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Abstract
The Common-pool resource (CPR) game is a so-
cial dilemma where agents have to decide how to
consume a shared CPR. Either they each take their
cut, completely destroying the CPR, or they restrain
themselves, gaining less immediate profit but sus-
taining the resource and future profit. When no
consumption takes place the CPR simply grows to
its carrying capacity. As such, this dilemma pro-
vides a framework to study the evolution of social
consumption strategies and the sustainability of re-
sources, whose size adjusts dynamically through
consumption and their own implicit population dy-
namics. The present study provides for the first
time a detailed analysis of the evolutionary dynam-
ics of consumption strategies in finite populations,
focusing on the interplay between the resource lev-
els and preferred consumption strategies. We show
analytically which restrained consumers survive in
relation to the growth rate of the resources and how
this affects the resources’ carrying capacity. Sec-
ond, we show that population structures affect the
sustainability of the resources and social welfare in
the population. Current results provide an initial in-
sight into the complexity of the CPR game, show-
ing potential for a variety of different studies in the
context of social welfare and resource sustainabil-
ity.

1 Introduction
As argued by Garreth Hardin in his famous paper on the
Tragedy of the Commons [Hardin, 1968], the problem of re-
source sustainability is a question of resolving the conflict
between individual and collective interests. This issue of re-
source sustainability can be easily be extended to technologi-
cal problems of resource sharing: take for instance, the shared
use of dispersed calculation facilities [Buyya et al., 2001] or
the sharing of a common communication bandwidth in a dis-
tributed robotic system [Wang and Premvuti, 1994]. In all
these cases, individual rational decisions may produce a col-
lective irrational outcome, which should be avoided.
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These examples are referred to as common-pool resource
(CPR) or harvesting games as they are all concerned with
the exploitation of a finite resource that maintains itself
according to its own internal rules [Gardner et al., 1990;
Ostrom, 2002]. Even though these problems are of great
importance, they have been studied much less in Evolution-
ary Game Theory (EGT) than the well known public goods
games (PG) [Sigmund, 2010]. The latter games start from
the premise that each agent needs to contribute something to
a common good, as for instance to use of a shared car or a
social welfare system. The collective contributions allow the
community members to reap a benefit, which would be more
costly to achieve by each member on their own. Yet, agents
can decide not to contribute and still profit from the system,
which may lead to the complete failure of the common good
in the long run.

The reason for the bigger focus on the PG game may have
been that, until recently, both games were assumed to pro-
duce equivalent outcomes, differing only in their framing
[McCusker and Carnevale, 1995]; in case of the CPR game,
each agent has to decide how much to take from a resource,
whereas in the PG she has to decide how much to give. Ex-
periments showed that people differentiate between loosing
part of their assets (PG game) and gaining something from
an external resource (CPR game). In [Apesteguia and Maier-
Rigaud, 2006] however, it is shown, both theoretically and
experimentally, that the fundamental difference between both
games lies not in the framing but in the degree of rivalry of
the good: In case of the CPR game, the good is rival since
whatever is taken by an agent is lost to another agent, which
is not the case in the PG game. Consequently, each game
produces a distinct strategic environment, which requires a
separate analysis.

In a first step towards understanding the importance of this
difference while at the same time analyzing the relevance of
certain results obtained for the evolutionary dynamics in the
PG game, we study here the evolutionary dynamics of sim-
ple consumption strategies in finite populations playing the
CPR game. We examine the conflict between selfish and co-
operative actions and dissect the effect of network topology
on the outcome of the game. The CPR game is modeled by
a system of two coupled dynamics, i.e. a growth and con-
sumption dynamics, where each agent’s actions are defined
by a consumption rate (α). As most populations are not in-
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finite, we focus on a finite-population analysis of the game
readily used within the field of EGT [Nowak et al., 2004;
Imhof et al., 2005], which has to our knowledge never been
performed on this type of game. As such this work provides
an original perspective on the dynamics of CPR games. The
results could potentially contribute to the development of de-
cision models, of increasing complexity, that will be able to
assist in managing both natural and technological shared re-
sources [Gomes, 2009].

The remainder of this paper is organized as follows. Sec-
tion 2 discusses some of the existing literature and compares
this with the results obtained in this article. Section 3 explains
our CPR model and methods. Section 4 shows the analytical
and numerical results. Finally, Section 5 draws some conclu-
sions from the obtained results.

