicit expression

for τ cyc
2 is obtained, for example, by mere replacement of the symbol φFFS with (4.14).

Using the cup product (A.30), one can then obtain similar expressions for all higher Weyl
algebras An. In terms of the so-called (b, B)-complex the cyclic cocycles on Weyl algebras
were first constructed in [134, 135].

B.4 Example: the cohomology of A = A1 o Z2 and A⊗ Λ

The skew group algebra A=A1oZ2 is a toy model for and a building block of the higher
spin algebra in 4d HSGRA. Having in mind this application, we specify the ground field k to
be C. The group Z2 = {e,κ} acts on A1 by the involution (B.13). Since 2µe = 2 and 2µκ = 0,
it follows from Theorem B.3 that all nontrivial groups of Hochschild cohomology are

HH2(A,A) ' HH0(A,A∗) ' C ' HH2(A,A∗) ' HH0(A,A) . (B.22)

Among other things these isomorphisms tell us that the algebra A admits a one-parameter
deformation and its center is spanned by the unit.

Since HHn(A,A∗) = 0 for n > 2 it follows from Connes’ Periodicity Exact Sequence
that HCm(A,A∗) ' HCm+2(A,A∗) for all m ≥ 2. In low dimensions, one readily finds
from (A.46) that HC0(A) ' HH0(A,A∗) ' C, HC1(A) = 0, and HC2(A) ' C2. Hence,

HC2k−1(A) = 0 , HC0(A) ' C , HC2k(A) ' C2 , k = 1, 2, 3, . . . .

We also see that the groups HC•(A) form a free HC•(C)-module generated (via S) by
the pair of elements φ0 ∈ HC0(A) and φ2 ∈ HC2(A). The first one is the trace φ0 =
Tr : A → C defined by the projection onto the one-dimensional subspace C(e ⊗ κ) ⊂ A.
We can normalize it by setting Tr(e ⊗ κ) = 1. The second class φ2 is represented by the
cyclic cocycle with the symbol (4.14). We refer to φ0 and φ2 as primary classes of cyclic
cohomology. All the other classes are obtained from these two by successive application of
the periodicity operator S:

φ
(1)
2n = Snφ0 , φ

(2)
2n+2 = Snφ2 . (B.23)
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Using the definition (A.35), one can see that

(SnTr)(a0, . . . , a2n) = nTr(a0 · · · a2n) ,
(Sτ cyc

2 )(a0, a1, a2, a3, a4) = τ cyc
2 (a0a1a2, a3, a4) + τ cyc

2 (a1a2a3, a4, a0)
+ τ cyc

2 (a3a4a0, a1, a2)− τ cyc
2 (a0a1, a2a3, a4) ,

(Snτ cyc
2 )(a0, . . . , an+2) = (Sn−1τ cyc

2 )(a0a1a2, a3, . . . , an+2)

+
n+1∑
j=2

[
(Sn−1τ cyc

2 )(a0, . . . , aj−1ajaj+1, aj+2, . . . , an+2)

+
j−2∑
i=0

(−1)j−i+1(Sn−1τ cyc
2 )(a0, . . . , aiai+1, ai+2, . . . , ajaj+1, aj+2, . . . , an+2)

]
.

(B.24)

The HC•(C)-module HC•(A) being flat, the functor TorHC•(C)(H•(A),−) is zero and
the Künneth sequence (A.45) yields the isomorphism

HC•(A)
⊗

HC•(C)
HC•(B) ' HC•(A⊗ B) (B.25)

for any algebra B. In case B = Λ, this allows us to obtain the cyclic cohomology groups of
the tensor product A⊗Λ by the cup product of the primary classes φ0 and φ2 with the basis
elements (A.41) of HC•(Λ). Application of the elements λ+

2n reproduces the already known
classes (B.23) (treated now as elements of HC2n(A⊗Λ) and HC2n+2(A⊗Λ), respectively)
and the cup product with λ−m gives two more infinite series of cohomology classes:

