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Abstract
Graphene plasmonics has attracted much attention due to its remarkable properties such as
tunable conductivity and extreme confinement. However, losses remain one of the major
drawbacks to developing more efficient devices based on graphene plasmons. Here we show that
when a gain medium is introduced around a 1D graphene sheet, lossless propagation can be
achieved for a critical gain value. Both numerics and analytics are employed; and with the Drude
approximation the analytical expression for this critical gain becomes remarkably simple.
Furthermore, we examine a single 2D graphene nanoribbon within a gain environment. We
report that the plasmonic resonant modes exhibit a spasing effect for a specific value of the
surrounding gain. This feature is indicated by an absorption cross section that strongly increases
and narrows. Finally, we manage to connect the ribbon results to the 1D sheet critical gain, by
taking external coupling into account.
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1. Introduction

Graphene is a two-dimensional hexagonal lattice of carbon
atoms, which behaves as a metallic layer at mid-infrared
frequencies. As a result, plasmonic modes guided by gra-
phene sheets have been predicted and demonstrated [1, 2],
and they exhibit a remarkable sub-wavelength confinement
[3]. Therefore they constitute a promising alternative to
metallic thin layers [4] and have been used for complete
optical absorption [5], tunable metasurfaces [6] and many
other applications. However, due to the well-known trade-off
between confinement and dissipative losses in plasmonic
devices, one cannot achieve very long propagation lengths
[7, 8]. Therefore, remedies are required to compensate the
losses, in order to enhance the technological potential for
applications.

Specific solutions to this problem are e.g. to improve
fabrication methods to minimize dissipative losses in gra-
phene [9], or to use heterostructures such as graphene with
boron nitride, wherein hybrid modes suffer from less losses
[10]. Another solution, which we study here, is to introduce a

gain medium adjacent to graphene in order to compensate the
losses.

Gain compensation of surface plasmons in ‘traditional’
metallic structures has been investigated [11]. A popular
solution is to use an active dielectric medium close to the
metal, which can achieve an increased scattering cross section
for metallic nanoparticles [12] and lossless propagation for
specific gain values in plasmonic devices [13, 14]. Using
resonant plasmonic structures and a gain medium, spasers
[15] have been demonstrated [16], and are a valuable source
of intense optical fields localized on the nanoscale.

Other works also investigated solutions to overcome
losses in graphene plasmonic structures by optically pumping
the graphene [17, 18], by combining it with resonant metallic
structures [19, 20] or by using PT-symmetric schemes [21].
Graphene nanoflakes coupled to optically excited carbon
nanotubes have been proposed [22] and are shown to exhibit
a spasing behaviour for carefully chosen structural
parameters.

In this work we use analytical models and rigorous finite
element method (FEM) simulations to show that the intro-
duction of a gain medium in the vicinity of graphene sheets
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can lead to loss compensation. We also show that two-
dimensional (2D) graphene ribbons surrounded by a gain
medium exhibit an enhanced absorption cross section. This
behaviour leads to a spasing effect for a specific gain value,
which we connect with the loss compensation model pre-
viously introduced for the one-dimensional (1D) graphene
sheets. The phenomena in both geometries (1D sheets and 2D
ribbons) are thus connected and are well described by
approximate, insightful analytical relations.

We first introduce general graphene plasmon concepts in
section 2. Section 3 introduces how a gain medium sur-
rounding a graphene sheet can lead to improved propagation
lengths, using analytical models and simulations with COM-

SOL Multiphysics, a commercial finite element based software
package. Finally in section 4 we study graphene ribbons, and
show that the extinction cross section of graphene ribbons is
dramatically improved, leading to spasing modes by tuning
the gain medium surrounding those ribbons. Finally, we
connect the results for 1D graphene sheets to those for 2D
ribbon structures.

2. Graphene plasmons

Before introducing gain we first describe the lossy modes. In
order to derive the graphene plasmon (GP) dispersion rela-
tion, one can model the graphene sheet by a plane with a
dispersive conductivity s w( ) containing two main contribu-
tions: one from the intraband electronic transitions (sintra) and
one from the interband electronic transitions (sinter). These
contributions are expressed as follows in the case where the
graphene doping level »E k T 0.026 eVF B at room
temperature [23, 24]:
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where t = 0.16 ps [25] accounts for electron scattering. The
total conductivity s w( ) is shown in figure 1 for several values
of EF. At low frequencies, the conductivity is dominated by
sintra, while at higher frequencies sinter becomes significant.