2 Related Work
Because of its importance for the understanding of the
resource sustainability problem, several Game Theoretical
models have been proposed for studying the CPR game [Sethi
and Somanathan, 1996; Noailly et al., 2006; 2009]. This
literature focuses on determining the Nash equilibria (hence
no extensive dynamics) of those games and study how so-
cial norms such as costly punishment may enforce different
equilibria. The CPR feature that resources change over time
and are coupled with the strategy dynamics is often omitted
in the literature [Biancardi, 2010] (see also a survey in [Van
Den Bergh, 2007]). We show here that this aspect plays an
influential role in the final outcome of the evolutionary dy-
namics. For instance, which consumption rate is selected
by evolution and the social welfare of the population both
correlate with the growth rate of the resource. The effect
of heterogeneity has been shown to play an important role
in several social dilemmas such as the public goods game
[Santos et al., 2008] and the Prisoner’s Dilemma [Nowak
and Sigmund, 1992; Santos et al., 2006], but so far in CPR
games, the study has been limited to homogeneous popula-
tion structures like circles and grids [Noailly et al., 2006;
2009]. As a consequence, the current work provides a signif-
icant extension to the sparse literature on modeling the evo-
lutionary dynamics of the strategies and resources in the CPR
games.

In AI, computational sustainability has been given spe-
cial attention in the last few years [Gomes, 2009]. The
main concern therein is to develop techniques, such as those
from machine learning and operational research, see e.g.
[Weintraub et al., 2001; Ermon et al., 2010], for better
decision making about management and allocation of re-
sources. In addition, some formal frameworks have been pro-
vided to examine different (exogenous) principles for orga-
nizing and sustaining CPR [Pitt and Schaumeier, 2012; Pitt
et al., 2012]. These works resort to the principles originally
proposed in Ostrom’s seminal work [Gardner et al., 1990;
Ostrom, 2002], which are deemed the prerequisites for a sta-
ble arrangement of CPR. In contrast, similarly to other evo-
lutionary models of CPR [Van Den Bergh, 2007], the results
from the present study may provide important insights into
the design of systems that can sustainably manage natural and

technological resources [Gomes, 2009]. For instance, what
is the optimal and evolutionarily stable harvesting strategies
(represented by the parameter α in our model) given the re-
source growth rate, and more importantly, how agents can be
distributed to enhance cooperation especially when in the ab-
sence of any enforcing mechanisms.

3 Model and Methods
3.1 Common-pool resource game
The CPR game is an N-player game in which N agents have
to decide simultaneously how much to take from a shared
resource P . As the resource P changes according to its
own internal laws and the maximum P is limited by the en-
vironment, we model the resource dynamics by a popula-
tion growth model, more specifically Ricker’s model [Ricker,
1954].

Pt+1 = Pte
r(1−Pt

K ) (1)

where Pt corresponds to the amount of resource at a given
point in time t, r is the growth rate and K is the carrying
capacity of the resource, corresponding to the maximum size
the resource can obtain given the constraints imposed by the
environment. Without any consumption by the agents the re-
source evolves after a number of rounds towards its carrying
capacity K at a speed depending on r. Beside the effects of

Figure 1: The top left tape represents a resource of size
Pt = 6 in a game with 3 agents with different restraint val-
ues (α). Each agent can take at most 2 from the resource, yet
the agents with α = 0.5 (the less greedy agents) will only
take half of their part (top right). After the consumption step,
Pt = 2 (bottom right, with the consumed parts are dashed).
The resource grows following the resource dynamics and pro-
duces an updated resource Pt+1 = 3, which will be used in
the next round.

the growth dynamics on the resource, there are also agents
consuming parts of this resource for their own profit. Since
there are N agents simultaneously competing for the same
resource, they each can maximally consume P/N of this re-
source (note that agents cannot take more than their share in
the current definition). Clearly when every agent takes her
part, the resource will be completely depleted and lost to fu-
ture generations. To avoid this situation, each agent can de-
cide to restrain herself and take only a fraction α of her part,

defining the payoff for each agent as: πα = αPt

N .
In every round of the CPR game, each agent first consumes

her part of Pt and then the resource regrows according to

2849



Equation (1). Therefore, in the next round, the agents con-
sume from an resized resource Pt+1 whose size is different
from the size of the resource at the previous time-step. This
is visualized in Figure 1: Consuming too much will destroy
the resource. Restrictive consumption will lead to a sustain-
able resource level, which we call here the effective carrying
capacity K∗.
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Figure 2: Average amount of resources. For varying growth
rates r we show here how consumption α affects the original
carrying capacity K. The results were obtained through sim-
ulation using Z = 100, K = 100. Identical analytical results
are obtained for Equation (3).

