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We study spherically symmetric structures in conformal gravity and in a scalar-tensor extension and

gain some more insight about these gravitational theories. In both cases we analyze solutions in two

systems: perfect fluid solutions and boson stars of a self-interacting complex scalar field. In the purely

tensorial (original) theory we find in a certain domain of parameter space finite mass solutions with a

linear gravitational potential but without a Newtonian contribution. The scalar-tensor theory exhibits a

very rich structure of solutions whose main properties are discussed. Among them, solutions with a finite

radial extension, open solutions with a linear potential and logarithmic modifications and also a (scalar-

tensor) gravitational soliton. This may also be viewed as a static self-gravitating boson star in purely

tensorial conformal gravity.
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I. INTRODUCTION

Conformal gravity [1] (CG) was proposed as a possible
alternative to Einstein gravity (‘‘GR’’), which may supply
the proper framework for a solution to some of the most
annoying problems of theoretical physics like those of the
cosmological constant, the dark matter and the dark
energy.

It is therefore very much required to investigate its
predictions and consequences as far as possible. Here, we
choose to concentrate on localized solutions and to start an
investigation of their properties. We take two simple matter
sources: perfect fluid and complex scalar field. We find
localized solutions for both kinds of sources and present
their main features.

The main ingredient of CG is the replacement of the
Einstein-Hilbert action with the Weyl action based on the
Weyl (or conformal) tensor C���� defined as the totally

traceless part of the Riemann tensor (we use R�
��� ¼

@��
�
�� � @��

�
�� þ . . . ):

C���� ¼ R���� � 1

2
ðg��R�� � g��R�� þ g��R��

� g��R��Þ þ R

6
ðg��g�� � g��g��Þ; (1.1)

so the gravitational Lagrangian is

L g ¼ � 1

2�
C����C

����; (1.2)

where � is a dimensionless positive parameter. The gravi-
tational field equations are formally similar to Einstein
equations where the source is the energy-momentum ten-
sor T�� and in the left-hand-side Bach tensorW�� replaces

the Einstein tensor

W�� ¼ �

2
T��: (1.3)

Bach tensor is defined by

W�� ¼ 1
3r�r�R�r�r�R�� þ 1

6ðR2 þr�r�R

� 3R��R
��Þg�� þ 2R��R���� � 2

3RR��: (1.4)

Since the Bach tensor is traceless, the energy-momentum
tensor must ‘‘comply’’ so we will only consider sources
with T

�
� ¼ 0.

The general spherically symmetric line element may be
simplified by exploiting the conformal symmetry and has
the form [1]

ds2 ¼ BðrÞdt2 � dr2=BðrÞ � r2ðd�2 þ sin2�d’2Þ: (1.5)

The nonvanishing components of the Ricci tensor and the
Ricci scalar are

R0
0 ¼ Rr

r ¼ �B00

2
� B0

r
; R�

� ¼ R’
’ ¼ 1� B

r2
� B0

r
;

R ¼ 2ð1� BÞ
r2

� 4B0

r
� B00 (1.6)

and those of the Bach tensor

W0
0 ¼ � 1

3r4
þ B2

�
1

3r4
þ 1

3r2

�
B00

B
þ

�
B0

B

�
2 � 2

r

B0

B

�
� 1

3r

� B0B00

B2
þ 1

12

�
B00

B

�
2 � 1

6

B0B000

B2
� 1

r

B000

B
� 1

3

B0000

B

�
;

(1.7)

Wr
r ¼ � 1

3r4
þ B2

�
1

3r4
þ 1

3r2

�
B00

B
þ

�
B0

B

�
2 � 2

r

B0

B

�

� 1

3r

B0B00

B2
þ 1

12

�
B00

B

�
2 � 1

6

B0B000

B2
þ 1

3r

B000

B

�
; (1.8)*brihaye@umh.ac.be
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� ¼W’

’

¼ 1

3r4
�B2

�
1

3r4
þ 1

3r2

�
B00

B
þ

�
B0

B

�
2 � 2

r

B0

B

�

� 1

3r

B0B00

B2
þ 1

12

�
B00

B

�
2 � 1

6

B0B000

B2
� 1

3r

B000

B
� 1

6

B0000

B

�
:

(1.9)

A useful property of these components is the following:

W0
0 �Wr

r ¼ �BðrBÞ0000
3r

; Wr
r þW�

� ¼ BðrBÞ0000
6r

:

(1.10)

In vacuum this is easily integrated to give

BðrÞ ¼ c0 þ c1rþ c2=rþ �r2; c20 ¼ 1þ 3c1c2;

(1.11)

where the relation between the coefficients comes from the
Wr

r ¼ 0 equation, which is of a third order. In a nonrela-
tivistic fourth-order gravity a similar situation is encoun-
tered, namely, the fourth-order ‘‘Poisson equation’’

r2r2u ¼ �h; (1.12)

where hðrÞ is the source term. In the spherically symmetric
case r2r2u ¼ ðruÞ0000=r and uðrÞ is given also by (1.11)
without any relation between the parameters. On the other
hand, the parameters are related to the source (assumed to
extend within r � a) by

c1 ¼ 1

2

Z a

0
r2hðrÞdr; c2 ¼ 1

6

Z a

0
r4hðrÞdr: (1.13)

Since � is not fixed by the source, the �r2 term may be
considered as a possible background field or in the relativ-
istic context, a cosmological constant contribution.1 Note
also that the volume integral of the matter density (i.e. of
hðrÞ) turns up as the coefficient of the linear term in the
potential rather than the 1=r one. It is related to the fact that
in this theory the potential of a point particle is linear in
accord with the behavior of the Green function. This linear
potential enables one to explain galaxy rotation curves
without assuming dark matter [1,2].

For the general case of extended sources, we note that
since the field equation is of fourth order, special care
should be taken with the boundary conditions. It is easy
to see that u0ð0Þ and u000ð0Þ should vanish. The value of
u00ð0Þ or u00ð1Þ may be free if solutions with a ‘‘cosmo-
logical’’ �r2 term are allowed. If on the other hand the
background is assumed to be empty (‘‘flat’’), we may
impose further u00ð1Þ ¼ 0 as well. If the source is local-
ized, the second derivative at the origin is related to the first
moment of the matter distribution as

u00ð0Þ ¼ 1

3

Z a

0
rhðrÞdr: (1.14)

Now let us return to the relativistic field equations with a
perfect fluid source described by T�

� ¼
diagð�;�Pr;�P?;�P?Þ (with the additional conformal
condition T

�
� ¼ 0). Thanks to (1.10) they reduce to a single

very simple field equation

ðrBÞ0000
r

¼ � 3�

2B
ð�þ PrÞ; (1.15)

which has a similar structure to the fourth-order Poisson
equation, Eq. (1.12). By comparison we notice that taking
�> 0 corresponds to gravitational attraction in the weak
field limit.
Equation (1.15) should be solved together with the

conservation equation

P0
r þ 1

r
ð3Pr � �Þ þ B0

2B
ð�þ PrÞ ¼ 0 (1.16)

and an additional equation of state which relates algebrai-
cally �, Pr, andP?. The regularity of the Bach tensor at the
origin introduces an additional boundary condition,
Bð0Þ ¼ 1 to those of the Poisson case: B0ð0Þ ¼ B000ð0Þ ¼
0, B00ð1Þ ¼ 2�.
The inertial mass of such a spherical solution is the

ordinary

MI ¼
Z

d3x
ffiffiffiffiffiffi
jgj

q
T0
0 ¼ 4�

Z 1

0
r2�ðrÞdr: (1.17)

