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Abstract

We discuss black hole and black string solutions in d = 5 Einstein-Yang-Mills theory

with negative cosmological constant, proposing a method to compute their mass and action.

The magnetic gauge field of these configurations does not vanish at infinity. We argue that

this implies a nonvanishing trace for the stress tensor of the dual d = 4 theory.

Introduction.– As originally found in d = 4 spacetime dimensions [1], [2], a variety of well

known features of asymptotically flat self-gravitating non-Abelian solutions are not shared by

their anti-de Sitter (AdS) counterparts. In the presence of a negative cosmological constant

Λ < 0, the Einstein-Yang-Mills (EYM) theory possesses a continuum spectrum of regular and

black hole non-Abelian solutions in terms of the adjustable parameters that specifies the initial

conditions at the origin or at the event horizon, rather then discrete points. The gauge field of

generic solutions does not vanish asymptotically, resulting in a nonzero magnetic flux at infinity.

Moreover, in contrast with the Λ = 0 case, some of the AdS configurations are stable against

linear perturbations [3]. As found in [4], [5] these features are shared by higher dimensional

spherically symmetric AdS non-Abelian solutions.

Since gauged supergravity theories generically contain non-Abelian matter fields in the bulk,

these configurations are relevant in an AdS/CFT context, offering the possibility of studying some

aspects of the nonperturbative structure of a CFT in a background gauge field [6]. On the CFT

side, the boundary non-Abelian fields correspond to external source currents coupled to various

operators.

However, in contrast with the four dimensional case, a generic property of d > 4 non-Abelian

solutions is that their mass and action, as defined in the usual way, diverge [4, 5], which may

raise questions about their physical relevance. For example, in the best understood d = 5 case

[4], although the spacetime still approaches asymptotically the maximally symmetric background,

the total action presents a logarithmically divergent part. The coefficient of the divergent term
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is proportional to the square of the induced non-Abelian field on the boundary at infinity1.

Here we argue that the logarithmic divergence of the non-Abelian AdS5 configurations does

not signal a problem with these solutions, but rather provides a consistency check of the AdS/CFT

conjecture. The coefficient of the divergent term in the action is related in this case to the trace

anomaly of the dual CFT defined in a background non-Abelian magnetic field. In this context, we

propose to compute the mass and action of these solutions by using a counterterm prescription.

This enables us to discuss the thermodynamical properties of two classes of AdS5 non-Abelian

black objects.

Non-Abelian black hole solutions.– The action of the d = 5 gauged supergravities usually

contain the YM term LY M = −1/(2e2)Tr{FµνF
µν} as a basic building block (with Fµν the field

strength and e the gauge coupling constant). In what follows we consider a truncation of such

models corresponding to a pure EYM theory with a lagrangean density2 L = 1/(16πG)(R−2Λ)+

LY M , with Λ = −6/ℓ2.

The first class of solutions we consider corresponds to spherically symmetric or topological

black holes with a metric ansatz

ds2 =
dr2

N(r)
+ r2dΩ2

3,k −N(r)σ2(r)dt2, (1)

where dΩ2
3,k = dψ2 + f 2

k (ψ)(dθ2 +sin2 θdϕ2) denotes the line element of a three-dimensional space

Σ with constant curvature. The discrete parameter k takes the values 1, 0 and −1 and implies

the form of the function fk(ψ): when k = 1, f1(ψ) = sinψ and the hypersurface Σ represents a 3-

sphere; for k = −1, it is a 3−dimensional negative constant curvature space and f−1(ψ) = sinhψ.

The case k = 0 is with f0(ψ) = ψ and Σ a flat surface.

Restricting to an SU(2) gauge field, the YM ansatz compatible with the symmetries of the

line-element (1) reads [10], [11] (with τa the Pauli spin matrices)

A =
1

2

{

τ3(ω(r)dψ + cos θdϕ) − dfk(ψ)

dψ
(τ2dθ + τ1 sin θdϕ) + ω(r)fk(ψ)(τ1dθ − τ2 sin θdϕ)

}

. (2)

The resulting set of three ordinary differential equations is solved with suitable boundary con-

ditions. Supposing the existence of an event horizon for some rh > 0, one imposes N(rh) = 0,

σ(rh) = σh > 0, w(rh) = wh. By going to the Euclidean section (or by computing the surface

gravity) one finds the black holes Hawking temperature TH = 1/β = σhN
′(rh)/4π. (One should

note that these non-Abelian magnetic solutions extremize also the Euclidean action, the Wick

rotation t → it having no effect at the level of the equations of motion.) For k = ±1, the EYM