As the resource changes over time, the effective carrying
capacity K∗ that one obtains in the limit of growing and con-
sumption will differ from the original carrying capacity K.
In Figure 2 one can observe (for varying growth rates r) how
a particular consumption strategy affects K∗ when assum-
ing groups of agents all using the same consumption strategy
α. For r ≤ 1, the effective carrying capacity decreases first
slowly and then quickly for increasing α. In addition, each r
has an associated maximum consumption strategy α beyond
which the resource becomes completely depleted in the limit.
For r > 1 the consumption drives the resource to an effective
carrying capacity that can exceed the original one, which is
due to overshooting. Yet the overall effect of a decreasing K∗
for an increasing α remains the same.

3.2 Effective carrying capacity
Equation (1) expresses how the resource changes at each
round of the game when there is no consumption. Yet in the
complete CPR game, agents can first take their part, thus re-
ducing the current resource size Pt, before the calculation of

Pt+1. This resource after consumption is now P̂t = φPt,
where (1 − φ) represents how much the different strategies
in a groups of size N take from the resource in total. In case
of a single agent type, α, in groups of size N , φ = (1 − α),
whereas in case of two agent types, αA and αB , in groups of
the same size with j αA agents

φ(j) = 1− j

N
αA − (N − j)

N
αB .

Introducing P̂ and simplifying the equation, Equation (1) be-
comes:

Pt+1

Pt
= φer(1−

φPt
K ). (2)

The effective carrying capacity K∗ is obtained in the limit
where Pt+1 = Pt. As such Equation (2) can be further be
simplified to produce an equation expressing the size of the
resource in the limit of coupled consumption and growth dy-
namics:

Pt = K∗ =
K

φ
(1 +

ln(φ)

r
). (3)

Using Equation (3) for varying r and α produces results iden-
tical to those shown in Figure 2.

3.3 Evolutionary dynamics in finite populations
Our analysis is based on EGT methods for finite populations
[Nowak et al., 2004; Imhof et al., 2005]. In such a setting, the
agents’ overall consumption represents their fitness or social
success, and evolutionary dynamics is shaped by social learn-
ing [Hofbauer and Sigmund, 1998; Sigmund, 2010], whereby
the most successful agents will tend to be imitated more often
by the others. In the current work, social learning is modeled
using the so-called pairwise comparison rule [Traulsen et al.,
2006], assuming that an agent A with fitness fA adopts the
strategy of another agent B with fitness fB with probability
given by the Fermi function,(

1 + e−β(fB−fA)
)−1

(4)

where the parameter β represents the ‘imitation strength’ or
‘intensity of selection’, i.e., how strongly the agents base their
decision to imitate on fitness comparison. For β = 0, we ob-
tain the limit of neutral drift – the imitation decision is ran-
dom. For large β, imitation becomes increasingly determin-
istic.

In the absence of mutations or exploration, the end states
of evolution are inevitably monomorphic: once such a state
is reached, it cannot be escaped through imitation. We thus
further assume that, with a certain mutation probability, an
agent switches randomly to a different strategy without im-
itating another agent. In the limit of small mutation rates,
the behavioral dynamics can be conveniently described by a
Markov Chain, where each state represents a monomorphic
population, whereas the transition probabilities are given by
the fixation probability of a single mutant [Fudenberg and
Imhof, 2005; Imhof et al., 2005; Hauert et al., 2007]. The
resulting Markov Chain has a stationary distribution, which
characterizes the average time the population spends in each
of these monomorphic end states.

Let Z be the size of a well-mixed population, where the
fitness of the agents is determined by the outcome of the
CPR game played in groups of N players. When assuming
that there are at most two strategies in the population, say, k
agents using strategy αA (0 ≤ k ≤ Z) and (Z−k) agents us-
ing strategies αB , the average fitness of each type can now be
written as a hypergeometric sampling of the strategies from
the population [Hauert et al., 2007]. It is a function of the
number of αA agents (i.e. k) in the population. The average
fitnesses for αA and αB agents are, respectively
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fαA
(k) =

(
Z−1
N−1

)−1 N−1∑
j=0

(
k−1
j

)(
Z−k

N−j−1

)
ΠαA

(j + 1),

fαB
(k) =

(
Z−1
N−1

)−1 N−1∑
j=0

(
k
j

)(
Z−k−1
N−j−1

)
ΠαB

(j),

(5)
where Παi

represents the payoff an agent using strategy αi

received in an interaction with the other agents in the group.
This payoff function makes use of Equation (3) to determine
how much each agent takes in the limit of the effective carry-
ing capacity K∗:

Παi(j) = max

[
0,

K

φ(j)

(
1 +

ln(φ(j))

r

)]
. (6)

The probability to change the number k of agents using strat-
egy αA by ±1 in each time step can be written as

T±(k) =
Z − k

Z

k

Z

[
1 + e∓β[fαA

(k)−fαB
(k)]

]−1

. (7)

The fixation probability of a single mutant with a strategy
αA in a population of (Z − 1) agents using αB is given by
[Traulsen et al., 2006; Fudenberg and Imhof, 2005]

ραB ,αA
=

(
1 +

Z−1∑
i=1

i∏
k=1

T−(k)
T+(k)

)−1

. (8)

In the limit of neutral selection (i.e. β = 0), ραB ,αA
equals

the inverse of population size, 1/Z.
Considering a set {1, ..., q} of different strategies, these

fixation probabilities determine a transition matrix M =
{Tij}qi,j=1, with Tij,j �=i = ρji/(q − 1) and Tii = 1 −∑q

j=1,j �=i Tij , of a Markov Chain. The normalized eigenvec-

tor associated with the eigenvalue 1 of the transposed of M
provides the stationary distribution described above [Fuden-
berg and Imhof, 2005; Imhof et al., 2005], describing the rel-
ative time the population spends adopting each of the strate-
gies.

3.4 Structured Population Simulations
To study the effect of assigning agents in a fair (i.e. uniform)
or unfair manner to the resources, two graph models were
used to organize resources and agents. In the fair assignment,
each resource is used by the same number of agents and each
agent is able to take from the same number of resources. A
ring graph, where each node is associated with a resource and
a player, satisfies this description. In the unfair case some
agents have access to more resources than other agents, and
moreover, some resources are shared among more agents than
other resources. Such a scenario is best represented by a
scale-free graph. The method for producing scale-free graphs
is explained in [Barabasi et al., 1999]. Both the ring and
scale-free graphs used in our simulations have an average de-
gree of 4 and consist of 100 nodes.

On these topologies the evolutionary dynamics were simu-
lated in the following manner; Given a graph (ring or scale-
free), agents playing one of six strategies, corresponding to
α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. They are assigned to the

nodes of the graph in a uniformly random manner. Each re-
source connected to a node is initialized to K. At every itera-
tion of the game, each player participates with her neighbors
in a CPR game, using the resource of the player in the cen-
tral node (for details see [Santos et al., 2008]). Hence each
player in the network participates in 5 games in the ring graph
and on average 5 games in the scale-free graph, given that the
(average) degree of both types of networks is 4. Once the
game is played for one round, the resource K is updated (see
Equation (1)) and the same steps are repeated for an addi-
tional V − 1 rounds (in all settings we used V = 50). These
rounds allow the resource to converge to its effective carrying
capacity K∗, determined by the variation in strategies used
by the different players, while the individuals are playing the
CPR game. Hence greedy strategies will deplete the resource
rather quickly, lowering their overall success over the differ-
ent rounds, whereas more restrained strategies may accumu-
late more of the resource in the long term, potentially gaining
a fitness advantage over the greedy strategies. After the V
rounds, the individuals have the opportunity to either imitate
one of their neighbors or mutates to a randomly selected alter-
native strategy. The decision to mutate or to imitate depends
on a parameter μ; with probability μ the individual will mu-
tate and with probability (1 − μ) she will imitate. Imitation
is performed with a probability given by the Fermi function.
Once the imitation phase is terminated the next iteration is
started, resetting K to its original value. The process termi-
nates after a predetermined number of rounds.

Ten different graphs are used for the scale-free simulations,
which are not required for the ring graphs as they all have the
same topology. Per graph we ran 10 simulations in the case
if scale-free graphs and 100 simulations for the ring graph.
Each simulation took 106 iterations and 2000 additional it-
erations were done to collect statistics: average population
composition, and a player’s average payoff and population
average payoff. The probability of mutation is set to 10−4,
focussing hence on the small-mutation limit as in the mathe-
matical model.