However, since the potential of a point particle in this
theory is linear, the gravitational mass is identified as the
coefficient of the linear term in the vacuum potential—see
(1.13) and (1.15):

MG ¼ 12�
Z 1

0
drr2ð�ðrÞ þ PrðrÞÞ=BðrÞ ¼ 16�

�
c1:

(1.18)

The other parameter, c2 (the coefficient of the 1=r term in
the potential) has a dimension of length, which by utilizing
Newton’s constant can be converted to a mass. However,
we do not have an appropriate dimensionful parameter at
our disposal, so we will call c2 the ‘‘second mass parame-
ter.’’ In terms of the source functions it is given by

c2 ¼ �

4

Z 1

0
drr4ð�ðrÞ þ PrðrÞÞ=BðrÞ: (1.19)

Wewill see in the following sections that this integral is not
always convergent, and whenever it does, it has the wrong
sign for an attractive force, causing a non-Newtonian ‘‘near
field’’ of such sources. Actually, this problem that ordinary
continuous sources do not produce a Newtonian compo-
nent in CG was noted already by Mannheim and Kazanas
[3] (following even earlier studies [4–7] from the 1960’s
and 1970’s). Mannheim and Kazanas pointed out a pos-
sible solution based on the fact that a highly singular

1To be concrete, R ¼ 4� ¼ �12�, so � > 0 corresponds to
anti-de Sitter (AdS).
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source can produce a potential with both c1 > 0 and c2 <
0. Still, when the implications and consequences of CG are
analyzed, smooth matter distributions should be consid-
ered and studied since they are more widely used to model
astrophysical and cosmological sources.

II. SPHERICALLY SYMMETRIC PERFECT FLUID
SOLUTIONS

In accord with our objective, which is investigating the
properties of self-gravitating solutions in CG, we solved
Eqs. (1.15) and (1.16) for a set of matter distributions.

The simplest of all sources is a constant energy density,
�ðrÞ ¼ �0 (for r � a and 0 outside), but unlike the
Einsteinian case, there are no finite mass solutions of this
kind in our case.

The ‘‘next to simplest’’ source is a polytrope—either
linear with Pr ¼ �=n or nonlinear (and anisotropic) with
Pr ¼ P0ð�=3P0Þ	, where n, 	, and P0 are all positive
constants. The parameter P0 is indeed the central value
of the pressure (if Prð0Þ is finite). Note that the special
value 	 ¼ 1 gives only the n ¼ 3 case of the linear rela-
tion, which corresponds to isotropic radiation. The other
values of n cannot be obtained as a limit of the nonlinear
polytrope.

Next we move to general polytropes, that is, density and
pressure related by

� ¼ 3P0ðPr=P0Þ1þA; (2.1)

where for convenience we parametrize the polytropic index
by 1=	 ¼ 1þ A. The construction of regular solutions for
r 2 ½0;1� requires the boundary conditions

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0; Prð0Þ ¼ P0:

(2.2)

The fifth boundary condition was fixed by imposing the
value B00ð1Þ, which is related to the free ‘‘cosmological
constant parameter’’ � [see (1.11)]. The numerical results
further indicate that the solutions behave asymptotically
according to

B ¼ �r2 þ B1rþ B0 þ . . . ; Pr / r�p; (2.3)

where the constant p depends on � and on A.
We will discuss separately the solutions available for

vanishing and nonvanishing �, that is B00ð1Þ ¼ 0 and
B00ð1Þ � 0.

A. Solutions with � ¼ 0

By examining the conservation equation, Eq. (1.16), we
obtain the physically acceptable decay of the function
PrðrÞ in terms of the parameter A. It turns out that solutions
with an asymptotically decreasing Pr can only occur for

A � 0. We then get Pr � r�2 for A ¼ 0 and Pr � r�7=2 for
A > 0. From these observations, it follows that the inertial
and gravitating mass given by (1.17) and (1.18), do not
converge in the case A ¼ 0 (‘‘radiation ball’’). Constant
density solutions (A ¼ �1) do not exist as well.
Expanding Eq. (1.16) around the origin, we further

observe the following relation:�
1� 3

2
A

�
P00
r ð0Þ
P0

þ 2B00ð0Þ ¼ 0; (2.4)

suggesting that the value A ¼ 2=3 should play a role in the
solutions. Integrating the equations we obtained finite mass
solutions for 0<A< 2=3. Figure 1(a) contains graphic
representations of three solutions in this range. Actually,
we solved a dimensionless version of Eqs. (1.15), (1.16),

and (2.1) for B, Pr=P0, and �=P0 in terms of x ¼
rð�P0Þ1=4. It is clear from the plots that the gravitational

(a) (b)

FIG. 1. Perfect fluid solutions with � ¼ 0: (a) the profiles of three solutions; (b) plots of several characteristics of the solutions as a
function of the parameter A.
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potential is asymptotically linear, which is the required
form in order to explain the galactic rotation curves within
this context [1,2]. However, closer inspection shows that
the 1=r component, which is necessary for the recovery of
the Newtonian (Schwarzschild) behavior in smaller scales,
is missing. This is reflected by the fact that the coefficient
of the 1=r term, c2 [see (1.19)] diverges.

Several parameters characterizing the solutions [namely,
the masses, the values B00ð0Þ, P00

r ð0Þ, and B0ð1Þ] are de-
picted on Fig. 1(b); it shows, in particular, that the solution
is well defined in the limit A ¼ 0. In fact, in this case, we
have Pr ¼ P0=B

2 but the masses are infinite. The limit
A ! 2=3 is more subtle. It seems indeed that in this limit
the function BðrÞ approaches B ¼ 1 on the full space,
while the function Pr becomes more and more concen-
trated around the origin and jP00

r ð0Þj ! 1. We checked that
the relation (2.4) is obeyed. At the same time the masses
approach zero.

It is expected to also consider the equations for A > 2=3.
We were able to obtain solutions in this case. Our numeri-
cal results strongly suggest, however that no globally regu-
lar solutions exist there. The solutions have B00ð0Þ< 0 and
the function BðrÞ approaches zero at some finite value r ¼
r0. At the same time, the pressure becomes singular for
r ! r0, suggesting that the solution is singular. Of course,
the numerical construction of such solutions cannot be
achieved directly for r 2 ½0;1�; in fact, we proceed on a
small interval r 2 ½0; rmax� and gradually increase rmax.

B. Solutions with � > 0

The pattern of the solutions is very similar to the case
� ¼ 0. In particular, regular solutions are also limited to
A < 2=3 and singularities appear for A > 2=3. It is worth
noticing that the conservation equation, Eq. (1.16) implies
now Pr � r�4 (for A � 0), so that the masses are finite in

the limit A ! 0. Of course the values of the masses depend
on the value adopted for B00ð0Þ. Another difference with
respect to the case � ¼ 0, is that now the second mass
parameter [Eq. (1.19)] converges and a 1=r term appears in
the gravitational potential, but with a wrong sign.
Moreover, the convergence is related to the nonvanishing
cosmological term �, so this potential is of a universal
nature rather than of local one.
In the case � < 0, the field BðrÞ has a node at a finite r

say, r ¼ r0, which leads to a singularity of the matter
function. This is just the de Sitter horizon, which is related
to the fact that de Sitter space does not admit a globally
static coordinate system. We will not consider the possi-
bility of asymptotically de Sitter space further in this work
apart from a few instances.