To describe mode propagation along z we use the con-
vention b-i zexp[ ]. A graphene sheet can be modelled with a
surface current using equation (1), and solving Maxwell’s
equations leads to the dispersion relation for the GP propa-
gation constant β [3]:
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where e0 is the vacuum permittivity, er is the relative
permittivity of the medium surrounding the graphene sheet,

and w=k c0 . The sign of β gives the propagation direction
along the z axis. We choose the minus sign so that R b > 0( )
and the plasmonic mode propagates towards positive z values.
In this paper we consider the nonretarded regime where
b  k0, the dispersion relation of equation (4) then becomes

b
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This relation can be used to derive various characteristics
of GPs, such as their lateral confinement or their propagation
length I b=L 1 2[ ( )]. One can see that the propagation
length becomes infinite if the imaginary part of the propa-
gation constant I b( ) vanishes. In the next section we explain
how this can be achieved using a gain medium.

3. Critical gain in 1D structures

We now show how losses can be entirely compensated using
a gain medium surrounding the graphene sheet. We assume
that the gain medium is described by its relative permittivity
e e e= - ir R I . With this convention a medium with I e > 0r( )
is a gain medium and a mode with a propagation constant β
such that I b > 0( ) is amplified along its propagation direc-
tion. In practice, such a gain medium could consist of a
quantum cascade gain medium [26], of a nonlinear medium
used for frequency mixing [27], or of other pumped gain
elements such as carbon nanotubes [22]. A typical plasmonic
mode supported by a graphene sheet is shown in figure 2.
This mode is tightly confined around the sheet, as its ampl-
itude rapidly vanishes as a function of the distance to the
sheet.

Figure 1. Real (solid lines) and imaginary part (dashed lines) of the
conductivity (equation (1)) for several values of graphene doping EF

(0.4, 0.6 and 0.8 eV). The conductivity values are normalized by the
constant s = e 40

2 ( ).
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Using equation (5) one finds that I b = 0( ) (so the pro-
pagation length L becomes infinite) for e e=I Icrit where
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To get further insight into the parameter dependencies
hidden in s w( ), we assume the Drude-like approximation:
when doping and wavelength are large, i.e. for w  E2 F , the
interband contribution disappears (see equation (2)) and the
conductivity of graphene reduces to equation (2) [23].
Injecting equation (2) into equation (5), one finds:
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These relations are represented for several values of gain
I e e= -r I( ) in figures 3(a) and (b) (red curves) and compared
to the exact solution with exact conductivity of equation (4)
(green curves). The real part of the propagation constantR b( )
(figure 3(a)) is practically independent of the surrounding
gain. On the other hand, the imaginary part I b( ) (figure 3(b))
strongly depends on the surrounding gain. For a sufficiently
large value of gain, I b( ) becomes positive and GPs are
amplified.

We also show results with rigorous FEM simulations in
figure 3 (blue dotted lines). In these simulations, graphene is
modelled by a current line that possesses a conductivity
described in equation (1). The exact model (equation (4)) and
the simulations are in very good agreement.

At higher frequencies it may seem that the dispersion
relation is not correctly described by equations (7) and (8)
(via the Drude model); there is a discrepancy between results
based on the Drude conductivity and the full conductivity
(respectively red and green curves) at high frequencies. The
Drude approximation is more accurate for w  E2 F , as
indeed the interband term of the conductivity (equation (2)
and figure 1) decreases for smaller omega. This is why there
is an increasing difference between the two results at higher
frequencies. This difference is reduced for higher doping
levels because then the interband term becomes smaller (see

figure 1). The interband contribution increases the dissipative
losses and shifts the exact curve towards negative I b( )
(figure 3(b)).

Examining the two terms of equation (8) (obtained via
the Drude model) is enlightening. When the surrounding gain
increases (when eI becomes more negative), the w2 term
becomes more important and bends the dispersion towards
positive values (figure 3(b)). The term with ω is a straight line
with a constant slope e t- -

R
1, which drives I b( ) towards

negative (lossy) values. An increase in t-1 (in the ω term)
means increased losses due to electron scattering in graphene,

Figure 2. Schema of the structure under investigation: a graphene
sheet lays between two semi-infinite layers of a gain medium. We
study the properties of the plasmonic mode supported by the
graphene sheet while we vary the gain medium permittivity.

Figure 3. Dispersion of (a) R b( ) and (b) I b( ) for
I e = 0, 0.01, 0.02, 0.03, 0.04r( ) and =E 0.6 eVF . We consider a
free standing graphene sheet so e = 1R . The green curve shows the
analytical form with full conductivity (equation (4)), the dots are
simulation results (also with full conductivity) and the red curves are
equations (7) and (8) that only use the Drude conductivity. The
Drude approximation is more accurate for high frequencies because
the interband term of the exact conductivity is smaller. The
surrounding gain medium bends I b( ) towards positive values.
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and thus more losses for the GP mode. An increase in eR (also
in the ω term) makes the GP mode more confined around the
graphene sheet, and this confinement also increases losses.