4 Results
4.1 Finite population dynamics of the CPR game
To start, we study a well-mixed population of diverse con-
sumption strategies, ranging from the most restrained to the
most greedy one. Namely, we consider a population of six
strategies, C0 to C5, where Ci utilizes a consumption rate
of α = 0.2 ∗ i. Figure 3A shows the transition probabili-
ties and stationary distribution for the six strategies. Selec-
tion dynamic favors strategy C3 – which corresponds to an
α = 0.6 – in the sense that the population spends most of
its time in the homogeneous state of this strategy, regardless
of the initial composition of the population. This preference
for C3 is even more clear when examining Figure 3C. There
the evolutionary dynamics are shown for a stronger intensity
of selection (β = 0.1), which means that the actual payoff
received by the agent plays a more important role in the imi-
tation decision. When every agent in the population plays the
strategy C3 the effective carrying capacity is K∗ ≈ 21 (see
also Figure 2).
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Figure 3: Transition probabilities and stationary distributions. A. Shows the results for a specific parameter combination, i.e.
Z = 100, r = 1.0, β = 0.01, K = 100 and N = 5. The black arrows indicate the transition directions, where thicker
lines correspond to stronger selections. The values on the edges correspond to the strength of the transition with ρ = (1/Z),
corresponding to neutral drift. The dashed line represents neutral drift between strategies, which occurs when both have the
same fitness. The values inside the nodes correspond to the stationary distribution, showing how frequently the finite populations
dynamics ends up in that state. B. Visualizes the stationary distribution for each of the six strategies for varying growth rates
r. The inset shows the corresponding average resource size for each r. C. Shows the effect of the dynamics under a stronger
intensity of selection (β = 0.1). In this case the only remaining strategy is C3.

It can be seen that, among the six strategies being consid-
ered, C3 is the most greedy consumption strategy that still
maintains a positive effective carrying capacity – which is
crucial for the resistance against invasion of mutants and the
stability of its homogenous population: If no resource would
be left, then the success of this strategy would be equiva-
lent to the success of the strategies C4 and C5, which could
then invade by neutral drift. In addition, C2 would obtain in
the limit a higher payoff, making it more advantageous than
the C3. For the same reasons, the more greedy consumption
strategies, C4 and C5, are not the winners selected by evolu-
tion. As such, one can see that without any additional mech-
anisms that make restrained consumption more interesting,
evolutionary dynamics will lead to a selfish optimal outcome.
This evolutionary dynamics differs from what is observed in
the PG games, where without any supporting mechanism of
cooperation (such as population structures, direct and indi-
rect reciprocities, and costly punishment), the most defective
strategy (corresponding here to C5) would be selected.

The results in Figure 3 also show the evolutionary dilemma
in this game: C3 is not the most desirable state from the per-
spective of the population, which is to have the highest social
welfare or average fitness. The average fitness of the homoge-
nous population of C3 agents is less than that of the homoge-
nous population of C2 agents, which at the same time sustains
a higher effective carrying capacity K∗ ≈ 81. As such, from
a collective perspective it is preferred to have agents playing
C2, which makes it for this distribution of strategies the co-
operative one.

A similar observation can be made in the Figure 3B, com-
paring also with Figure 2, where we show the fractions of the
six strategies for different resource growth rates r. For in-
creasing r, strategies with increasing consumption rates (i.e.
more greedy) are dominant. Namely, C1 dominates for small
r, then subsequently C2, C3 and C4, when r increases further.
Moreover, as expected, for increasing r, the average carrying

capacity of the six strategies (see the inset of Figure 3B) tends
to increase, which is only due to the fast replenishment of the
resource due to r.

In short, one important implication from this analysis, is
that the definition of defective strategies or free-riders needs
to be slightly revised here as it is not the most greedy strategy
that corresponds to the selfish one. In the CPR game the de-
fective or selfish strategy is greedy while being able to main-
tain a positive resource in the long run. This result provides
the foundations for any new study into mechanisms that allow
cooperation, or more restrained consumption, to evolve in the
CPR game, which was moreover never discussed in earlier
articles (see Section 2).

4.2 Uniform versus non-uniform resource
assignment

A popular mechanism for the emergence of cooperation is the
notion of network reciprocity, which is triggered by imposing
a graph structure on the population of agents [Santos et al.,
2006; 2008; 2011]. Each agent of the population becomes as-
signed to one of the nodes of the graph, which are connected
in a specific manner. A well-mixed population, typically used
in EGT, corresponds to a complete graph. Here we examine
the evolutionary dynamics on two other graph types, i.e. ring
and scale-free. Details on how the stochastic dynamics are
simulated on the graphs are explained in Section 3.4.