φ
(3)
m = λ−m t φ0 , φ

(4)
m+2 = λ−m t φ2 . (B.26)

It is convenient to combine all these classes into a single table 4.
A similar Künneth formula

HH•(A⊗ Λ,A⊗ Λ) ' HH•(A,A)⊗HH•(Λ,Λ) (B.27)

allows one to compute the Hochschild cohomology groups of A ⊗ Λ with coefficients in
itself. In view of (A.37) and (B.22), the basis cohomology classes are grouped into the four
infinite sequences

ϕ
(1)
n = ψ+

n t ϕ0 , ϕ
(2)
n = ψ−n t ϕ0 ,

ϕ
(3)
n+2 = ψ+

n t ϕ2 , ϕ
(4)
n+2 = ψ−n t ϕ2 .

(B.28)

where ϕ0 and ϕ2 are basis cohomology classes of HH0(A,A) and HH2(A,A), respectively.

B.5 The cohomology of (extended) higher spin algebra in four dimensions

By definition, the extended higher spin algebra associated with 4d HSGRA is given by the
tensor square

A = A⊗A = A2 o (Z2 × Z2) , (B.29)

where A = A1 o Z2 is the complex algebra of the previous subsection. It can also be
regarded as the smash product of the second Weyl algebra A2 and the Klein group Z2×Z2
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n dimHCn λ+-series λ−-series
0 2 λ+

0 t φ0 λ−0 t φ0

1 1 – λ−1 t φ0

2 4 λ+
2 t φ0 , λ+

0 t φ2 λ−2 t φ0 , λ−0 t φ2

3 2 – λ−3 t φ0 , λ−1 t φ2

4 4 λ+
4 t φ0 , λ+

2 t φ2 λ−4 t φ0 , λ−2 t φ2

5 2 – λ−5 t φ0 , λ−3 t φ2

6 4 λ+
6 t φ0 , λ+

4 t φ2 λ−6 t φ0 , λ−4 t φ2

· · · 2, 4 · · · · · ·

Table 4. The basis cohomology classes of HC•(A ⊗ Λ). There are only two primary classes
φ0 ∈ HC0(A) and φ2 ∈ HC2(A); the classes λ±’s span HC•(Λ).

acting on A2 by symplectic reflections. The associated Lie algebra L(A) contains a finite-
dimensional subalgebra sp4(R) generated by the homogeneous quadratic polynomials in q’s
and p’s over reals. The well known isomorphism sp4(R) ' so(3, 2) relates this algebra with
the group of isometries of 4d anti-de Sitter space, thereby explaining the relevance of the
algebra (B.29) to 4d HSGRA.

By the Künneth formula (A.44) for Hochschild cohomology

HHn(A,A) =
⊕

q+p=n
HHq(A,A)⊗HHp(A,A)

we find that

HH0(A,A) ' C , HH2(A,A) ' C2 , HH4(A,A) ' C , (B.30)

and the other groups vanish. Then the standard interpretation of the second and third
groups of Hochschild cohomology suggests that the algebra A admits a two-parameter
family of formal deformations. We could also arrive at the above isomorphisms by applying
Theorem B.3, which also gives

HH0(A,A∗) ' C , HH2(A,A∗) ' C2 , HH4(A,A∗) ' C . (B.31)

Now the cyclic cohomology of A can easily be computed from the Connes exact se-
quence. Moving from left to right, we find

0 → HC0 → HH0 → 0 → HC1 → HH1 → HC0 → HC2 → HH2

|| || || || || || ||
C ⇐ C 0 ⇐ 0 C ⇒ C3 ⇐ C2

→ HC1 → HC3 → HH3 → HC2 → HC4 → HH4 → HC3 → HC5

|| || || || || || || ||
0 ⇒ 0 ⇐ 0 C3 ⇒ C4 ⇐ C 0 ⇒ 0

→ HH5 → HC4 → HC6 → HH6 → HC5 → HC7 → HH7 → · · ·
|| || || || || || ||

⇐ 0 C4 ⇒ C4 ⇐ 0 0 ⇒ 0 ⇐ 0 .
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Therefore,
HC0(A) ' C , HC2(A) ' C3 ,

