Measuring software flexibility

A.H. Eden and T. Mens

Abstract: Flexibility has been recognised as a desirable quality of software since the earliest days
of software engineering. Classic and contemporary software design literature suggests that particu-
lar implementations are more flexible than others, but stops short of suggesting objective criteria
for quantifying such claims. To measure software flexibility in precise terms, we introduce the
notion of evolution complexity and demonstrate how it can be used to measure and compare the
flexibility of (1) programming paradigms (Object-Oriented against Procedural programs), (2)
architectural styles (Shared Data, Pipes and Filters, and Abstract Data Type) and (3) design patterns
(Visitor and the Abstract Factory). We also demonstrate how evolution complexity can be used to
choose the most flexible design policy. We conclude with experimental results corroborating our

claims.

1 Introduction

Rapid technological developments pervade every aspect of
daily life, having a direct effect on the software we use.
Every element of the software’s operational environment
[1] is in a state of constant flux. Frequent changes in
the hardware, operating system, cooperating software
and client’s expectations are motivated by performance
improvements, bug-fixes, security breaches and attempts
to assemble synergistically even more sophisticated soft-
ware systems. Classic and contemporary literature in soft-
ware design recognise the central role of flexibility in
software design and implementation. Structured design,
modular design, object-oriented design, software architec-
ture, design patterns and component-based software
engineering, among others, seek to maximise flexibility.
Textbooks about software design emphasise the flexibility
of particular choices, thereby implying the superiority of
the design policy they advocate. But despite the progress
made since the earliest days of software engineering, from
the ‘software crisis’ [2] through ‘software’s chronic crisis’
[3], evolution (formerly ‘maintenance’) of industrial soft-
ware systems has remained unpredictable and notoriously
expensive, often exceeding the cost of the development
phase [4]. Flexibility has therefore become a central
concern in software design and in many related aspects
in software engineering research. The purpose of this
paper is to contribute to our understanding of this
quality and to examine ways in which it can be quantified
(‘metrics’).

We begin by observing two problems in the current
notion of ‘software flexibility’. The first is the absence of
reliable metrics thereof. No formal criteria for flexibility
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have so far been offered [Note 1] and no metrics for quanti-
fying it are known to us.

The second problem we observe in the current notion of
flexibility is that it is misconceived as an absolute quality.
Such a misconception is reflected for example in IEEE’s
definition of software flexibility.

Flexibility: The ease with which a system or com-
ponent can be modified for use in applications or
environments other than those for which it was
specifically designed [5].

We find this surprising because hardly any artefact is ‘flex-
ible’ in absolute terms. The RAM capacity of a desktop com-
puter, for example, can be expanded only if the hardware and
the operating system were specifically designed to accommo-
date for such changes [Note 2]. The same applies to articles of
clothing (such as trousers and skirts), which cannot be
expanded in size unless specific provisions were made for
this explicit purpose. Other examples can be drawn from con-
sumer appliances to urban architecture, each of which is only
flexible towards a particular class of changes. However,
claims on the flexibility of particular programming para-
digms, architectural styles and design patterns (‘design pol-
icies’) are rarely qualified. For example, in his seminal
paper on modular decomposition, Parnas [6] claimed that
the Abstract Data Type architecture is ‘flexible’. Twenty
years later Garlan et al. [7] qualified this claim by demon-
strating a specific class of changes towards which the same
architectural style is not flexible. (In Section 3.1, we corrobo-
rate and make precise Garlan et al.’s observation.) More
recently, Parnas observed that predicting the class of
changes is the key to understanding software flexibility
[Note 3]:

To apply this principle (‘design for change’), one
begins by trying to characterise the changes that are
likely to occur over the ‘lifetime’ of the product. As

Note 1: With the exception of the works discussed in Section 5.

Note 2: And even then, memory can only be extended to the extent to which it
was specifically designed for.

Note 3: Or as Parnas puts it, the key to understanding ‘software aging’.
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we cannot predict the actual changes, the predictions
will be about classes of changes ([8], p. 281).

Similar reservations regarding the flexibility of design
patterns were also made by Gamma et al. ([9], p. 24, our
emphasis):

Each design pattern lets some aspect of system struc-
ture vary independently of other aspects, thereby
making a system more robust to a particular kind
of change.

1.1 Contributions

Computational complexity [10] allows us to measure how
the cost of computation grows as a function of the size of
the input. The big Oh notation indicates an approximation
to the number of steps taken by the algorithm. For
example, an algorithm traversing a matrix of size
Columns x Rows, which can also be expressed in pseudo-
code as follows:

procedure traverse (matrix: aMatrix, integer: columns, integer: rows) is
for (integer c:= 1) until c == columns
for (integer r:= 1) untilr == rows

traverse (aMatrix[c,r]);

has the complexity O(Columns x Rows). This means that
the number of steps in traversing a matrix of size Columns x
Rows grows proportionately to the product of the number of
columns and rows. In our example, this means that traversing
a matrix of size 4 x 5 will take about twice as much as
traversing a matrix of size 2 x 5 [Note 4].

We borrow this notion of measurement for estimating
software flexibility. We say that a is more flexible than b
towards a particular evolution step because the number of
changes required for a is smaller than the number of
changes required for b. For example, Shaw and Garlan
[11] say that the Shared Data architectural style is inflexible
towards changes in the data storage format because such a
change ‘will affect almost all of the modules’. In contrast,
the Abstract Data architectural style is flexible towards
the same change because it ‘can be changed in individual
modules without affecting others’. Evolution complexity
allows us to establish this claim (Section 3.1), showing
that the complexity of evolving Shared Data is linear in
the number of modules in the implementation
O(|SharedDatal), whereas the complexity of same evol-
ution step in Abstract Data Type is constant O(/). Thus,
the complexity of an evolution step measures how inflexible
is the implementation towards a particular class of changes:
the less changes are required, the more flexible it is.

In this paper, we formulate the notion of evolution
complexity to achieve the following.

1. To provide means for quantifying flexibility.

2. To corroborate and make precise informal claims on the
flexibility of particular programming paradigms, architec-
tural styles and design patterns.

3. To provide means for choosing the most flexible design
policy.

We define ‘evolution step’ as the unit of evolution with
relation to a particular change in the implementation, and
demonstrate the following.