III. BOSON STARS

Among all the higher-order gravitational theories [8,9],
CG is unique in the sense that it is based on an additional
symmetry principle. The conformal symmetry imposes
severe limitations on the allowed matter sources. When
matter is described in terms of an energy-momentum ten-
sor it should be traceless as mentioned above already.
Similarly, the matter Lagrangian is very much constrained,
but the Abelian Higgs model is essentially still consistent
with the conformal symmetry provided the scalar field
‘‘mass term’’ is replaced with the appropriate ‘‘conformal
coupling’’ term, which introduces a coupling to the Ricci
scalar R. The matter Lagrangian, which we will use here, is
therefore

L m ¼ 1

2
ðD��Þ�ðD��Þ � 1

12
Rj�j2 � �

4
j�j4

� 1

4
F��F

��; (3.1)

(a) (b)

FIG. 2. Perfect fluid solutions with � ¼ 0:1: (a) the profiles of three solutions; (b) plots of several characteristics of the solutions as a
function of the parameter A. Note that unlike the � ¼ 0 case, here B00ð0Þ does not vanish as A ! 2=3.
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and the resulting field equations are

D�D
��þ �j�j2�þ R

6
� ¼ 0; (3.2)

r�F
�� ¼ � ie

2
½��ðD��Þ ��ðD��Þ�� ¼ J�: (3.3)

The gravitational field equations are (1.3) with

T�� ¼ TðminimalÞ
�� þ 1

6
ðg��r�r�j�j2 �r�r�j�j2

�G��j�j2Þ (3.4)

TðminimalÞ
�� being the ordinary (‘‘minimal’’) energy-

momentum tensor of the Abelian Higgs model and G��

is the Einstein tensor.
The simplest spherically symmetric localized solution of

this system is the boson star [10–12], which requires a
global U(1) symmetry only—that is, A� ¼ 0 and � ¼
fðrÞei!t. This yields a global conserved charge that is
responsible for its existence.

The components of the energy-momentum tensor are
[after use of the � equation, Eq. (3.2)]

T0
0 ¼ 5

6

!2f2

B
þ B

6
f02 � �

12
f4 þ B0

12
ðf2Þ0

þ 1

18

�
B00 þ B0

r
þ 1� B

r2

�
f2; (3.5)

Tr
r ¼ � 1

2

!2f2

B
� B

2
f02 þ �

4
f4 � 1

12

�
B0 þ 4B

r

�
ðf2Þ0

� 1

6

�
B0

r
� 1� B

r2

�
f2; (3.6)

T�
� ¼ T’

’

¼ � 1

6

!2f2

B
þ B

6
f02 � �

12
f4 þ B

6r
ðf2Þ0

� 1

18

�
1

2
B00 � B0

r
þ 2ð1� BÞ

r2

�
f2: (3.7)

Since there is only one independent metric component, it
is obvious that not all the field Eqs. (1.3) are independent.
Actually, there is only one independent equation, and we
may use the third-order one

Wr
r � �

2
Tr
r ¼ 0: (3.8)

However, a much simpler form is again obtained by using
(1.10) giving therefore the following fourth-order equation
for the metric component BðrÞ:

ðrBÞ0000
r

¼ ��

B

�
2!2f2

B
þ Bf02 � �

2
f4

þ 1

4

�
B0 þ 2B

r

�
ðf2Þ0 � R

12
f2
�
: (3.9)

For the scalar field we have the second-order equation

ðr2Bf0Þ0
r2

þ
�
!2

B
� R

6

�
f� �f3 ¼ 0; (3.10)

where one should also write explicitly R ¼ 2ð1� BÞ=r2 �
4B0=r� B00 by (1.6).
The inertial mass and gravitational mass of these boson

stars are given by equations like (1.17) and (1.18) with the
necessary adaptations

MI ¼ 4�
Z 1

0
drr2T0

0ðrÞ; (3.11)

MG ¼ 12�
Z 1

0
drr2ðT0

0ðrÞ � Tr
r ðrÞÞ=BðrÞ; (3.12)

where T0
0 and Tr

r are given by (3.5) and (3.6). The second

mass parameter is defined in analogy with (1.19):

c2 ¼ �

4

Z 1

0
drr4ðT0

0ðrÞ � Tr
r ðrÞÞ=BðrÞ: (3.13)

The boson star has also a global charge (particle number),
which is given by

Q ¼ 4�!
Z 1

0
drr2f2ðrÞ=BðrÞ: (3.14)

It is interesting to note that the field equations form an
autonomous system as a result of the transformation

BðrÞ ¼ VðrÞr2; fðrÞ ¼ ’ðrÞ=r; r ¼ 1=u;

(3.15)

and they also simplify considerably

1

�
V0000 þ ð’0Þ2 � 1

2
’’00 þ 3!2’2

2V2
¼ 0

ðV’0Þ0 þ!2

V
’þ V 00 � 2

6
’� �’3 ¼ 0:

(3.16)

Here, of course 0 ¼ d=du. These field equations may be
obtained from the following ‘‘reduced Lagrangian’’:

Lred ¼ 1

6�
ðV 00Þ2 þ V

2
ð’0Þ2 �!2’2

2V
þ 1

6

�
1� V 00

2

�
’2

þ �

4
’4: (3.17)

There is also a ‘‘conserved energy’’ K (such that K0 ¼ 0):

K ¼ 1

6�
ððV00Þ2 � 2V 0V 000Þ þ V

2
ð’0Þ2 þ!2’2

2V
þ V 0

6
’’0

� 1

6
’2 � �

4
’4; (3.18)

whose value is not free but fixed to be K ¼ 2=3� since
Eq. (3.18) is equivalent to (3.8). Moreover, if we define a
third degree of freedom W, such that W ¼ V 00, the equa-
tions of motion can be derived from the following ‘‘ordi-
nary’’ second-order Lagrangian
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L2 ¼ V

2
ð’0Þ2 �!2’2

2V
þ 1

6
’2 þ �

4
’4 þ 1

6
V 0’’0

� 1

6�
ðW2 þ 2V0W 0Þ: (3.19)

IV. BOSON STARS: NUMERICAL RESULTS

In the absence of explicit solutions (not even to the
simple autonomous system), we approached the system
of Eqs. (3.9) and (3.10) numerically. Using an appropriate
rescaling r ! Cr and f ! Ff, the coupling constants �, �
scale with a factor C2F2, while ! scales by C. Using these
rescalings, we can set ! ¼ � ¼ 1 in the equations and
study the solutions for several values of the coupling

constant �. If we denote by ~fðxÞ and ~BðxÞ the solution
with ! ¼ � ¼ 1 and a given �, the solutions with general
values of ! and � and self-coupling �� are

fðrÞ ¼ !ffiffiffiffi
�

p ~fð!rÞ; BðrÞ ¼ ~Bð!rÞ: (4.1)

It is also easy to see that the chargeQ is independent of the
parameter ! and the mass scales like !=�.

Since we chose to solve the fourth-order Eq. (3.9),
Eq. (3.8) serves as a constraint. Taking the derivatives of
the left-hand side of (3.8) with respect to r and eliminating
the maximal derivatives B0000 and f00 by using (3.9) and
(3.10), leads to an expression that vanishes identically. This
implies that the two equations we chose to solve guarantee
that the combination Wr

r � �
2 T

r
r is constant so the con-

straint will be automatically fulfilled (for any r) by a
consistent choice of the boundary conditions (such that
the constant is 0).