HC4+2k(A) ' C4 , HC2k+1(A) = 0 , k = 0, 1, 2 . . . .
(B.32)

On the other hand, we know that HC•(A) is a free HC•(C)-module of rank 2. This leads
to the isomorphism

HC•(A)
⊗

HC•(C)
HC•(A) ' HC•(A) (B.33)

meaning that the cyclic cohomology groups on the right are obtained by taking cup products
of classes (B.23). As the tensor product on the left is over HC•(C), we may fix either factor
to be a primary cocycle. This yields the four infinite series:

Φ(1)
2n = Snφ0 t φ̄0 , Φ(2)

2n+4 = Snφ2 t φ̄2 ,

Φ(3)
2n+2 = Snφ0 t φ̄2 , Φ(4)

2n+2 = Snφ2 t φ̄0 .
(B.34)

Here φ0,2 and φ̄0,2 denote the primary cohomology classes of the left and right factors
in (B.33). Combining the classes of these series according to their degree, we re-derive the
isomorphisms (B.32) above.

Rels. (B.34) also say that HC•(A) is a free HC•(C)-module of rank 4 generated by
the products φ0 t φ̄0, φ0 t φ̄2, φ2 t φ̄0, and φ2 t φ̄2. Again, this allows one to compute the
cyclic cohomology of the tensor product A⊗ Λ from the Künneth isomorphism

HC•(A⊗ Λ) ' HC•(A)
⊗

HC•(C)
HC•(A)

⊗
HC•(C)

HC•(Λ) . (B.35)

The result of application of the generators (A.41) to the primary cohomology classes is
presented in table 6. The same complex dimensions of the cohomology groups HC•(A⊗Λ)
follow directly from Theorem A.3.

When constructing the HSGRA equations of motion it is important to know some of
the Hochschild cohomology groups HH•(A⊗Λ,A⊗Λ) that control interaction. These can
easily be obtained from (B.30) by the Künneth formula

HH•(A⊗ Λ,A⊗ Λ) ' HH•(A,A)⊗HH•(Λ,Λ) . (B.36)

Writing ϕ0 ϕ2, ϕ̄2, and ϕ4 for the basis elements of (B.30), we can produce eight infinite
series of cohomology classes that span HH•(A⊗Λ,A⊗Λ) by taking cup product with the
classes ψ±n defined by (A.37). The result is presented in table 5, where these classes are
grouped according to their degrees. Among these classes only the elements of the series
ψ+
n tϕ2 and ψ+

n t ϕ̄2 are actually relevant to deformation of the free equations of motion.47

Now we can use the above results on the cyclic and Hochschild cohomology of the
algebra A⊗Λ for the description of the Lie algebra cohomology of ‘big matrices’ gl(A⊗Λ).
It is these cohomology groups that control the structure of HSGRA interactions and the
corresponding characteristic cohomology. By straightforward adaptation of Theorems A.1
and A.2, we obtain the following two statements.

47Upon identification these cohomology classes with interaction vertices one should take into account an
extra grading in the Lie algebra cohomology (A.56) coming from the splitting (A.55).
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n dimHHn ψ±-series
0 2 ψ±0 t ϕ0

1 2 ψ±1 t ϕ0

2 6 ψ±2 t ϕ0 , ψ±0 t ϕ2 , ψ±0 t ϕ̄2

3 6 ψ±3 t ϕ0 , ψ±1 t ϕ2 , ψ±1 t ϕ̄2

4 8 ψ±4 t ϕ0 , ψ±2 t ϕ2 , ψ±2 t ϕ̄2 , ψ±0 t ϕ4

5 8 ψ±5 t ϕ0 , ψ±3 t ϕ2 , ψ±3 t ϕ̄2 , ψ±1 t ϕ4

· · · 8 · · ·

Table 5. The basis cohomology classes of HH•(A⊗ Λ,A⊗ Λ).