Note 4: It is customary to omit constants in the big Oh notation.
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e When a particular evolution step is evidently ‘easy’, we
demonstrate its complexity is fixed (constant complexity).
e When a different evolution step is evidently ‘difficult’,
we demonstrate its complexity grows as a function of the
size of the implementation (linear complexity).

1.2 Outline

The rest of this paper is organised as follows. In Section 2,
we formulate our terminology and illustrate it with an
example. In Section 3, we examine metrics for quantifying
the flexibility of four recognised design policies. In Section
4, we describe a small-scale experiment that corroborates
our predictions. In Section 5, we discuss related work,
including the notion of ‘software complexity’. In Section
6, we summarise the conclusions that can be drawn from
our discussion.

2 Definitions

In this section, we define the terminology used in our dis-
cussion and motivate our definitions with an example. We
formulate the term ‘evolution step’ as a unit of measuring
the cost of the evolution process using the notion of
‘evolution cost metric’.

We use the term design policy with reference to any
sensible collection of software design decisions, such as
programming paradigms, architectural styles and design
patterns. Design policies allow us to expand the scope of
our discussion from a particular implementation into a
class of such. We also use the terms ‘implementation’ and
‘program’ interchangeably with reference to a unit of
source code.

2.1 Evolution step

Consider the operational environment [12] of a particular
program. It consists of the hardware, the operating
system, other programs and other sources of input to
the program. We abstract the operational environment
as a set of functional and non-functional requirements,
which we call the problem. Software evolution can be
described as the process during which changes occur in
the problem, which entail changes in the implemen-
tation. To distinguish between changes in the problem
and changes in the implementation, we refer to the
former as shifts and the latter as adjustments, jointly
represented as an ‘evolution step’. This terminology is
illustrated in Fig. 1.

Old Shifted
Problem

Problem

uy) )
© ©
=X o
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® ]
2] 172]

Adjusted
Implementation

Old
Implementation

Fig. 1 Evolution step
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Definition. Evolution function is a functional relation & such that
E:PxPxI — I

and 5( I)u.frh?"-n[u'_.'-'|'|J".Eu.fr|’) = Yadjusted only if 7, realizes p,, and badjusted realizes Pshifted-

Evolution step is a pair e= ( (P.th.\J.;Jr.-.-rrv"’;t.m) E( PotasPshigie doia))

Fig. 2 Evolution function, evolution step

Let us represent the set of problems as [P, the set of
implementations as [ [Note 5]. A step in the process of soft-
ware evolution can be represented as a mapping of the com-
bination of the old problem p,;; € P, the shifted problem
Dsnisiea € P and the old implementation i,,; € | into the
adjusted implementation i,g,seqs € I. This mapping can
thus be represented as the evolution function (Fig. 2), a
mathematical function £ which maps each tuple (p,q,
Dshifiedsioia) to the adjusted implementation i,gseq-

2.2 Example: Java’s Collection interface

Let us illustrate our terminology using the problem of repre-
senting data structures and their implementations using the
Collection interface in the java.util package
[Note 6]. The design policy that guided the authors of
java.util is also known as (part of) the Iterator design
pattern [9]. These definitions are given to demonstrate
how to make precise claims on the flexibility of particular
implementations, but the reader may skip the technical
detail included in this subsection without adversely affect-
ing the readability of the rest of this paper.

2.2.1 Problem: Provide several concrete data structures
and operations thereon. We may unpack a concrete instance
of this problem as follows:

® ppsoop 2 Provide a client with data structures

DS = {LinkedList,ArrayList}

and a collection of operations shared by them

OP = {add, contains, size}

To make this example concrete, we use the data struc-
tures and their respective operations to represent a movie
cast and the audition process.

2.2.2 Implementation: The package java.util pro-
vides the uniform interface to all data structures, the
Collection interface. The purpose of this interface is
to hide the particulars of each data structure and thereby
provide a fixed point of reference for clients of the data
structures. Flexibility is supported by allowing the program-
mer to replace one data structure with another without
requiring any adjustments to the remainder of the
implementation. Fig. 3 depicts such an implementation,
designated Collection, which uses the data structures to rep-
resent the collection of actors (movieCast) as determined
by the director. Fig. 4 depicts the UML class diagram of
Collection.

Note 5: In this context, the constitution of which in terms of Zermelo—
Fraenkel’s set theory is of no relevant consequence.
Note 6: Accompanying the Java ™ class library, version 1.4.2.

IEE Proc.-Softw., Vol. 153, No. 3, June 2006

2.2.3 Encoding evolution steps: Consider two possible
shifts to the problem ppgop:

e movieCast should be represented as a LinkedList
e Operation remove over movieCast is also required
(for example because an actor has resigned)

We may encode the new (‘shifted”) problems as follows:

. pSh,»ﬁed_DSéUse LinkedList where ArrayList
was used;

® Psupica-or = Add the operation remove over the
movie’s cast.

We may encode the two revised implementations,
respectively:

e Collection gusiea-ps 2 Collection with LinkedList
where ArrayList was used

e Collection 4gjusea-op = Collection with method remove
in Collection and interface and in all data structures
implementing it

The scenarios following each one of these combinations of
shifts and adjustments can be represented as an evolution
step as follows.

e Evolve the data structure: eps £ ((pPpsor, Pshifiea-Dss
Collection), Collection 4gjusea-ps)

e Evolve the operation: &op £ (ppsors Pshified-ors
Collection), Collection 4gjysica-op)

These evolution steps can also be expressed in terms of the
evolution function (Fig. 2):

® &(ppsiop, Pshifi-ps, Collection) = Collection 4gjusied-ps
* & ppsior» Pswii-op, Collection) = Collection 4gjusiea-or

Detailed encoding of shifts, adjustments and evolution
steps can be used to define the class of changes concerned,
but is not essential for the understanding of notion evolution
complexity.

2.3 Evolution cost metrics

We may summarise at this point, our intuition on the flexi-
bility of the Java Collection interface as follows:

o it is flexible towards changing the data structure (epg) in
the sense that the cost of executing epg does not depend on
the number of data structures;

e It is inflexible towards adding an operation (gpp) in the
sense that cost of executing epp grows with the number
of the data structures, |DS|.