1The existence of a logarithmic divergence in the action is a known property of some classes of AdS5 solutions

with a special boundary geometry [7]. The coefficients of the divergent terms there are related to the conformal

Weyl anomaly in the dual theory [8, 9]. However, this is not the case of the non-Abelian AdS5 configurations in

[4], which have the same boundary metric as the Schwarzschild-AdS (SAdS) solution and thus no Weyl anomaly

in the dual CFT.
2Usually, one has also to consider a non-Abelian Chern-Simon term. However, for purely magnetic solutions

discussed here, this term vanishes identically.
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Figure 1: The mass-parameter M is plotted as a function of temperature for k = 1,−1 black hole

solutions and several values of the magnetic potential at infinity.

equations have a nontrivial exact solution [4]

N(r) = k +
r2

ℓ2
− M + 8πG(k2/e2) log r

r2
, σ(r) = 1 , ω(r) = 0, (3)

which retains the basic features of the general configurations. Solutions with a nonvanishing

w(r) are constructed numerically, the k = 1 case being considered in [4] (in the numerics we set

4πG/e2 = 1). As r → ∞, the spacetime is locally isometric to AdS spacetime, and we find the

following asymptotic expression of the solutions (with M, w0, w2 arbitrary parameters3)

N(r) = k + r2

ℓ2
− M

r2 − 8πG
e2

(w2

0
−k)2

r2 log( r
ℓ
) + . . . , σ(r) = 1 − 16πG

3e2 ℓ
4w2

0
(w2

0
−k)2

r6 log2( r
ℓ
) + . . . ,

w(r) = w0 + w2

r2 − ℓ2

r2w0(w
2
0 − k) log( r

ℓ
) + . . . . (4)

For all considered values of (Λ, rh), we find regular black hole solutions for only one interval

0 ≤ wh < wc
h. The spherically symmetric black holes with w 6= 0 have a nontrivial globally regular

limit rh → 0. In contrast, the topological black holes possess minimal event horizon radius, for

any w0. An extremal black hole is found for the w(r) = 0 solution (3) with r2
h = ℓ2(−k +

|k|
√

32πG/(e2ℓ2) + 1)/4, the parameter M being also fixed by the value of the cosmological

constant.

The action and mass of the AdS5 non-Abelian configurations is computed by using a boundary

counterterm prescription. As found in [12], the following counterterms are sufficient to cancel

divergences in five dimensions, for SAdS black hole solution:

Ict = − 1

8πG

∫

∂Mr

d4x
√
−h

[

3

ℓ
+
ℓ

4
R

]

, (5)

3 By using similar techniques to those employed in the globally regular case [4], one can prove the absence of

non-Abelian black hole solutions with w2

0
= k.
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with R the Ricci scalar for the boundary metric h. However, in the presence of matter fields, addi-

tional counterterms may be needed to regulate the action [13]. This is the case for the non-Abelian

solutions discussed in this paper, whose total action (where we have included also the Gibbons-

Hawking boundary term [14]) diverges logarithmically, I = Vk

(

3β

16πG
(M + k2ℓ2

4
) − 1

4G
r3
h

)

+3βVk

2e2 (w2
0−

k)2 log( r
ℓ
), (with Vk the area of the surface Σ). This divergence is cancelled by a supplementary

counterterm of the form (with a, b boundary indices):

IY M
ct = − log(

r

ℓ
)

∫

∂Mr

d4x
√
−h ℓ

2e2
tr{FabF

ab} . (6)

Using these counterterms, one can construct a divergence-free boundary stress tensor Tab

Tab =
1

8πG
(Kab −Khab −

3

ℓ
hab +

ℓ

2
Eab) −

2ℓ

e2
log(

r

ℓ
) tr{FacFbdh

cd − 1

4
habFcdF

cd} , (7)

where Eab and K are the Einstein tensor and the trace of the extrinsic curvature Kab for the

induced metric of the boundary, respectively. In this approach, the mass M of the solutions is

the conserved charge associated with the Killing vector ∂/∂t [12]:

M =
3VkM

16πG
+M (k)

c , with M (k)
c =

3k2Vkℓ
2

64πG
. (8)

We have found that M coincides with the mass computed from the first law of thermodynamics,

up to the constant term M
(k)
c which is usually interpreted as the mass of the pure global AdS5.