We first discuss the solutions in the case where the
function BðrÞ is asymptotically linear; that is to say
B00ð1Þ ¼ 0, or � ¼ 0 in (1.11). The relevant set of bound-
ary conditions for solutions of this type is

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0;

f0ð0Þ ¼ 0; B00ð1Þ ¼ 0; fð1Þ ¼ 0:
(4.2)

For a better understanding of the numerical results, it is
instructive to analyze the asymptotic possible behavior of
the solutions. The asymptotic form of the B field, i.e.
BðrÞ � B1r, enforces the function fðrÞ to obey asymptoti-
cally a hypergeometric equation whose solutions are of the
form

fðrÞ ¼ F0

r
sin

�
logð!rÞ

B1

þ ’

�
; r ! 1; (4.3)

where F0, ’ are constants. As a consequence, the function
fðrÞ oscillates asymptotically and necessarily develops
nodes, rendering the numerical integration technically dif-
ficult. We manage however to construct the solution by
replacing the condition fð1Þ ¼ 0 by fðr0Þ ¼ 0 imposing
by hand the first zero r0 of the function fðrÞ. Proceeding
this way, we obtained strong numerical evidences that a
continuum family of solutions exist, labeled by r0. In
particular, the values B00ð0Þ, fð0Þ, B1 are fixed by r0.
Unfortunately, the integrated energy density and particle
number densities of these solutions behave according toZ

dr
1

r
ðsinðlogð!rÞ=B1 þ ’ÞÞ2 �

Z
dysin2ðyþ ’Þ;

y ¼ logð!rÞ: (4.4)

The corresponding mass and particle number are then

(a) (b)

FIG. 3. Boson stars with � ¼ 0:1. (a) the profiles of a typical conformal boson star solution with � ¼ 1; (b) plots of several
characteristics of the solutions as a function of �: The inertial mass MI and particle number Q are plotted in units 8�, while the
gravitational mass MG is given in units 4�.
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infinite. In other words, in this theory boson star solutions
with a linear gravitational potential do not exist .

On the other hand, boson stars exist with a quadratic
gravitational potential which corresponds to an asymptoti-
cally AdS space (a negative cosmological constant).
Setting B00ð1Þ ¼ 2�, we obtain the asymptotic form

BðrÞ ¼ �r2 þ B1rþ B0 þ . . . ;

f ¼ f1=rþ f2=r
2 þ . . .

(4.5)

Finite mass solution needs to impose the stronger decay
at infinity such that f1 ¼ 0. We obtained strong numerical
evidences that such solutions exist, that is we solved nu-
merically the field equations for a wide range of the self-
coupling parameter �. A typical profile is presented in
Fig. 3(a) with � ¼ 1 and � ¼ 0:1. Several physical char-
acteristics of the solutions are plotted for � 2 ½0; 2� in
Fig. 3(b). Surprisingly, the solutions seems to persist in
the absence of self-interaction (� ¼ 0).

Because of the asymptotic behavior mentioned above,
the second mass parameter (3.13) is also finite, namely, the
gravitational potential contains in this case too a wrong
sign 1=r term.

V. SCALAR-TENSOR CONFORMAL GRAVITY

CG has been criticized from several aspects both phe-
nomenological and formal. Several authors claim that pre-
dictions in the weak field limit disagree with solar system
observations [13], yield wrong light deflection [14] (see
however suggestions [15,16] for circumventing the diffi-
culties) or more generally, the exterior solution (1.11) with
� ¼ 0, c1 > 0, and c2 < 0 (which yields the desired be-
havior) cannot be matched to any source with a ‘‘reason-
able’’ mass distribution [17]. In this respect we have found
in the previous sections that boson stars indeed cannot
produce such a behavior. On the other hand, the ‘‘aniso-
tropic’’ polytropes [Eq. (2.1)] may present a linear poten-
tial, but the 1=r component is missing.

Other authors find evidence for tachyons or ghosts [18]
or raise the fact that only null geodesics are physically
meaningful in this theory since the ‘‘standard’’ point par-
ticle Lagrangian is not conformally invariant [19].

This last point (and possibly some of the former) can be
easily corrected and can serve as a starting point for a
consistent conformal theory by adding a real scalar field
and turning the theory into a scalar-tensor theory. The
conformally invariant point particle Lagrangian will be

Lpp ¼ �S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�� _x

� _x�
q

; (5.1)

where S is a real scalar field with the usual conformal
transformation laws. The gravitational Lagrangian (1.2)
will be modified to

L g¼ 1

�

�
�1

2
C����C

����þ1

2
r�Sr�S� 1

12
RS2��

4
S4
�
;

(5.2)

where � is a possible self-coupling parameter.
The field equations will be modified accordingly. First of

all, there will be an additional scalar field equation

r�r�Sþ �S3 þ R

6
S ¼ 0: (5.3)

Second, we turn to the tensorial Eqs. (1.3). Technically, the
modification is just an additional energy-momentum tensor
S�� in the right-hand side of (1.3), namely,

W�� ¼ �

2
T�� þ 1

2
S��; (5.4)

where

S�� ¼ @�S@�S� g��

�
1

2
r�Sr�S� �

4
S4
�

þ 1

6
ðg��r�r�S

2 �r�r�S
2 �G��S

2Þ: (5.5)

But in principle the scalar field should be considered as a
gravitational degree of freedom, which is stressed by the
absence of the coupling constant � in front of S��.

The simplest case to be studied is static spherically
symmetric vacuum solutions, which within this framework
are obtained by solving the following simplified version of
Eqs. (3.9) and (3.10) for BðrÞ and SðrÞ:
ðrBÞ0000

r
þ 1

B

�
BS02 � �

2
S4 þ 1

4

�
B0 þ 2B

r

�
ðS2Þ0 � R

12
S2
�
¼ 0

ðr2BS0Þ0
r2

�R

6
S� �S3 ¼ 0;

(5.6)

where as before, R should be expressed in terms of BðrÞ
using (1.6). Since the equation

Wr
r ¼ ð1=2ÞSrr (5.7)

is of third order, it will be necessary to assure its validity,
and this will be done as before by using consistent bound-
ary conditions.
The difference with respect to the boson stars discussed

above, is that now we may allow singular solutions in
analogy with the Schwarzschild solution of standard GR.
The no-hair theorem, which precludes black holes with
scalar hair, is evidently not applicable in the present
context.
Actually, one may prefer to study the system in a differ-

ent gauge where by conformal transformation the scalar
field is a constant, Sðx�Þ ¼ S0. This simplifies consider-
ably the general field Eqs. (5.3), (5.4), and (5.5) and gives
immediately the result R ¼ �6�S20. However, after trans-
forming to a constant Sðx�Þ, one cannot use the
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‘‘Mannheim gauge’’ [Eq. (1.5)] anymore. The metric ten-
sor will have two independent components, and the rela-
tively simple expressions for the Bach tensor W

�
� will

become quite cumbersome.
We therefore chose to stick to the ‘‘Mannheim gauge’’

and to use S as a second degree of freedom. On the other
hand, the ‘‘effective metric’’ that a point particle experi-
ences is �g�� ¼ S2g��—see (5.1). Consequently, the inter-

pretation of the solutions is now quite different: it is now
�g�� that has the physical significance, and the question of

the gravitational potential should be answered by analyz-
ing �g00 ¼ S2ðrÞBðrÞ rather than BðrÞ.