Proposition B.4. The Lie algebra cohomology H•
(
gl(A⊗Λ)

)
is an exterior algebra of the

graded vector space spanned by the classes of table 6.

Proposition B.5. The Lie algebra cohomology H•
(
gl(A⊗Λ), gl(A⊗Λ)

)
is a free H•

(
gl(A⊗

Λ)
)
-module generated by the elements of table 5.

We conclude with some remarks on the relation of the extended higher spin algebra A

to the algebra A0 = Ae2 o Z2 underlying 4d HSGRA, see section 4.2. Let us consider first
the algebra

A2 o Z2 = A1 ⊗ (A1 o Z2) ,

where Z2 acts on A1 by the symplectic reflection (B.13). This action obviously commutes
with the full reflection in A2 defined by the same formula (B.13). The algebra A0 is now
identified with the subalgebra (A2 oZ2)Z2 ⊂ A2 oZ2 of elements that are invariant under
the full reflection. It is generated by the even polynomials in q’s and p’s. Since both the
algebras A2oZ2 and (A2oZ2)Z2 are simple and the full reflection is an outer automorphism,
the algebra A0 = (A2oZ2)Z2 is Morita equivalent to the skew group algebra (A2oZ2)oZ2,
see [136, Thm. 2.5]. On the other hand,

(A2 o Z2) o Z2 ' A2 o (Z2 × Z2) = A , (B.37)

as the actions of Z2 groups commute to each other. This means the Morita equivalence
A0 ∼ A and the isomorphisms of the corresponding cyclic, Hochschild, and Lie cohomology
groups:

CH•(A) ' CH•(A0) , HH•(A,A∗) ' HH•(A0,A
∗
0) ,

H•
(
gl(A⊗ Λ)

)
' H•

(
gl(A0 ⊗ Λ)

)
.

(B.38)

As a consequence, all our computations collected in table 6 and summarized in Proposi-
tion B.4 hold true for the algebra A0.
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n dimHCn λ+-series λ−-series
0 2 λ+

0 t φ0 t φ̄0 λ−0 t φ0 t φ̄0

1 1 λ−1 t φ0 t φ̄0

2 6 λ+
0 t φ2 t φ̄0, λ+

0 t φ0 t φ̄2,
λ+

2 t φ0 t φ̄0

λ−0 t φ2 t φ̄0, λ−0 t φ0 t φ̄2,
λ−2 t φ0 t φ̄0

3 3 λ−1 t φ2 t φ̄0, λ−1 t φ0 t φ̄2,
λ−3 t φ0 t φ̄0

4 8 λ+
4 t φ0 t φ̄0, λ+

2 t φ2 t φ̄0,
λ+

2 t φ0 t φ̄2, λ+
0 t φ2 t φ̄2

λ−4 t φ0 t φ̄0, λ−2 ∪ φ2 t φ̄0,
λ−2 t φ0 t φ̄2, λ−0 t φ2 t φ̄2

5 4 λ−5 t φ0 t φ̄0, λ−3 t φ2 t φ̄0,
λ−3 t φ0 t φ̄2, λ−1 t φ2 t φ̄2

6 8 λ+
6 t φ0 t φ̄0, λ+

4 t φ2 t φ̄0,
λ+

4 t φ0 t φ̄2, λ+
2 t φ2 t φ̄2

λ−6 t φ0 t φ̄0, λ−4 t φ2 t φ̄0,
λ−4 t φ0 t φ̄2, λ−2 t φ2 t φ̄2

· · · 4, 8 · · · · · ·

Table 6. The cyclic cohomology classes of the algebra A ⊗ Λ. As is seen, the dimensions of the
groups HCn(A⊗ Λ) stabilize starting from degree four.
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