Based on these results, one can discuss the thermodynamics of the non-Abelian black hole

solutions in a canonical ensemble, holding the temperature TH and the magnetic potential at the

boundary at infinity (i.e. the ”magnetic charge”) fixed. Upon application of the Gibbs-Duhem

relation S = βM− I, one finds that the entropy S of these solutions is one quarter of the event

horizon area. The response function whose sign determines the thermodynamic stability is the

heat capacity C = (∂M/∂TH)w0
. In Figure 1 we plot the M(TH) curves for several values of

w0 for spherically symmetric and hyperbolic black holes with ℓ = 1 (the results for k = 0 are

rather similar to the k = −1 case). For spherically symmetric black holes with w0 6= 0, the usual

SAdS behaviour (corresponding to the w0 = 1 curve in Figure 1a) is reproduced: the curves first

decrease toward a minimum, corresponding to the branch of small unstable black holes, then

increase along the branch of large stable black holes. The w(r) = 0 solutions are rather special,

since C > 0 in this case for any rh. As seen in Figure 1b, the heat capacity is always positive

for AdS5 non-Abelian topological black holes. As a result, the k = 0,−1 black hole solutions are

always thermodynamically locally stable.

From the AdS/CFT correspondence, we expect the non-Abelian hairy black holes to be de-

scribed by some thermal states in a dual theory formulated in a metric background given by

γabdx
adxb = −dt2 + ℓ2

(

dψ2 + f 2
k (ψ)(dθ2 + sin2 θdϕ2)

)

. One should also consider the interaction

of the matter fields in the dual CFT with a background non-Abelian field, whose expression, as
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read from (2), (4) is

A(0) =
1

2

{

τ3(ω0dψ + cos θdϕ) − dfk(ψ)

dψ
(τ2dθ + τ1 sin θdϕ) + ω0fk(ψ)(τ1dθ − τ2 sin θdϕ)

}

. (9)

The expectation value < τa
b > of the dual CFT stress tensor can be calculated using the relation

[15]
√−γγab < τbc >= limr→∞

√
−hhabTbc. Employing also (7), we find the finite and covariantly

conserved stress tensor (with x1 = ψ, x2 = θ, x3 = ϕ, x4 = t)

8πG < τa
b >=

1

2ℓ

(M

ℓ2
+
k2

4

)











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3











− 4πG(w2
0 − k)2

e2ℓ3











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0











. (10)

Different e.g. from the case of Reissner-Nordström-AdS Abelian solutions, this stress tensor has

a nonvanishing trace, < τa
a >= AY M = −3(w2

0 − k)2/(2ℓ2e2). This agrees with the general results

[16], [17], [13] on the trace anomaly in the presence of an external gauge field, AY M = RF 2
(0), the

coefficient R being related to the charges of the fundamental constituent fields in the dual CFT.

Non-Abelian black strings solutions.– For the situation discussed above, the gravitational

Weyl anomaly Ag vanishes, since Ag = − ℓ3

8πG

(

−1
8
RabR

ab + 1
24

R
2
)

is zero for the induced metric

of the boundary. Here we present an example of configurations where both types of anomalies

are present. This occurs for the non-Abelian version of a class of solutions recently considered in

[18, 19] and describing AdS5 black strings and vortices. The metric ansatz in this case reads

ds2 =
dr2

p(r)
+ r2dΩ2

2,k + a(r)dz2 − b(r)dt2, (11)

where dΩ2
2,k = dθ2 + f 2

k (θ)dϕ2 denotes the line element of a two-dimensional space with constant

curvature, and the direction z is periodic with period L. Considering again an SU(2) YM field,

the gauge field ansatz has two magnetic potentials and reads

A =
1

2

{

ω(r)τ1dθ +

(

d ln fk(θ)

dθ
τ3 + ω(r)τ2

)

fk(θ)dϕ+H(r)τ3dz

}

. (12)

Similar to the black hole case, we have found a continuum of black string solutions presenting an

event horizon at r = rh, where p(rh) = b(rh) = 0, while a(rh) = ah > 0, w(rh) = wh, H(rh) = Hh.

The Hawking temperature of the black strings is TH =
√

b′(rh)p′(rh)/4π. The solutions have the

following asymptotic expression in terms of four arbitrary constants ct, cz, H0 and w2:

a(r) =
k

2
+
r2

ℓ2
+ cz(

ℓ

r
)2 +

k2

2
(
1

6
− 8πG

e2ℓ2
) log

r

ℓ
(
ℓ

r
)2 + . . . ,

b(r) =
k

2
+
r2

ℓ2
+ ct(

ℓ

r
)2 +

k2

2
(
1

6
− 8πG

e2ℓ2
) log

r

ℓ
(
ℓ

r
)2 + . . . , (13)

p(r) =
2k

3
+
r2

ℓ2
+ (ct + cz +

8πG

e2ℓ2
)(
ℓ

r
)2 + k2(

1

6
− 8πG

e2ℓ2
) log

r

ℓ
(
ℓ

r
)2 + . . . ,

w(r) =
w2

r2
+ . . . , H(r) = H0(1 +

w2
2ℓ

2

12r6
) + . . . .
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Figure 2: The mass-parameter M0 is plotted for k = 1 black string solutions.