As for the purely tensorial case with a scalar field, the
vacuum scalar-tensor theory yields an autonomous system
as well. We repeat the transformation (3.15) now with
�ðuÞ ¼ Sð1=uÞ=u and get the equations of motion

V0000 þ ð�0Þ2 � 1

2
��00 ¼ 0

ðV�0Þ0 þ V 00 � 2

6
�� ��3 ¼ 0;

(5.8)

the ‘‘reduced Lagrangian’’

LST ¼ 1

6
ðV 00Þ2 þ V

2
ð�0Þ2 þ 1

6

�
1� V 00

2

�
�2 þ �

4
�4; (5.9)

and the ‘‘conserved energy’’ KST (now KST ¼ 2=3):

KST ¼ 1

6
ððV 00Þ2 � 2V0V000Þ þ V

2
ð�0Þ2 þ V0

6
��0

� 1

6
�2 � �

4
�4: (5.10)

The second-order Lagrangian is in this case just (3.19)
without the ! term:

L2ST ¼ V

2
ð�0Þ2 þ 1

6
�2 þ �

4
�4 þ 1

6
V0��0

� 1

6
ðW2 þ 2V 0W 0Þ: (5.11)

VI. VACUUM SOLUTIONS

A. Schwarzschild-like solutions

Equations (5.6) possess a three-parameter family of ex-
plicit solutions given by

BðrÞ ¼ ð1þ r=aÞ2 � rh
r

ð1þ r=aÞ3
ð1þ rh=aÞ

þ �S20r
2
h

2

�
r2

r2h
� rh

r

ð1þ r=aÞ3
ð1þ rh=aÞ3

�
;

SðrÞ ¼ S0
1þ r=a

; (6.1)

where rh, a, S0 are free parameters; a and S0 fix, respec-
tively, the scale of the radial coordinate r and of the scalar

function SðrÞ. This solution describes a family of black
hole space-times with a regular horizon at r ¼ rh satisfy-
ing BðrhÞ ¼ 0.
Assuming for simplicity � ¼ 0, these solutions have the

following behavior:

B0ðrhÞ ¼ 1

a
þ 1

rh
; Bðr ! 0Þ ¼ � rh

ðaþ rhÞr ;

Bðr ! 1Þ ¼ r2

aðaþ rhÞ þOðrÞ:
(6.2)

The metric g�� is therefore asymptotically anti-de Sitter

(or de Sitter) space with a cosmological constant � ¼
�3=ðaðaþ rhÞÞ. These formulas can be generalized for
� � 0 but they become more involved; the case � ¼ 0 is
sufficient to illustrate our results. Fixing the parameters rh
and a (or �), the solutions (6.1) can be of three different
forms according to the value of a:
(i) a > 0: a single horizon at r ¼ rh.
(ii) �rh < a < 0: a regular horizon at r ¼ rh hidden by

a doubly degenerate horizon at r ¼ ~rh > rh with

~rh ¼ rh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ 16�a4

q
. �< 0 in this case.

(iii) a <�rh: a regular horizon at r ¼ rh and, inside, a

doubly degenerate horizon at r ¼ ~rh < rh with ~rh ¼
rh �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ 16�a4

q
. �> 0 in this case.

Note however that although BðrÞ is quite similar to the
solutions of the purely tensorial CG, the actual gravita-
tional field ‘‘felt’’ by a point particle is very different, since
the components of the relevant metric tensor are those of
�g�� ¼ S2g��, namely, S2ðrÞBðrÞ, S2ðrÞ=BðrÞ, and r2S2ðrÞ.
Already here we can notice that S2ðrÞBðrÞ increases with r
much less steeply, and actually goes asymptotically to a
constant. Moreover, the circumferential radius rSðrÞ is also
bounded. These solutions are therefore closed. On the other
hand, the limit a ! 1 gives rise to yet another kind of
solution with constant SðrÞ and a ‘‘purely Schwarzschild’’
BðrÞ. It is just a special case of a whole family of open
solutions that will be discussed below in Sec. VIB 2.

B. General black hole solutions

The family of solutions discussed in the previous section
are entirely determined by the scale of the scalar field and
by the value of the horizon rh and the parameter a. In
particular, the values of the horizon, of the derivative B0ðrhÞ
and of the cosmological constant are not independent.
However, since the equation determining the metric field
is of the fourth order, more general solutions are expected.
In absence of a generalization of the explicit form (6.1), we
investigated the equations by numerical methods. The first
step in this direction consists of establishing the most
general set of appropriate boundary conditions. Prior to
this step, the following scale invariance of Eqs. (5.6) has to
be fixed:
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r ! Cr; S ! S

C
; B ! B; (6.3)

where C is a constant. We will fix this arbitrary scale by
imposing a particular value for Sh � SðrhÞ. So we define a
dimensionless scalar field2 S=Sh and a radial variable x ¼
r=jaj. For the vacuum solution (6.1), this scale fixing yields
the relation S0 ¼ Shð1þ xhÞ.

Solutions presenting a regular horizon at x ¼ xh require
the following conditions:

BðxhÞ ¼ 0; B0ðxhÞ ¼ b; Gjx¼xh ¼ 0;

H jx¼xh ¼ 0; SðxhÞ ¼ 1; B00ð1Þ ¼ B2 � 2�a2

(6.4)

where the symbols G, H represent (respectively) the
conditions of regularity of Eq. (5.6) at the horizon and
the constraint (5.7):

G ¼ 6B0S0 � S

�
2

x2h
� 4B0

xh
� B00

�
� 6�B3; (6.5)

H ¼ 2x2hð4ðB0Þ2 � S2Þ þ 2x3hðB0S2 � 4B0B00Þ
þ x4hð2ðB00Þ2 � 4B0B000 þ 2B0SS0 � 3�S4Þ � 8:

(6.6)

The normalization chosen for the field SðxÞ in (6.4) fixes
the rescaling (6.3). The constants b, B2 are a priori inde-
pendent. They encode the deviation with respect to the
vacuum solution (6.1) where the relation between them is
fixed to give

B2 ¼ 2ðbxh � 1Þ2
bx3h

; (6.7)

as found by eliminating the parameter a from B0ðrhÞ and
B00ð1Þ of (6.2). This demonstrates, in particular, that, to
any positive value of B2 (i.e. negative �), two solutions of
the form (6.1) are available. One of these solutions presents

a doubly degenerate horizon at ~xh ¼ xh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h þ 8=B2

q
,

corresponding to a < 0 in (6.1).
Our numerical results show strong evidence that the

analytic solutions can be deformed for generic values of
b, B2 or, put differently, are just special cases of a much
wider family of vacuum solutions of the scalar-tensor
conformal theory. These new solutions can be character-
ized by their expansion around the horizon,

BðxÞ ¼ bðx� xhÞ þ b2
2
ðx� xhÞ2 þ b3

6
ðx� xhÞ3 þ . . . ;

SðxÞ ¼ 1þ sðx� xhÞ þOððx� xhÞ2Þ; (6.8)

as well as by their asymptotic behavior

BðxÞ ¼ B2

2
x2 þ B1xþ B0 þ B�

x
þOðx�2Þ;

S ¼ S1
x
þOðx�2Þ;

(6.9)

where the parameters B2, b have to be set in the boundary
conditions, while the parameters B1, B0, B�, and S1 of the
scalar field can be determined from the numerical
solutions.
Because of the decay S� 1=x, the combination BS2ðxÞ

approaches asymptotically the constant B2S
2
1=2. This is

encouraging since it yields a nondegenerate point particle
Lagrangian [see Eq. (5.1)] in the asymptotic region.
For B2 ¼ 0, the asymptotic expansion involves ‘‘log’’

terms, in particular SðxÞ � ðS1 þ S2 logðxÞÞ=xþOð1=x2Þ
and the expansion of BðxÞ is more involved. The black hole
solution approaching a de Sitter space-time asymptotically
(i.e. with negative B2 or positive �) can also be con-
structed, presenting a cosmological horizon at some radius
x ¼ xc with xc > xh.
We now discuss the new solutions for B2 > 0.