In other words, the flexibility of Collection interface
towards each evolution step & can be quantified in terms
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public class Director {
private Collection movieCast = new ArrayList;
publiec wvoid audition(Actor candidate)

// Flexible towards adjustments in mowvieCast:

if (CanAct (candidate))
movieCast.add (candidate);

{

Fig. 3 Java program illustrating the use of Collection, which makes class Director flexible towards adjustments in movieCast

Director

audition()

<<interface>>
Collection

movieCast™ 7 |

add()
contains()
size()

ArrayList

add()
contains()
size()

LinkedList

add()
contains()
size()

Fig. 4 UML class diagram of the program in Fig. 3 and related
modules

of the ‘cost’ of the evolution process. In reality, however,
the cost of an evolution process, whether measured in
terms of time, equipment, labour and other resource
required for executing the evolution step, depends on
the size of the programming team, the relevant experience
of its members and the software development tools at
their disposal, the clarity and currency of the documen-
tation and on a complex range of other cognitive, social
and economic factors that are difficult to measure.
Given the complexity of this problem we ask, how can
we quantify the cost of the evolution process?

A hint as to the solution was given in a talk by Parnas on
the subject of Software Aging:

‘... one organises the software so that the items that
are most likely to change are ‘confined’ to a small
amount of code, so that if those things do change,
only a small amount of code would be affected’

([8], p. 281).

In other words, ‘flexibility’ (measured in terms of the cost of
the evolution process) is directly linked to the amount of
code that is affected. Thus, a first approximation to measur-
ing the cost of executing an evolution step ¢ is given by the
evolution cost metric which counts the number of modules
that are affected by e.

Let us also make the simplifying assumption that the
costs of adding, removing or changing each modular unit
commensurate. Thus, the evolution cost metric we
propose is obtained by calculating the number of modules
that were added, removed or adjusted [Note 7] as a result
of the evolution. This number is obtained by calculating
the symmetric set difference between the sets of classes in
the old (i,s4) against the adjusted (i,gjusres) implementations

(Fig. 5).

Note 7: The notion ‘a module that was changed’ can be fixed in a number of
ways, the simplest of which is to count the number of modules that require
recompilation after the change.
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Let us demonstrate how Cfyusses can be used to compare
the cost of changing the data structure (epg) with the cost
of adding an operation (gpp,). For this purpose, imagine
that a computer program is carrying out the evolution
process: such a (meta-)program adjusts the old implemen-
tation. The complexity of this (meta-)program can be
calculated using the evolution cost metric Cliasses (Fig. 5)
as follows:

O(ClClasses(SDS)) =

O(#classes affected by replacing ArrayList with
LinkedList) =

o)

and

O(C]Classes(SOP)) =

O(#classes affected by adding operation remove to
Collection)=

a(Ds))

The complexity of each evolution step is summarised in
Fig. 6.

This establishes the intuitions expressed in Section 2.3 on
the flexibility of the Collection design policy towards each
evolution step as follows.

e We say that the Collection interface is flexible
towards changing the data structure because the complexity
of executing epy is fixed and independent of the size of the
implementation: O(Cfyasses(€ns)) = 1. This means, for
example, that executing this evolution step in an implemen-
tation with 20 data structures cost about as much as execut-
ing the same in an implementation with only 10 data
structures.

e We also say that the Col lection interface is inflexible
towards adding an operation because the complexity
of executing £pp grows with the number of data structures
in the implementation: O(Céyusses(eop)) = |DS| (linear
complexity). This means, for example, that the cost of
executing gpp in an implementation with 20 data structures
is twice as hard as much the cost of as executing the same in
an implementation with only 10 data structures.

This result also corroborates the claim that the Collection
design policy is not flexible in absolute terms. Instead, we
demonstrated that it is flexible towards one class of evol-
ution steps (adding data structures) and inflexible towards
another (adding an operation.)

2.4 Evolution complexity

The flexibility of the Collection implementation
towards each evolution step & can be quantified by
measuring the complexity of the metaprogramming
process that executes €. This approach can be best described

IEE Proc.-Softw., Vol. 153, No. 3, June 2006
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ment:

C.’

Classes

Classes(i,,)).

Definition.  The evolution cost metric C,,.,

classes in each program, namely: (Cﬂassrfs{

. measures the cost of executing evolution

step E={({ P 14s Ponirredst 1, in terms of the number of classes affected by the adjust-
I olds Pshifteds Totd) s Yadjusted 1

() & |A Classes( i, igueed) |

where A Classes( i, 8405004 designates the symmetric set difference between the sets of

)\ Classes(i.q) )U( Classes(ipea) ~

Fi g. 5 Cé‘lasses

Evolution step | Change data structure Add operation
Design policy (Eps) (Eop)
Collection interface o(1) (| DS|)

Fig. 6 Cé,asse:—complexity of evolving the Collection
interface

Add operation: see also [Note 8]

as an application of the principle of ‘software evolution is
software too’.

In his award-winning paper ‘Software Processes are
Software Too’ [13], Osterweil suggests to treat human and
executable processes uniformly. This is helpful because
‘manual and automated processes are both executed, they
both address requirements that need to be understood, both
benefit from being modelled by a variety of ... models,
both must evolve guided by measurement, and so forth’
[14]. Evolution complexity can thus be defined as the appli-
cation of Osterweil’s principle to software evolution: The
evolution process is conceptualised as a computational
process executing a particular ‘evolution step’ (Fig. 2),
specifically as a metaprogram [Note 9] which simulates the
respective evolution process. In particular, we can use
computational complexity [10] to measure the complexity
of the evolution process with relation to a particular
‘evolution step’ (Fig. 7).