The basic features of the black strings are similar to the black hole case. Again, the k = 1

solutions possess nontrivial globally regular limits, representing the AdS counterparts of the

Λ = 0 non-Abelian vortices in Ref. [20]. The k = 0,−1 topological black strings present a

minimal event horizon radius. For given (rh,Λ) the solutions’ global charges depend on the value

of the magnetic gauge potential H at infinity, which is a free parameter. The solutions with

w(r) = 0, H(r) = const. represent Abelian black strings, generalizing the exact BPS solutions

in [21]. These configurations exist for values of the event horizon radius greater than a minimal

value rc
h, an extremal solution being approached in that limit. The non-Abelian solutions depend

on the value H0 and exist on a finite interval of rh. In the limit rh → rc
h the gauge function w(r)

vanishes identically and the branch of non-Abelian solutions bifurcates into the Abelian branch.

The action and global charges of these configurations are computed by employing again the

counterterm formalism. As found in [19] the action of the vacuum solutions presents a logarithmic

divergence which is regularized by adding the following term to the boundary action [8]:

Is
ct =

1

8πG
log(

r

ℓ
)

∫

∂Mr

d4x
√
−hℓ

3

8
(
1

3
R

2 − RabR
ab) , (14)

which implies a supplementary contribution to the boundary stress tensor (7). The bulk YM fields

give another logarithmic divergence, which is regularized by the matter counterterm (6). As usual

with black strings [22], apart from mass M, there is also a second global charge associated with

the Killing vector ∂/∂z and corresponding to the solutions’ tension T :

M = M0 +M (k)
c , M0 =

ℓLVk

16πG

[

cz − 3ct
]

, (15)

T = T0 + T (k)
c , T0 =

ℓVk

16πG

[

3cz − ct
]

,with M (k)
c = LT (k)

c =
ℓ

16πG
VkL,

where Vk is the total area of the angular sector, M
(k)
c and T (k)

c being Casimir-like terms. In

Figure 2 we plot the mass-parameter M0 as a function of temperature for k = 1 black strings
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with several values of H0 (in a d = 4 picture, this corresponds to different vacuum expectation

values of the Higgs field [20]). One can see that, in contrast with the vacuum case, the non-

Abelian black strings are thermally unstable. The situation is more complicated in the Abelian

case, the solutions near extremality possessing a positive heat capacity.

For these black strings solutions, the background metric upon which the dual field theory

resides is γabdx
adxb = −dt2 + dz2 + ℓ2(dθ2 + f 2

k (θ)dϕ2) . The boundary CFT is formulated in this

case in a background Abelian gauge field, with

A(0) =
τ3
2

{

dfk(θ)

dθ
dϕ+H0dz

}

. (16)

The expectation value of the stress tensor of the dual CFT contains four different parts (with

x1 = θ, x2 = ϕ, x3 = z, x4 = t)

8πG < τa
b > = − cz

2ℓ











1 0 0 0

0 1 0 0

0 0 −3 0

0 0 0 1











− ct
2ℓ











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3











(17)

+
k2

24ℓ











2 0 0 0

0 2 0 0

0 0 −1 0

0 0 0 −1











− 2πG

e2ℓ3
k2











1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0











.

The trace of this tensor is equal to the sum of the gravitational and external gauge field contri-

butions A = Ag + AY M = k2( 1
96πGℓ

− 1
2e2ℓ3

), vanishing for the Abelian BPS solutions in [21].

Further remarks.– On general grounds, one expects that extending the known classes of so-

lutions of the d = 5 supergravity to a non-Abelian gauge group would lead to a variety of new

physical effects. The black objects discussed in this paper are perhaps the simplest solutions

relevant in this context. We expect a much richer structure to be found when relaxing the space-

time symmetries, or when taking a more general gauge group. However, the generic non-Abelian

solutions will always present a nonvanishing magnetic gauge field on the boundary which appears

as a background for the dual theory. Also, similar to the d = 4 case [6], the existence of both

spherically symmetric globally regular and hairy black hole solutions with the same set of data at

infinity raises the question as to how the dual CFT is able to distinguish between these different

bulk configurations.
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