1. Case � ¼ 0

We first discuss solutions in the case � ¼ 0. Two such
solutions are presented in Fig. 4 for xh ¼ 0:5, B2 ¼ 2=ð1þ
xhÞ ¼ 4=3. Here, the analytic solution corresponding to
b ¼ 3 is compared to the numerical solution corresponding
to b ¼ 1.
A natural question consists of determining the domain of

existence of the solutions with a fixed xh in the plane b, B2.
Our numerical investigations reveal that, for fixed xh and

FIG. 4 (color online). First branch vacuum solutions for the
case � ¼ 0: Two profiles for B2 ¼ 4=3 with b ¼ 1 and b ¼ 3
(analytic solution). Color online distinguishes between the
curves. In the black and white version notice that SðxÞ curves
are the two decreasing ones, while those of BðxÞS2ðxÞ start on the
x axis.2We will still use S for it too.
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B2, black holes exist for 0 � b � bmax where the maximal
value bmax depends on xh, B2. In the limit b ! 0, the
horizon becomes extremal. For xh ¼ 0:5, we find bmax 	
3:7, 3.06, 2.3, respectively, for B2 ¼ 7=3, 4=3, 0. The
values of b corresponding to the analytic solutions are

b 	 f1:17; 3:41g for B2 ¼ 7=3;

b ¼
�
4

3
; 3

�
for B2 ¼ 4=3;

b ¼ 2 for B2 ¼ 0:

(6.10)

The numerical solutions therefore exist for larger values of
the parameter b than the analytic ones. Table I summarizes
these results.

The parameters b2, b3, B1 are plotted as functions of b in
Fig. 5 for B2 ¼ 4=3 (branches labeled ‘‘1’’). The evolution
of the parameters b2, b3 clearly determines the critical
phenomenon stopping the solution at b ¼ bmax. The prop-
erty that solutions do not exist for b > bmax suggests that a
new branch of solutions should occur for b < bmax, joining
the first branch in the limit b ! bmax. This was confirmed
by the numerics: we indeed managed to construct a second
family of solutions presenting this property. The corre-
sponding data is presented in Fig. 5 by the lines labeled
with a symbol ‘‘2.’’ Decreasing the parameter b along the
second branch, we observe very peculiar properties. In
particular, the functions SðxÞ and BðrÞ stop to be mono-
tonically decreasing, but present, respectively, a local mini-
mum and a local maximum at two different radii, which are
rather close to the horizon. For b ! 0, the position of the
local extrema slowly move to the horizon and result in
large variation of the derivatives S0ðxÞ, B00ðxÞ, B000ðxÞ in the
region of the horizon. The numerical results suggest
strongly that the solutions tend to a configuration where
SðxÞ presents a singularity at the horizon. This appears on
Fig. 5 where the parameters b2, b3, s are plotted as func-
tions of b.

Profiles of three solutions of the second branch are
shown in Fig. 6. Note that the effective metric exhibits a
similar behavior as above and is very different from purely
tensorial CG: the gravitational potential, which is encoded
in S2ðrÞBðrÞ, increases much less steeply and tends asymp-
totically to a constant, the space-time seems to have only a
bounded extension since the circumferential radial dis-
tance rSðrÞ has a finite limit as r ! 1 as well as the proper

radial distance
R
drSðrÞ= ffiffiffiffiffiffiffiffiffi

BðrÞp
.

2. Case � � 0

For � � 0, the analytic solutions with fixed xh, B2 are
real as long as the condition

B2
2x

2
h þ 6B2�x

2
h þ 8B2 � 3�2x2h � 8� � 0 (6.11)

holds. This defines bounds of the parameter �. We have
also tried to deform the numerical solutions available for
� ¼ 0 to the case � � 0. The features of the solutions are
basically similar (see Fig. 7). Keeping the parameters b, B2

fixed and increasing �, it turns out that the coefficient S1 of
the scalar field [defined in Eq. (6.9)] increases rapidly and
diverges when the coupling constant � approaches a criti-
cal value. For example, setting b ¼ 1, B2 ¼ 4=3, we find
that the main branch exists for 0 � � � 1:65, while the
second branch exists for 0 � � � 0:075.
Contrary to our expectation, the two solutions available

for � ¼ 0 do not converge to a common solution while
increasing � gradually.
All of the above-mentioned solutions are closed ones.

However, other kinds of black hole solutions exist, which
are open and thus of course much more relevant in order to
deal with the astrophysical and cosmological issues dis-
cussed in the introduction. These solutions are character-
ized (in addition to the horizon) by the nonvanishing value
of Sð1Þ, which fixes the cosmological constant parameter
by � ¼ �S2ð1Þ=2. They have the asymptotic behavior

BðrÞ � �r2 þ ðB2 logðrÞ þ B1Þrþ B0;

SðrÞ �
ffiffiffiffiffiffi
2�

�

s
þ S1

logðrÞ
r

;
(6.12)

where B0, B1, B2, S1 are constants. Figure 8 contains a
graphic representation of typical solutions.

FIG. 5 (color online). The two branch structure of the � ¼ 0
solutions. The bullets indicate the corresponding analytic solu-
tions. For the meaning of the various parameters, see the text.

TABLE I. Summary of results for the parameter b for three
values of B2.

B2 ¼ 7=3 B2 ¼ 4=3 B2 ¼ 0

bmax 3.7 3.06 2.3

banalytic1 3.41 3 2

banalytic2 1.17 4=3 2

Y. BRIHAYE AND Y. VERBIN PHYSICAL REVIEW D 80, 124048 (2009)

124048-10



C. Regular solutions

Apart from the black hole solutions discussed in the
previous section, the system (5.6) also admits regular so-
lutions in r 2 ½0;1�, which may be viewed as gravita-
tional solitons in this scalar-tensor theory. Taking
advantage of the symmetry (6.3), the boundary conditions
can all be fixed to be

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0;

S0ð0Þ ¼ 0; B00ð1Þ ¼ 2�
(6.13)

with Sð0Þ as an additional input, which we will allow to
vary in a certain range. It turns out that a family of

solutions exists, labeled by Sð0Þ. The solutions behave
asymptotically according to (6.9), and several profiles of
such solitons are presented in Fig. 9.
Actually, this kind of solution must also exist for the

boson star system of Sec. III as a completely static self-
gravitating solution—a novelty in the CG with no analogue
in standard GR. We have not found them at this time
because we used ! in order to rescale the dimensionful
variables. Note however that the interpretation of these
static solutions is very different in both cases: Here, it is
a gravitational soliton in a scalar-tensor theory, while the
same solution within the purely tensorial CG describes a
self-gravitating scalar field, i.e. boson star, with the pecu-
liar property that it is purely static. The dotted line in
Fig. 13 below shows the (inertial) mass of such a static
boson star as a function of the central value of the scalar
field Sð0Þ. The oscillatory curve is very similar to the one
found for the usual boson stars in GR [10–12].
The striking feature about these regular solutions is that

the field B deviates only a little from the form BðrÞ ¼ 1þ
�r2. The numerical results indicates that the difference 1�
ðB00ð1Þ=B00ð0ÞÞ is positive and of the order of a few per-
cents (we checked that this is not a numerical artefact). As
a consequence, these regular solutions are essentially char-
acterized by their cosmological constant.
If we examine the family of black holes with a fixed �

and decreasing rh, it turns out that the maximal value bmax

of the parameter b increases. The numerical results then
strongly suggest that the profile of the regular solution is
approached on the interval r 2�0;1½ by the black holes
corresponding to the second branch. The convergence
cannot be extended toward the point at the origin because
of the different condition of the metric field: BðrhÞ ¼ 0 for
black holes, Bð0Þ ¼ 1 for the soliton.