Within this setting, the ring and scale-free population struc-
tures introduce two kinds of assignments of agents to re-
sources (and resources to agents). The ring graph ensures that
each resource is used by the same number of agents and that
each agent can make use of the same number of resources.
As such these configurations could be considered fair or uni-
form, since everyone could have the same benefits. The only
difference will be in the initial distribution of the consumption
strategies (Ci with i ∈ {0, 1, 2, 3, 4, 5}) over the nodes of the
graph. In case of the scale-free population, some agents will

2852



C0         C1        C2         C3         C4        C5 Ring

Scale-Free

25

15

10

5

0

Population
Distribution (Ring graph)

Population
Distribution (Scale-Free graph)

Average population 
payoff

15.8

0.0

6.6

14.1

2.60.7

92%

8%
11.9%

1%
12.6%

43.5%

31.0%

Figure 4: Evolutionary dynamics in structured populations. The two circles show the average population composition (averaged
over the final 2000 iterations) for the ring and scale free graphs, respectively. The fraction of each type of individuals is
annotated next to the circle. The values in white correspond to the average fitness of that type averaged over the final 2000
iterations. The bar plot on the right shows the average population fitness in both types of graphs. Parameters: Z = 100, V =
50, β = 0.1 and μ = 10−4.

be able to take from many resources, whereas other will be re-
stricted to one or two. Moreover, some resources will have to
be shared among many agents whereas most resources will be
used by a few. As such, this situation is unfair or non-uniform
as some may get more benefits because they can exploit more
resources and others may receive larger portions of a resource
as only a few are exploiting it.

The ring graph comes closest to the mathematical model
discussed earlier. Hence the expectation is that a similar out-
come, where C3 is the dominant strategy, should be observed.
Looking at Figure 4, one can observe clearly that this assump-
tion is correct. In 92% of the simulations, the population
evolves to a monomorphic state containing only C3 players.
Once in a while the population evolves towards a monomor-
phic state containing only C5 players. This difference with
the mathematical model is simply due to stochastic effects;
Here each agent plays only in a small number of groups to de-
termine its reproductive success. In the mathematical model,
the fitness of each type of players is determined over all po-
tential groups that could be extracted from the well-mixed
population. Additionally, the outcomes of the simulations are
dependant on the initial distribution of the agents on the net-
work. Nevertheless, one can see that the average fitness of
C3 players is higher than C5 players, making the former ef-
fectively advantageous over the latter.

In case of the scale-free graph, where resources and agents
are not distributed fairly, a different outcome emerges: The
systems produces a polymorphic population in which the
more fair consumption strategies tend to dominate. Addition-
ally, the balance is tipped most frequently towards the strat-
egy C2. This result is represented in the second circle shown
in Figure 4; The fraction of C2 players over all runs is higher
than most other strategies. Interestingly, certain runs even end
up in the C1 dominated population, which represents an even
more restrained population. Note also that on average the fit-
ness of the C2 type is clearly higher than all other types, mak-
ing them selectively advantageous. Longer iterations (> 106)
may support further the dominance of C2 players. Together

these simulations on ring and scale-free graphs produce an
important result; differences in resource organization result in
differences in player welfare and resource sustainability. In-
terestingly, it is not the fair allocation that generates the most
beneficial outcome.

5 Conclusions
Resorting to the tools of EGT, we have described here the de-
tailed evolutionary dynamics of different consumption strate-
gies in the CPR game, including an explicit modeling of the
resource dynamics. We have shown that in this setting, the
most greedy possible strategy that can maintain a positive re-
source in the long run is selected. These results, on the one
hand, identify an interesting difference between CPR and PG
games, in which the most defective or greedy strategy always
prevails. On the other hand, they provide the foundations for
further explorations into mechanisms that direct the result to
a more social outcome and a more sustainable consumption
of resources.

As a first step in that direction, we have studied here, using
simulations, the effects of different population structures on
the viability of different consumption strategies in the pop-
ulation as well as on the average fitness of the population,
which is directly linked to the effective average carrying ca-
pacity of the resources. Interestingly, we have shown that,
when resources and agents are distributed in a heterogenous
graph, so that agents have unequal access to the resources
(and vice versa), a more restrained consumption may evolve
and a higher social welfare can be achieved. Considering the
assignment of resource to agents (and agents to resources) in
the scale-free scenario, those results may be due to the fact
that most resources are only used by a few agents and that
most agents only exploit a few resources.

A more in depth analysis is under way to verify this hy-
pothesis, including an investigation in the effect of differing
resource sizes. Nevertheless this result may provide some
useful insights for the design of sustainable distributed re-
source systems such as Smart Grids [Gomes, 2009].
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