Specifically, this means that the complexity of evolution
Step &= <<pnldapshiﬁedainld>aiadjusted)> is the complexity of
the process which adjusts iy, into igguseq sSuch that
Ladjusted = E(Pold>Pshifieds lold)-

Computational complexity [10] is concerned with esti-
mating how the ‘cost’ of the computational processes
grows as a function of the size of the problem. Similarly,
evolution complexity is concerned with estimating how
the cost of the evolution process grows as a function of
the size of the implementation. The complexity of a
computational process is measured by breaking it into
commensurable sub-steps. Similarly, the complexity of
the evolution process can be measured by breaking it into
commensurable sub-steps. The metric CLeses demonstrates
how this number can be calculated: the complexity of
adjusting the implementation towards shifts in the data
structure is constant O(/), whereas the complexity of
adjusting the implementation towards shifts in the
operations is linear in the number of data structures O(|DS]).

Note 8: The actual number of steps is |DS|+ I, whose complexity is
equivalent to linear complexity by the abstraction conveyed by the conventional
big Oh notation [10].

Note 9: A metaprogram is a program that manipulates other programs. The
canonical example is a compiler. Metaprogramming functions are built into
many programming languages.

IEE Proc.-Softw., Vol. 153, No. 3, June 2006

2.4.1 Caveat: We identify the following possible miscon-
ceptions of evolution complexity (Fig. 7).

e We do not claim that software evolution can, should or
eventually will be fully automated. Rather, we argue that
conceptualising the evolution process as if it were
automated is a metaphor that is useful for the purpose of
quantifying the complexity of the evolution process
[Note 10].

o Complexity is a measure of growth, not an absolute
value. Computational complexity does not measure the
actual time that computational processes require but how
it grows. Likewise, evolution complexity does not
measure the actual cost of the evolution processes but
how it grows.

2.5 More evolution cost metrics

The evolution cost metric Clgsses 1S inadequate in at least
three situations.

1. When the evolution of different modules do not commen-
surate. During late phases in the software lifecycle, it may
become evident that the cost of evolving one module does
not commensurate with the evolution of another. For
example, the cost of changing a ‘small’ class [for
example, a class defined in two lines of code (LoC)] does
not commensurate with the evolution of a ‘large’ class
(for example, a class defined in 200 LoC).

2. When modules were not yet implemented. During even
earlier phases of architectural design, the implementation
has not been completed yet.

3. When the programming language does not support
classes. Evolution cost metrics should also be defined for
programming languages other than class-based.

We conclude that the metric must accommodate for
varying degrees of modular granularity, as well as for
varying degrees of information on each module. This leads
us to define the generalised evolution cost metric (Fig. 8).

The generalised metric is parameterised by the variables
Modules and p.

e Modules represent any notion of module that is appropri-
ate for the circumstances, such as class, procedure, method
and package. For example, C}aackaggs is a coarse metric
counting the steps in the evolution process in terms of
number of packages in the implementation.

e . represents any sofiware complexity metric that is
meaningful with relation to a particular module m. For
example, fixing u = LoC yields the metric CkoC, 1es Which
incorporates information about the size of each module,

Note 10: Similar misconceptions of Osterweil’s general principle are
discussed in the work of Osterweil [14].
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Definition. The complexity of the evolution step £ :<(,’U,,_.,,a,,ik,,,‘r,,,_.,'i,,,,f},im_r,,_.‘.,-r), also the

evolution cnmp]cxily of £, is the n:nmph‘xil\' of a process executing €.

Fig. 7 Evolution complexity

each module m affected ]))‘ the ;ldjusllm-nl:

Definition.  The generalized evolution cost metric Cf,, ., measures the cost of execut-

ing evolution step £= ( (pf..'u':p.\.'”,m -rsi...'..-'} "imfl_,m,l 4/ in terms of the .s'n_:lﬁ ware comp.fe.\ir’r M ('-m.) of

H =Y 4
C.Um!-’.'-'- 5 (“) - Zn;e AModules{ iy dygp

where f1 is any software complexity metric and A M’Odufﬁs( Sotds badiuste -r) <|rxignalt‘.s the symmet

ric set-difference between the set of modules in i,,; and the set of modules in 7,

y

u(m)

adjusted”

Fig. 8 The generalised evolution cost metric

whereas fixing u = CC (cyclomatic complexity) incorpor-
ates information about the control flow.

Naturally, Fig. 8 gives rise to any number of evolution
cost metrics. Various such metrics are demonstrated in the
rest of this paper. More generally, an evolution cost
metric C is a function which associates an evolution step
e with a non-negative number which attempts to quantify
the cost of the process of executing &. Formally

C:PxPxlIxl—R"

2.5.1 Discussion: In proposing the metric Clyzsses, We
assumed that the costs of (1) adding, (2) removing and (3)
changing a module commensurate. How can this assump-
tion be justified? Experience teaches that the cost of
evolving a module often exceeds that of developing it in
the first place [Note 11]. [4]. It is therefore not unreasonable
to assume that removing and changing a module costs about
as much as adding a new module.

Alternatively, consider a situation where only adding a
module is significant. For example, let us assume that

e the cost of evolution effort is proportional to the
module’s size, which is determined by the simplistic
count of Lines of Code (LoC), and that

e removing and changing a module are inconsequential.

Under such circumstances, the appropriate evolution cost

metric is Ciad52¢, which can be defined as follows (Fig. 9).

Let us demonstrate that the metric Cie%L¢ can be
obtained by refining the generalised evolution cost metric.
We fix the software complexity metric w to be the metric

Add/LoC, defined as follows

LoC(m) when m is a new module

N
Add/LoC(m) = {0 otherwise

This demonstrates that Cife:¢ as formulated in Fig. 9

can be obtained by fixing w(m) = Add/LoC(m) in the
generalised evolution cost metric.

3 Case studies in evolution complexity

In this section, we use evolution cost metrics to corroborate
informal claims on the flexibility of various programming
paradigms, architectural styles and design patterns.

3.1 Architectural styles

In 1972, Parnas [6] presented the problem of Key Word in
Context (KWIC) for the purpose of demonstrating the flexi-
bility of two ‘modular decomposition policies’. The
problem has become a classic in the software design litera-
ture, and in 1993 Garlan and Shaw [11] encoded each
modular decomposition policy as an architectural style. In
this section, we use evolution complexity to establish and
to quantify the informal claims made by Garlan and Shaw
[11] on these architectural styles.