(a) (b)

FIG. 6 (color online). Second branch vacuum solutions for the case � ¼ 0: Three profiles for B2 ¼ 1=3 with b ¼ 2, b ¼ 1, and
b ¼ 0:25. (a) curves for BðxÞ and B0ðxÞ; (b) curves for SðxÞ, xSðxÞ, and S2ðxÞBðxÞ.

FIG. 7 (color online). A typical solution with � > 0 (online
red) compared with a � ¼ 0 (online black) solution.
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VII. PERFECT FLUID SOLUTIONS IN SCALAR-
TENSOR CONFORMAL GRAVITY

Having investigated the scalar-tensor vacuum solutions
and especially obtaining open solutions, we now proceed
to couple matter sources to this system. The first is the
perfect fluid with a polytropic equation of state. In this case
we are confronted with the following set of equations:

ðrBÞ0000
r

þ 1

B

�
BS02 � �

2
S4 þ 1

4

�
B0 þ 2B

r

�
ðS2Þ0 � R

12
S2
�

¼ � 3�

2B
ð�þ PrÞ; (7.1)

ðr2BS0Þ0
r2

� R

6
S� �S3 ¼ 0; (7.2)

which are supplemented by the conservation law (1.16).
We have found two types of regular solutions to the

equations above distinguished by Sð1Þ being either zero
or nonzero. This corresponds to closed or open space-time
geometries, respectively. For the two cases, the field BðrÞ
satisfies the same boundary conditions as in the purely
tensorial conformal gravity, namely,

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0; B00ð1Þ ¼ 2�:

(7.3)

The boundary conditions on the function SðrÞ are different

(a) (b)

FIG. 9 (color online). Several profiles of the regular solutions of the scalar-tensor system with � ¼ 0 for different central value of the
scalar field: Sð0Þ ¼ 1, Sð0Þ ¼ 4, Sð0Þ ¼ 16. Notice the oscillations for large Sð0Þ.
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FIG. 8. Open solutions of the vacuum scalar-tensor system with � ¼ 0:2 for three asymptotic values of the scalar field.
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for the two solutions. Setting � ¼ 0, we find solutions with
the asymptotic behavior

BðrÞ � �r2 þ B1rþ B0; SðrÞ � S1
r
; PrðrÞ � P1

r4
:

(7.4)

The space-time associated with these solutions is closed
since the function rSðrÞ varies on a finite range. Similarly,
the proper radial distance is bounded from above. The
solutions of this type can be deformed for � > 0; however,
they do not exist for large values of �. The function SðrÞ
indeed develops a singularity at a finite value of r when �
approaches a critical value � ¼ �c.

The solutions of the second type that we constructed are
open and exist for generic nonzero values of the coupling
constant �; they are characterized by Sð1Þ> 0 and obey
asymptotically

BðrÞ � �r2 þ ðB2 logðrÞ þ B1Þrþ B0;

SðrÞ �
ffiffiffiffiffiffi
2�

�

s
þ S1

logðrÞ
r

; PrðrÞ � P1

r4
;

(7.5)

where B0, B1, B2, S1 are constants. This form was checked
both analytically and numerically. The corresponding
space-time is open since rSðrÞ is unbounded from above.
Let us point out two features of these solutions: (i) They do
not possess a regular limit for � ! 0, as seen, e.g. from

Sð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
. (ii) Non-analytical terms (log terms) ap-

pear in the asymptotic expansion of the fields B and S.
These terms seem to be related to the fact that the field S
does not go to zero for r ! 1.

Figure 10(a) shows the profiles of two solutions with
� ¼ 1. The functions BðrÞ and PrðrÞ are quite similar to
those in the ‘‘pure tensor’’ theory. The main difference is
that point particles are now consistently coupled to the
gravitational field through the new field SðrÞ. The coupling
is described now by the combination S2ðrÞBðrÞ, and it
is obvious that besides the cosmological r2 behavior,
we recover the linear potential with logarithmic modifica-
tions. Further study is required in order to check the
relation of this new kind of solution to observational
data. Figure 10(b) presents the dependence on the poly-
tropic index A of the main properties of the solutions.
These properties as a function of the cosmological constant
parameter � are shown in Fig. 11.

(a) (b)

FIG. 10 (color online). Perfect fluid open solutions in the scalar-tensor theory with � ¼ 1. � ¼ 0:1: (a) the profiles of two solutions;
(b) plots of several characteristics of the solutions as a function of the parameter A.

FIG. 11. Perfect fluid solutions in the scalar-tensor theory:
dependence on the parameter �. The other parameters are � ¼
0:2, A ¼ 1=3.
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VIII. BOSON STARS IN SCALAR-TENSOR
CONFORMAL GRAVITY

Next we move to the complex scalar field, i.e. boson
stars. In this case, the Lagrangian density is the sum of all
the previous terms with a possible additional coupling
between the ‘‘gravitational scalar field’’ SðxÞ and the other
scalar �, namely, ��S2j�j2=2 with � dimensionless
(real) parameter. The field equations will contain two
second-order equations for the two scalar fields:

ðr2Bf0Þ0
r2

þ
�
!2

B
� R

6
��S2

�
f� �f3 ¼ 0; (8.1)

ðr2BS0Þ0
r2

�
�
R

6
þ ��f2

�
S� �S3 ¼ 0; (8.2)

and a fourth-order equation for BðrÞ
ðrBÞ0000

r
þ 1

B

�
BS02 � �

2
S4 þ 1

4

�
B0 þ 2B

r

�
ðS2Þ0 � R

12
S2
�

¼ ��

B

�
2!2f2

B
þ Bf02 � �

2
f4 ��S2f2

þ 1

4

�
B0 þ 2B

r

�
ðf2Þ0 � R

12
f2
�
: (8.3)

The space of solutions is quite large and defined by two
types of parameters: those which appear in the field equa-
tions, namely, �, � and � and parameters (integration
constants) which specify the solutions like Sð1Þ, � etc.

A systematic survey of all possible solutions is beyond
the scope of this work. Here, we present the main proper-
ties of several families of solutions in limited but typical

regions of parameter space. Here, too we find closed as
well as open solutions.
We addressed the system (8.1), (8.2), and (8.3) numeri-

cally. We started by fixing the different coupling constants
according to � ¼ � ¼ 0, the constant � can then be set to
� ¼ 1 by a rescaling of f. A rescaling of the radial variable
and of the field SðxÞ allows one to fix! ¼ 1. In the reduced
system fixed this way, we further assumed � ¼ 1. Regular
solutions to the equations can then be constructed with the
following boundary conditions:

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0; B00ð1Þ ¼ 2�

(8.4)

for the metric function, and

Sð0Þ ¼ S0; S0ð0Þ ¼ 0; f0ð0Þ ¼ 0; fðr!1Þ¼ f2
r2

(8.5)

for the two scalar functions. Here, S0 is an arbitrary con-
stant. In the numerical analysis, we set � ¼ 0:1. In the limit
S0 ! 0, we have SðxÞ ¼ 0 and the boson star solutions of
Sec. IV are recovered. We have studied how the boson star
solution available in CG is deformed by the additional
scalar field and discovered a rather unexpected pattern,
which we now discuss.