From equation (8) the condition I b = 0( ) is achieved for
a particular value of gain with an expression that is remark-
ably simple:

e
e

wt
=

-
. 9I

R
crit ( )

Thus if the (real part of the) permittivity of the surrounding
medium eR increases, the gain eIcrit needed to compensate the
GP losses will also increase. This is due to the stronger
confinement of the GP mode around the graphene sheet,
leading to more losses. The critical gain eIcrit increases if the
electron scattering time τ in the graphene sheet decreases.
This critical gain also depends on the frequency: if ω

increases, the mode is more confined around the graphene
sheet as the vacuum wavelength decreases, leading to more
absorption in graphene. One should note that the value of τ
needs to be carefully chosen since it depends on the quality of
the graphene sheet and on the doping level. Throughout this
paper we mainly consider a doping value of =E 0.6 eVF

therefore we do not take this dependence into account.
However this is no longer the case if one works with vary-
ing EF.

Figure 4 shows the comparison between the analytical
results for the critical gain eIcrit with full conductivity
(equation (6), green line), the simulation results (also with full
conductivity, blue circles), and the analytical results using
only the Drude term (equation (9), red line). While the exact
model describes the simulation results precisely, the Drude
approximation is not perfectly accurate (for the reasons
mentioned previously), but it is a useful simplification.

4. Resonant gain in 2D graphene ribbons

We now consider a ribbon of graphene, a 2D geometry. Such
structures have already been studied, both for individual
ribbons [28] and in periodic structures [5], the latter case
potentially leading to complete optical absorption. Here the
individual graphene ribbon of width D (figure 5) is embedded
in a gain medium. We consider plasmonic stationary modes
invariant along the ribbon, meaning that we only consider
modes with a vanishing propagation constant parallel to the
ribbon edges ( =k 0z ). These stationary resonances exist if
the following round-trip condition is fulfilled [29, 30]:

b p+ F =D m2 2 2 10R ( )

where β is the 1D sheet propagation constant (discussed
before, see equation (4)), pF = -0.75R is the (non-trivial)
phase reflection at a ribbon edge, and m is the mode order.

Using this straightforward model we can predict that the
resonance frequencies of a ribbon are given by

I
w

s w p
e e
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- - Fm

D2
. 11m

R
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We are again interested in a simpler expression, by using the
Drude model, so introducing equation (2) into equation (11),
we find


w

p
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We first simulate the absorption cross section s Labs

(where L is the normalizing z-length of the ribbon) of a

Figure 4. Comparison between critical gain values from equation (6)
(green), equation (9) (red) and simulations (blue circles) for
graphene sheet plasmon modes (EF=0.6 eV). This is the gain
needed to compensate plasmonic losses in a graphene layer
according to different approximations.

Figure 5. Graphene ribbon embedded in a gain medium, with an
example of a supported mode profile (Ex for m= 2). A GP mode that
will make round-trips for a resonance is sketched. The gain medium
is a box sufficiently large to fully enclose the plasmonic mode.
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graphene ribbon [31] without gain around (figure 6). These
results are obtained by sending a TM polarized plane wave
with


H parallel to the z-axis at normal incidence onto the

ribbon. The simulated structure is a graphene ribbon sur-
rounded by a gain medium (a box sufficiently large so the
plasmonic mode is fully enclosed in it). The boundary of this
structure is a PML cylinder sufficiently distant from the gain
box. To compute the absorption cross section, we measured
the fraction of power absorbed by the graphene ribbon Pabs

and normalized it by the power flux P0 of the normally
incident plane wave so the normalized absorption cross
section is given by s =L P Pabs abs 0.

Simulated peak positions are in good agreement with
equation (11) (green vertical lines in figure 6). In more detail,
table 1 shows a comparison between equation (11) and the
simulations. The small difference between these two values
could be accounted for with a more precise reflection phase at
the end of the ribbon.

We then introduce gain surrounding the graphene ribbons
and compute the absorption cross section of the ribbon as a
function of the wavelength (note that here, the extinction
nearly equals absorption). Figure 7 shows these spectra for
various surrounding gains and doping of the graphene ribbon.
The width and maximum height of the absorption peaks
strongly depends on the surrounding gain, whereas the

position of the peaks remains unchanged. A straightforward
analysis of equation (11) shows that the real part of wm is
virtually independent of the gain value: the gain value only
appears in a e e e+R R I

2 2( ) term so we can neglect the eI
2

contribution because there is a large difference (four orders of
magnitude) between eR

2 and eI
2.

From these simulations we determine the characteristics
of the absorption peaks (maximum height and full-width at
half-maximum FWHM) as a function of the surrounding gain
I er( ). We find that for a specific value of gain, the absorption
cross section is considerably enhanced and the width of the
absorption peak approaches zero, as shown in figures 8(a) and
(b), leading to a laser (or spaser) behaviour. These results are
obtained by fitting the absorption peak from figure 6 by a
Lorentzian function.