3.1.1 Problem: The KWIC problem is defined as follows:

The KWIC index system accepts an ordered set of
lines, each line is an ordered set of words, and each
word is an ordered set of characters. Any line may
be ‘circularly shifted’ by repeatedly removing the
first word and appending it at the end of the line.
The KWIC index system outputs a listing of all circu-
lar shifts of all lines in alphabetical order [6].

The description can be encoded as follows.
o KWIC £ Represent an indexing system with algorithms

Alg = {Input, Shift, Alphabetize, Output}

3.1.2 Implementations: Parnas discusses several design
policies that can possibly guide the solution to the KWIC
problem, encoded by Garlan and Shaw [11] as the follow-
ing three architectural styles: Shared Data, Abstract Data
Structure and Pipes and Filters [Note 12]. Below we
briefly summarise each architectural style. Note that they
differ not in the number of modules, which is |4/g| in all
implementations, but in the way data and functionality
are distributed.

e Shared Data (Fig. 10): a functional decomposition policy
yields one module-per-functionality, all of which operate on
some shared representation of the data.

e Abstract Data Type (Fig. 11): a policy that conforms to
the principles of data abstraction (a.k.a. information
hiding), where operations over data are only allowed via
an abstract interface.

e Pipes and Filters (Fig. 12): a modular decomposition
policy of encapsulating each algorithm in an independent

Note 11: The reason is usually because of the inherent complexity of large
systems, where every change in an existing module can potentially have a
‘domino effect’, which is precisely the reason for quantifying flexibility.
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Note 12: In addition, Garlan and Shaw [11] suggest other architectural
styles that may also be used to solve the KWIC problem such as blackboard
architecture, omitted from discussion for lack of space.
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Definition.  The evolution cost metric C, " measures the cost of executing evolution
step £= (Pt P ifteds Tota) '5-:-1’_. wsteq) s the total sum of the lines of code in each one of the new
modules:
AddiLoc ¢ v & )
Cltoducs (€) = Z Modules( iyguca /' Modules( i LO(‘(?“}
where Modules(i,,.,....)\ Modules(i,,) returns the set of modules added to the implemen-
tation and Lo C(m) designates the number of ‘lines of code’ of module m.
H Add [Loc
Flg' 9 CM{) ules

> Direct Memory Access

Master Control
> Subprogram Call

R

Input Circular Shift Alphabetizer Qutput
\ »4
Characters Index AIPI’II:‘I;:txized
Output
Input ¥
Medium Medium

Fig. 10 Shared Data implementation to the KWIC problem
(adapted from Garlan and Shaw [11])

Rectangles represent the elements of the implementation (modules, as
chunks of procedures)

module, or a ‘filter’, which is a stateless process that accepts
an input stream and produces an output stream.

3.1.3 Shifts: Consider the following shifts to the KWIC
problem:

e Compact the data representation to an efficient format,
for example, by packing four letters to a byte.
e Parallelise the processes, thereby allowing simultaneous,
distributed processing of multiple documents.

3.1.4 Analysis: Informal claims about the flexibility of

each design policy were made by Parnas [6], later refined

by Shaw and Garlan [11], summarised in Fig. 13.
Regarding the Shared Data policy they claim:

e ‘a change in data storage format will affect almost all of
the modules,’

e ‘changes in the overall processing algorithm and enhance-
ments to system function are not easily accommodated.’

Regarding the Abstract Data Type policy they claim:

e ‘both algorithms and data representations can be changed
in individual modules without affecting others;’

e ‘the solution is not particularly well-suited to (func-
tional) enhancements.’

Regarding Pipes and Filters policy they claim:

e ‘it supports ease of modification (of the algorithm)’,

e ‘it is virtually impossible to modify the design to support
an interactive system (because) decisions about data rep-
resentation will be wired into the assumptions about the
kind of data that is transmitted along the pipes.’

These claims were summarised by Shaw and Garlan [11]
using a comparative matrix, depicted in Fig. 13.
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—» Subprogram Call Master Control

— System IfO

Input Output

Alphabetic
Shifts

Circular Shift

Input
Medium

Output
Medium

Fig. 11 Abstract Data Type implementation to the KWIC
problem (adapted from Garlan and Shaw [11])
Horizontal rectangles represent the elements of the implementation

(abstract data types) and vertical rectangles represent elements in the
ADT’s interface

Input — Circular
Medium Input [~ SHift —‘
—>» Pipe
— System I/O
—» Alphabetizer |[— Output |— Qutput
Medium

Fig. 12 Pipes and Filters implementation to the KWIC problem
(adapted from Garlan and Shaw [11])

Rectangles represent the elements of the implementation (filters)

volution step Change Data Enhance
Design policy Representation functionality
Shared Data
Abstract Data Type +
Pipes and Filters +

Fig. 13 Informal claims about the flexibility of three design pol-
icies towards shifts in the KWIC problem (adapted from Shaw and
Garlan [11])

Minus symbol stands for ‘easy to evolve’ and a plus symbol for
‘difficult to evolve’

We may use the metric Chioduies to corroborate and
quantify these claims. The results of this analysis are
summarised in Fig. 14.

3.2 Programming paradigms

Object-oriented programming (OOP) is hailed, among other
reasons, for promoting flexibility. Experienced program-
mers, however, observe that object-oriented mechanisms
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Shift Compact Data Enhance
Design policy Representation functionality
Shared Data QA f_ql) O(|Algl|)
Abstract Data Type a1 O(|Algl|)
Pipes and Filters O(|Alg|) [@/@)]

Fig. 14 Cljuues-complexity of evolving the design policies in
Fig. 13, corroborating the claims made by Shaw and Garlan [11]

such as inheritance and dynamic binding make programs
more flexible only towards the particular shifts they specifi-
cally were tailored to accommodate. For example, it has
been established that gratuitous use of inheritance may
lead to the problem of ‘fragile base class’ [15] and yield
highly inflexible programs.

In this subsection, we establish the intuition regarding the
flexibility of object-oriented programs expressed above. We
formulate the problem of representing a deterministic
finite-state automaton (DFSA) and analyse the complexity
of evolving object-oriented against procedural implemen-
tations towards shifts in this problem.