A. Closed solutions

Increasing the parameter S0 gradually, we observe that
the boson star gets continuously deformed by the new
scalar field. It turns out that the scalar field of the boson
star tends uniformly to the null function for some critical
value S0 ¼ Sc; with our values of the coupling constants,

(a) (b)

FIG. 12. Boson stars in the scalar-tensor theory corresponding to � ¼ 1, � ¼ � ¼ 0, � ¼ 0:1. (a) mass, particle number Q and the
value fð0Þ as a function of Sð0Þ; (b) details of the profile for Sð0Þ ¼ 100. The high value of Sð0Þ was chosen to get noticeable
oscillations—see the text.
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we find Sc 	 6:26. Accordingly, the mass corresponding to
the boson star (i.e. supported by the field fðrÞ) tends to zero
in this limit, along with the particle number Q. These
features are illustrated by Fig. 12(a). So, for 0 � S0 � Sc
two regular solutions coexist: the scalar-tensor boson star
(STBS) and the scalar-tensor regular solution (STR—the
gravitational soliton) with fðrÞ ¼ 0. The values of B00ð0Þ
and the inertial mass MIS of the scalar field S (only) are
represented in Fig. 13.

However, this is not the end of the story. Indeed, while
we continue to increase S0, it turns out that STBS solutions

reappear for S0 > 9:1 and that again, the two non-trivial
solutions exist for 9:1< S0 < 13:8. After still another gap
of the nonexistence of STBS solutions, they again reappear
for S0 > 15 and seem to then coexist with the STR (regu-
lar) solution as suggested by Figs. 12(a) and 13.
It is challenging to find a full analytical explanation of

the features just discussed above, and so far we have not
fully succeeded. Possibly, an explanation is to be found in
the fact that for large values of Sð0Þ the function BðrÞ
develops some oscillations near the origin. These oscilla-
tions, which appear more clearly when looking at B0ðrÞ and
B00ðrÞ [see Fig. 12(b)], are due to a term

Y00 þ S2

B
Y þ subdominant terms ¼ 0; Y � B00

(8.6)

contained in the equations, which leads to visible oscilla-
tions when S0 is sufficiently large. A detailed numerical
study of the ‘‘gap-structured’’ phenomenon of the STBS
solution shows that (i) the function B00ðrÞ is monotonically
decreasing for S0 < 6:26; (ii) a local minimum of B00 occur
somewhere for S0 2 ½9:1; 13:8�. This strongly suggests a
connection between the oscillations of the function B00 and
the pattern of STBS solutions.
In fact, the occurrence of oscillations appears for the

STR solution already, i.e. in the absence of a boson star.
This property is illustrated in Fig. 9, where the profiles of
B, S, B0, B00 are superposed for three values of Sð0Þ.

B. Open solutions

Finally, we turn to very different kind of solutions,
namely, the open ones. Along with the case of polytropes
discussed in Sec. VII, the open solutions are characterized

FIG. 13 (color online). The value B00ð0Þ and the inertial mass
of the field S for STBS (online red) and STR soliton (online
black) as functions of Sð0Þ. Notice the gaps in the STBS (red)
curves where no solutions exist. This can be used to distinguish
between the cases in a black and white plot.

(a) (b)

FIG. 14 (color online). Open boson star solutions in the scalar-tensor theory: (a) two profiles for � ¼ 0:2 and � ¼ 1 with � ¼ 1,
� ¼ 0, � ¼ 0:1; (b) plots of several characteristics of the solutions as a function of the parameter � with � ¼ 0:2, � ¼ 0, � ¼ 0:1.
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by Sð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
, and the corresponding asymptotic ex-

pansion presents log terms. The pattern of solutions of
these nonlinear equations is rich and presents several bi-
furcations in the space of coupling constants. Fixing the
different coupling constants, the solutions are even not
unique since they are characterized by parameters at the
boundary (or integration constant like � or Sð0Þ), generat-
ing continuous families of solutions.

Figure 14(a) shows two typical open boson star profiles
for two values of �. The quite weak dependence on �
makes it sufficient to present in Fig. 14(b) the dependence
of the mass, charge, and other quantities on the self-
coupling �. On the other hand, the physical quantities are
quite sensitive to the parameter � as is clearly apparent
from Fig. 15. We see that boson stars exist only up to a
maximal value of � and that the STBS system bifurcate
into a regular STR.

IX. CONCLUSION

We have analyzed several types of spherically symmet-
ric solutions in the minimal CG and in a scalar-tensor
extension. The polytrope solutions in the minimal case
have an asymptotically linear gravitational potential and
contain a ‘‘wrong sign’’ Newtonian component of a 1=r
term only in asymptotically anti-de Sitter space, which is
generated by a ‘‘cosmological integration constant’’ (�).
These are in line with previous results showing that the
generic exterior gravitational fields in this theory have a
behavior that is very difficult to settle with observations.

The linear potential may be considered an advantage in
the sense that applying it in a galactic scale may provide an
explanation for the rotation curves without invoking dark
matter. However, since there is no a priori reason to refrain
from trying CG in a solar system scale, the absence of the
(attractive) Newtonian potential seems to be a drawback.
Of course, it is always possible to claim that ‘‘conformal
polytropes’’ made of matter, which satisfies T

�
� ¼ 0, is a

rather special kind of material that may be found in galactic
and intergalactic scale, but this line of argument effectively
brings dark matter through the ‘‘back door.’’
From this point of view, a scalar field can be viewed as a

more conventional matter source, as scalar fields are ubiq-
uitous in theoretical physics. Since the conformal coupling
to gravity adds to the energy-momentum tensor terms,
which render the energy density non positive definite, it
might be expected that the gravitational fields of boson
stars turn out to have different behavior. However, we
found that boson stars exist only in (asymptotically) anti-
de Sitter space, otherwise the mass and charge of the
solutions do not converge. Similarly, the gravitational po-
tential of these boson stars is linear with aþ1=r additional
contribution.
The motivation for the scalar-tensor extension was to

search for possible different behaviors. Moreover, from a
formal point of view the scalar-tensor CG is the simplest
theory of its kind, which has physically meaningful time-
like geodesics, or in other words, couples consistently to
point particles.
The pattern of the solutions we have found in this case

turns out to be very rich and presents unexpected features,
especially with respect to the purely tensorial CG. First, in
the vacuum sector we found Schwarzschild-like (or more
accurately, Schwarzschild–AdS-like) solutions as well as
closed solutions with finite radial extension. In addition,
there exist regular (‘‘solitonlike’’) solutions, which have no
analogue in ordinary GR.
When matter sources are added, the resulting solutions

are classified similarly for both perfect fluid polytropes and
boson stars: There are closed solutions that although inter-
esting on their own right cannot be considered as relevant
in a four-dimensional astrophysical or cosmological con-
text. A second type is open solutions with a gravitational
potential that contains the standard (by now) linear term
modified with logarithmic corrections whose observational
relevance needs further study.
The kinds of equations we have solved (fourth order) are

unconventional but could be treated with a good accuracy
by our numerical methods, which appear in this case to be
indispensable.

FIG. 15 (color online). Open boson star solutions in the scalar-
tensor theory: dependence on the parameter �. The other pa-
rameters are � ¼ 1, � ¼ 0:2, � ¼ 0.
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