In order to connect our 2D models and simulations to the
previous section dedicated to 1D graphene sheets, we com-
pare the critical gain in both cases for several frequencies
(obtained in 2D by choosing different ribbon widths, and thus
resonance frequencies, varying from D= 100 nm to
D= 500 nm). Remark the difference between the critical gain
in 1D, which corresponds to lossless GP mode propagation,
and the critical gain in 2D, which corresponds to spasing
behaviour. The latter critical effect is thus more comprehen-
sive, as all losses (propagation losses of all modes and cou-
pling losses) need to be overcome. Figure 9 shows in blue the

Figure 6. Absorption spectrum of a graphene free standing ribbon
obtained via FEM simulations for =D 100, 150 and 200 nm with

=E 0.6 eVF . Vertical green lines represent the peak positions
predicted by equation (11) for m=0 and m=2 (only even modes
are excited because of the parity of the incident light).

Table 1. Peak positions from equation (11) and FEM for several ribbon widths and mode orders. Odd modes are not excited here because of
the parity of the incident light.

Order D=100nm D=150nm D=200nm

Equation (11) FEM Equation (11) FEM Equation (11) FEM

m=0 6.24 μm 6.30 μm 7.60 μm 7.69 μm 8.76 μm 8.86 μm
m=2 3.38 μm 3.38 μm 4.07 μm 4.07 μm 4.66 μm 4.67 μm

Figure 7. Absorption cross section of a 100 nm graphene ribbon
(EF=0.5, 0.6 and 0.7 eV) for several values of the surrounding
gain: I e = 0, 0.01, 0.02r( ) . A higher EF gives a higher resonance
frequency wm (equation (12)) while the surrounding gain strongly
changes the peaks’ height and width.
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critical gain (for spasing) for 2D ribbons as a function of their
resonance frequency for mode orders m=0 and m=2, in
green the critical gain (for a lossless mode) for 1D graphene
sheets with full conductivity (equation (6)), and in red the
critical gain (for a lossless mode) also for 1D graphene sheets
with the Drude approximation (equation (9)).

Figure 9 shows a good agreement between simulation
results for the m=2 resonances and the 1D critical gain
expression (equation (6)) obtained with the full conductivity.
For m=0 order modes however, the gain needed to com-
pensate losses is higher in ribbons than in graphene sheets.
This is because the light trapped in the lower order (m= 0)
ribbon mode couples efficiently to outgoing radiation, in
contrast with the higher order (m= 2) mode. Therefore the
2D critical gain is the gain needed to compensate losses in
graphene (just as in graphene sheets) and, in addition, to

compensate the energy lost by radiation outcoupling. Thus the
critical gain in the 2D case has to surpass the one for the 1D
case, when radiative coupling is important. Note that the 2D
m=0 and 1D critical gain (green curve) are quasi-parallel,
suggesting that the outcoupling losses are fairly independent
of the frequency, which seems physically plausible as cou-
pling mainly happens via the corners and the latter effect is
not strongly influenced by the ribbon width.

5. Conclusion

We studied how the introduction of a gain medium sur-
rounding graphene sheets leads to complete compensation of
graphene-induced losses in plasmonic modes. We analytically
determined the critical gain value for a 1D graphene layer and
checked our models via rigorous FEM simulations. The
simple form of the analytical expressions for the critical gain
allows for an insightful comprehension of the loss balance
taking place. We illustrate this by determining how both the
real and imaginary parts of the propagation wavevector β

depend on the surrounding gain.
We further examined 2D graphene ribbons and showed

how the extinction cross section is considerably enhanced by
tuning the gain around these ribbons. We obtained a spasing
behaviour for a specific gain value, indicated by a strongly
increasing and narrowing peak. These 2D ribbon effects can
be connected to the 1D critical gain, by taking into account
that the ribbon structure includes both plasmon propagation
losses and radiative losses, which are important for low order
modes.

Figure 8. (a) Absorption peak height, and (b) absorption peak width
as a function of surrounding gain. Ribbon parameters here are
D=200nm and =E 0.6 eVF , and the fit is done for the
fundamental mode (m= 0). The absorption peak become stronger
and narrower for a specific gain value.

Figure 9. Critical gain as a function of the ribbon resonance
frequencies for several models: in blue FEM simulations for 2D
ribbon spasing (orders m= 0 and m= 2,

=D 100, 150, 200, 300, 400 and500nm), in red for 1D sheets
with the Drude approximation, and in green for 1D sheets with full
conductivity. The simulations correspond to different ribbon widths
D so that different frequencies for gain compensation are
investigated.
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