3.2.1 Problem: Consider the problem of representing the
behaviour of a digital clock with three display states:
DisplayHour, DisplaySeconds, DisplayDate and two
setting states SetHour, SetDate. The clock accepts input
from two buttons b; and b,, which are used to perform
a specific action depending on the current state. The
clock’s behaviour can be modelled as a DFSA, illustrated
in Fig. 15.
We may encode this problem as follows.

e Clock £ Represent a clock with a set of states

States = {DisplayHour, DisplaySeconds,
DisplayDate, SetHour, SetDate}

and buttons

Buttons = {b;, b,}

3.2.2 Shifts: Consider two revisions to problem Clock:

e Add button b to Buttons
e Add state s to States

3.2.3 Implementations: Consider the following two
implementations of Clock:

e 00 £ Implement Clock in OOP policy. The State
pattern [9] manifests a classical object-oriented solution to
the representation of a clock. Overall, there are |States|
classes and |States| x |Buttons| methods in this implemen-
tation, sketched in Fig. 16.

e PROC 4 Implement Clock in a procedural policy,
described as follows:

‘An alternative is to use data values to define internal
states and have context operations check the data
explicitly. But then we would have look-alike con-
ditional or case statement scattered throughout the
context’s implementation.” ([9], p. 307)
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b1

v |

b1 b1
Display Display Display
Hour Seconds Date
b2
b2

b2

b1 b1

Fig. 15 DFSA representation of a digital clock

Overall, there are |Buttons| procedures (ANSI C functions)
in such an implementation, each consisting of a ‘switch’
state with |States| ‘cases’, sketched in Fig. 17.

3.2.4 Analysis: Informal claims about the cost of each
evolution step are made in the work of Gamma et al. [9].

Regarding the object-oriented implementation they
claim:

e ‘new states ... can be added easily’,
e ‘decentralising the transition logic in this way makes it
easy to modify or extend the logic’ ([9], pp. 307—308).

Regarding the procedural implementation they claim:
e ‘adding a new state ... complicates maintenance.’

The difficulty at this point lies in comparing adjustments
to an implementation in Java'™ with adjustments to an
implementation in ANSI C. The question is, Which com-
mensurable units of modularity can be used to compare
such adjustments? As the simplest answer, we define the
function Class/Func(i), which counts the number of
modules (ANSI C functions or Java classes) in the
implementation i:

Class/Func (i)
A | #Functions(i)  When i is written in Ansi C
| #Classes (i) When i is written in Java

Fixing the software complexity metric u(m) = I and
Modules(i) = Class/Func(i) in the generalised evolution
cost metric yields the metric Céass/runc- The results of
calculating the complexity of each evolution step using
Cltass/Fune are summarised in Fig. 18.

However, it may be (justly) argued that adjusting ANSI C
functions and Java™ classes do not commensurate, and that
a more refined approach may be in place. An alternative
(and possibly more sophisticated) software complexity
metric, such as the CC metric [16], may provide a more
faithful representation of the cost of evolving of different
modules. Fixing w(m) = CC(m) and Modules(m) = Class/
Func(m) in the generalised evolution cost metric yields
the metric CEfogy/rune, formulated as depicted in Fig. 19.

Analysing the complexity of the same evolution steps
using the metric Cofgy/mune yields slightly different results,
summarised in Fig. 20.

3.2.5 Conclusions: We may conclude the following from
the results obtained from using different evolution cost
metrics.

1. Neither programming paradigm is flexible in absolute
terms, irrespective of the metric chosen.
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interface Clockstate |
wvoid bl(); button
void b2(); // button
1

1
2 ¢

class DisplayHour implements ClockState |
public void bl() {/
public woid b2 ()
]

* bl pre
{/* b2 pr

1

class SetHour implements ClockState |

public void bl() {/* bl
public void b2() {(/* b2 presse

]

class SetDate implements Clc {
public void bl() {/* bl */}
public woid b2 () {/* b2 pressed */}

}

class Displa 200 ~kS .
public void bl() {/* bl pressed */}
public woid b2() {/* b2 pressed */}

}

class Di te St
public veoid bl() {/* bl pressed */}
public woid b2() {/* b2 pressed */}

Fig. 16 Object-oriented implementation to the clock problem (in Java

TM)

enum

states {DisplayHour, DisplaySecond,

Current

i

I

case DisplayDate:
case SetHour:
case SetDate:

void b2(aClock) {
switch (aClock.state)
DisplayHour:

case SetDate:

DisplayDate, SetHour, SetDate};

state

button 1 pressed

Fig. 17 Procedural implementation of the Clock problem (in ANSI C)

2. The question Which programming paradigm is more
flexible? can be reduced to the question Which shifts to
the problem are most likely to occur?

3. The accuracy of an evolution cost metric varies with the
amount of information available about the implementation.

More generally, we also conclude the following.

4. Metrics of different granularity levels are useful during
both early and late phases in the software lifecycle. A
coarse metric (such as ClClass/Func) is useful during the
design process, namely before the implementation is com-
plete, whereas a refined metric (such as CEiggy/munc) 1S
useful in later stage, namely once the implementation
phase has been completed.

A third solution to the clock problem has not been
discussed. States and buttons can be represented in a

volution step Add letter Add state
Design policy
-0 programming O(| States|) Q1)

a( 1) O( | Buttons|)

Procedural programming

Fig. 18  Clius/runc-complexity of  evolving  object-oriented
against procedural implementations towards shifts in the clock
problem
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data structure rather than being hard-coded as classes
or functions. This solution is more flexible because the
complexity of either evolution step is constant. This
solution, however, does not affect the conclusions drawn
above.

3.3 Design patterns

In the work of Mens and Eden [17], we analysed the
complexity of evolving two design patterns. In this
section, we summarise the conclusions drawn from our
analysis.

3.3.1 Visitor: The patterns catalogue [9] discusses the
problem of representing abstract syntax trees and operations
thereon. It is argued that, ideally, the most flexible
implementation is one written in a programming language
that supports double dispatch [18]. However, the program-
ming languages at the focus of the authors (C++ and
Smalltalk [9], but also neither in most other O—O program-
ming languages such as Java and C#) do not support such a
mechanism, which motivates the Visitor pattern as a design
policy. The Visitor pattern consists of two class hierarchies,
representing (1) the set of elements in abstract syntax (e.g.
constant, variable, addition expression) and (2) the set of
operations thereof (e.g. ‘print this tree’). Regarding the
Visitor design policy they claim:
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modules affected by the adjustment:

=2
1€ A Class! Fune iygpuued v

where C'C(m) of module m is its Cyclomatic Complexity [18], which is defined as follows:

_ . : 5 oo . i
Definition. The evolution cost metric Cyy,_p,, measures the cost of evolution step

€= {({ Potas Punigteds Tota) sTagjustea) in terms of the total sum of the cyclomatic complexity of the

. CC(m)

#independent paths in the flow graph of ™ When 1 is an Ansi C function

CC{'NL) £ I Total sum of #indendent paths in the
flow graph of all methods of m

When m is a Java class

Evolution step Add letter Add state
Design policy

0-0 programming | O | States| x| Buttons|) O(| Buttons|)

Procedural programming O(|States|) O | Buttons| x | States|)

Fig. 20 CS5..o/runc-complexity of evolving an object-oriented
against procedural implementation of clock problem

volution step Add Add element
Design policy operation
Visitor pattern a1 O(| Operations|)

Fig. 21 CLues-complexity of evolving the Visitor pattern
Operations stands for the number of ‘visit’ operations

e ‘(it) makes adding new operations easy’;
e ‘Adding new concrete element classes is hard’.

We may use Chiusses (Fig. 5) to corroborate these claims
and to make them precise. The results of this analysis are
summarised in Fig. 21.

3.3.2 Abstract factory: The same catalogue [9] also dis-
cusses the problem of providing ‘an interface for creating
families of related or dependent objects without specifying
their concrete classes.” The actual object that need be
created depends on the global context (‘current configur-
ation’). For example, when a Graphical User Interface
client seeks to create a new ‘dialogue box’, considerations
of flexibility determine that it must remain independent
from the question, Which windowing systems have been
implemented and from the particulars of how dialogue
boxes are generated in windowing system.

The authors discuss two design policies solving this
problem: The first (the ‘anti-pattern’) uses a ‘switch’ state-
ment — multiple conditional branching — to determine
which dialogue box to create. As an alternative which con-
forms to the general spirit of the OOP paradigm, the
Abstract Factory pattern dictates that subtyping and
dynamic binding should be used to hide the concrete class
of the object created behind a uniform interface. In the
work of Mens and Eden [17], we use the evolution cost
metric Cejases to analyse the flexibility of each design
policy, the results of which are summarised in Fig. 22.

These results further corroborate the more general claims
we made: that flexibility depends on which class of shifts
that are most likely to occur. This suggests that a software
architect must weigh carefully the question, Which shifts
exactly are most likely to occur before he/she may choose
the appropriate design policy.
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Fig 19 ngss/Func

4  Empirical support

A metric is validated when it can be shown to measure what
it is supposed to measure. The most obvious test to the evol-
ution cost metrics is to investigate how the actual costs of a
particular evolution step grow in a controlled environment.
We describe the consolidated results obtained from con-
ducting several small-scale experiments to this extent at
the University of Essex and at the Université de
Mons-Hainaut. These experiments [19, 20] corroborate
the predictions made in Section 3.2 regarding the complex-
ity of evolving object-oriented and procedural implemen-
tations towards shifts in the clock problem.

In the first part of all experiments, subjects were pre-
sented with an implementation of a state machine (pcioer)
with three states (|States| =3) and one button
(|Buttons| = I). Next, the subjects were asked to evolve
the implementation in a series of tasks, and to measure
the time required to complete each task.

e In task 2, subjects added a second button to Buttons
o In task 3, subjects added three more states to States
o In task 4, subjects added a third button to Buttons

Specifically, the experiment was designed to test the pre-
dictions made (Section 3.2) using the evolution cost metrics
Cltass/rune AN CEres/runc regarding the cost of evolving an
object-oriented (i.e. along the list of the program in
Fig. 16) against a procedural (Fig. 17) implementation.
Fig. 23 contrasts the theoretical predictions with the empiri-
cal results obtained in the two experiment types.

Fig. 23 should be interpreted as follows, depending on the
implementation to be evolved.

e Both metrics Cousy/mune and Cofos/mume predict that the
complexity of adding a letter to the alphabet in an
object-oriented implementation grows proportionally with
the number of states |States|, namely that task 4 (adding a
letter to an O—O implementation of a DFSA with six
states) will cost about twice as much as task 2 (adding a
letter to an O—O implementation of a DFSA with three
states). In practice, our results show that task 4 took 2.5
times as much as task 2 (calculated as the median of the
ratios between the tasks). We believe that these initial
results, collected from seven subjects (standard deviation:
1.4), strongly corroborate both metrics as predictors of
flexibility.

e The metric Coyuss/runc predicts that the complexity of
adding a letter to the procedural implementation is fixed,
namely that task 4 (adding a letter to a procedural implemen-
tation of a DFSA with six states) will cost about as much as
task 2 (adding a letter to a procedural implementation of a
DFSA with three states). The metric Cojgy/mume predicts
that the complexity of the task of adding a letter to the

IEE Proc.-Softw., Vol. 153, No. 3, June 2006
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volution step Add configuration

Design policy

Add state

Abstract Factory

O(| Products|)

O(| Configurations| +| Products|)

‘Switch’ O | Clients|)

O(| Clients|)

Fig. 22 Cliuses-complexity of evolving the Abstract Factory against Switch implementations towards shifts in the Object Creation problem

alphabet in a procedural implementation grows proportion-
ally with the number of states |States|, namely that task 4
will cost about twice as much as task 2. In practice, our
results show that task 4 took 1.5 times as much as task 2 (cal-
culated as the median of the ratios between the tasks). These
initial results, collected from seven subjects (standard devi-
ation: 0.47) indicate that the cost grew less than predicted by
CEfoss/rune and more than predicted by Class/runc-

Statistically sounder results should be obtained to explore
the possibility that a different evolution cost metric may be
in place.

5 Related work

Switching between design policies is an expensive and time-
consuming activity, but tool support for automating it has the
potential of reducing its complexity. For example Kerievsky
[21] offers a catalogue of well-defined ‘refactorings’, such as
switching for example from a procedural ‘switch’ policy to
an object-oriented (e.g. the State pattern) design policy.
Such catalogues of well-defined transformations constitute
a first step towards automating changes in the design
policy, a process which may greatly reduce the cost of
executing the corresponding class of evolution steps.

5.1 Software complexity

Curtis [22] suggests that ‘In the maintenance phase [soft-
ware]| complexity determines ... how much effort will be
required to modify program modules to incorporate specific
changes.” Zuse [23] counts over 200 metrics for software
complexity in the literature. Three prominent examples
are the following.

e LoC counts the number of lines in the source code of the
implementation.

e McCabe’s cyclomatic complexity [16] measures the
number of nodes in the flow graph of the program (demon-
strated in Section 3.2).

e Halstead’s Volume [24] metric is given by the equation
(N1 + N,) x Igy(ny + ny), where n; is the number of distinct
operators, n, is the number of distinct operands, N; is the
total number of operators and N, is the total number of oper-
ands in the respective module.

Each one of these software complexity measures can
replace the parameter u in the general metric for evolution
complexity (Fig. 8).

e In Sections 2.5, we demonstrated the result of fixing
n = LoC in the generalised metric.
e In Section 3.2, we demonstrated the result of fixing
m = CC in the generalised metric.
e The result of fixing w = Volume (Halstead’s Volume
metric) in the generalised metric yields the evolution cost

Volume

metric Cyp,duies» defined as follows

Volume 2 :
&) =
CM"d“leb ( ) mEAModules(i adjusted)

X (Ny(m) + Ny(m)) x lg,(n)(m) + ny(m))

where N;(m) is the total number of operators in module ,
N(m) is the total number of operands in m, ny(m) is the
number of distinct operators in m and n,(m) is the number
of distinct operands in m.

Unfortunately, neither simple nor sophisticated software
complexity metrics have been proved accurate as indicators
of productivity, comprehensibility or maintainability [23].
This suggests that the accuracy of an evolution cost
metric is only limited by the accuracy of the software
complexity. We hope that the future will bring more
accurate software complexity metrics.

5.2 Metrics for software evolution

Quantifying the actual cost of the software evolution
remains a relatively unexplored problem. Jorgensen [25]
used several models to predict the effort that randomly
selected software maintenance tasks require. The size of
individual maintenance tasks was measured in LOC.
Sneed [26] proposed a number of ways to extend existing
cost estimation methods to the estimation of maintenance
costs. Ramil et al. [27] provided and validated six different
models that predict software evolution effort as a function
of software evolution metrics. None of these approaches
however suggests an obvious way in which it is tied to
the notion of software flexibility.

Prediction by Prediction by Median Standard
C i Conaai measured deviation
Object-oriented
2 2 2.50 1.40
implementation
Procedural
1 2 1.50 0.47
implementation

Fig. 23 Theory against practice: summary comparing the predictions made against the empirical results obtained in experiments regard-
ing the cost of evolving object-oriented and procedural implementations
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5.3 Metrics for software flexibility

We are unaware of alternative approaches for quantifying
software flexibility, nor of any formal criteria for establish-
ing this quality. It has been suggested that a more accurate
way to measure flexibility relies on algorithms or measures
that compute the impact of changes [28]. For example,
Chaumun ef al. [29] report on experimental results with a
change-impact model for object-oriented systems.
Because the cost and complexity of software evolution
may depend on the type of evolution activity, we also
require a finer granularity of recognition of types of soft-
ware evolution activities. Such an attempt to make an objec-
tive classification of evolution activities was carried out in
the work of Chapin et al. [30].

6 Conclusions

We proposed evolution cost metrics and suggested that
flexibility can be measured as the complexity of executing
particular evolution steps. We studied the complexity of
evolving implementations of five recognised programming
paradigms, architectural styles and design patterns, and
demonstrated that evolution complexity corroborates
intuitions and established observations on the flexibility of
these design policies. As stipulated, we also demonstrated
the flexibility of a particular implementation is relative to
the change, and that while a particular implementation is
flexible towards one class of changes, it is also inflexible
towards another. In particular, the benefits from the
measurements proposed are the following.

1. Evolution complexity can be used to corroborate and
quantify informal claims on the flexibility of particular
programming paradigms architectural styles and design
patterns.

2. Evolution complexity can be used to measure flexibility
with varying degrees of accuracy.

3. Evolution complexity can be used to choose the most
flexible design policy, given the class of the most likely
shifts to the problem.

6.1 Future directions

The small-scale experiment described in Section 4 should
be expanded in all aspects, e.g. testing predictions made
with respect to other problems, as well as for the purpose
of establishing statistically sounder results, using larger
sample groups and larger implementations. Of particular
interest is to examine the validity of coarse (such as
Cliasses) against refined (such as Coiyes/rune) evolution cost
metrics.

EC can be used to analyse the flexibility of design
policies beyond the examples given here. For example, it
can be used to throw light on the claims made on the
recent introduction of generics to Java and in comparing
the flexibility of particular technologies (e.g., CORBA
against .NET). In particular, EC can be used in supporting
the decision whether to apply a particular refactoring [31],
possibly by incorporating a range of evolution cost
metrics into integrated development environments which
support refactoring, such as IBM Eclipse and Borland
JBuilder.

An investigation of the relation between EC and actual
cost of the evolution process is also of interest, albeit
more of socio-economic nature than from the software
engineering perspective.
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Note, however, that given the similarity between the con-
cepts, EC is no more dependent on empirical validation than
computational complexity. So defined, it remains to be
examined whether polynomial, exponential and logarithmic
complexity functions are meaningful in the context of
software evolution.

6.2 EC tradeoffs

Studying the flexibility of different programming paradigms
towards shifts in the DFSA problem (Section 3.2) suggests
that a trade-off may exist between EC and computational
complexity, a relation that is analogous to the trade-off
between space and time (computational) complexities.
Although evidence at this stage is anecdotal, it remains to
be examined whether decreased EC (increased flexibility)
leads to time and/or space penalties. Trade-off may also
exist between the development effort (early design) and
the evolution effort, in the spirit of the adage ‘weeks of
programming can save you hours of planning’. But
metrics for quantifying the complexity of the software
development process are yet to be proposed.
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