Expectations or Guarantees? I Want It All! A Crossroad between Games and MDPs

V. Bruyère (UMONS) E. Filiot (ULB) M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

Grenoble - 05.04.2014

SR 2014 - 2nd International Workshop on Strategic Reasoning

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

The talk in two slides (1/2)

Verification and synthesis:

- ▷ a reactive **system** to *control*,
- > an *interacting* environment,
- ▷ a **specification** to *enforce*.
- Focus on *quantitative properties*.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

The talk in two slides (1/2)

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - > an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Focus on quantitative properties.
- Several ways to look at the interactions, and in particular, *the nature of the environment*.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

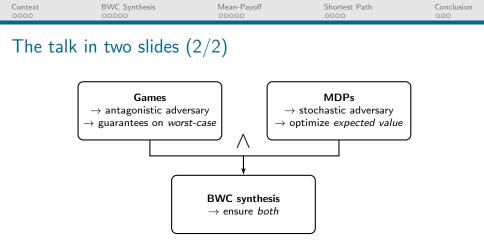
The talk in two slides (2/2)

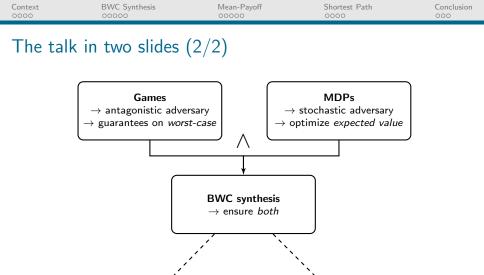
Games

 \rightarrow antagonistic adversary \rightarrow guarantees on *worst-case*

MDPs

 \rightarrow stochastic adversary \rightarrow optimize expected value





Studied

value functions

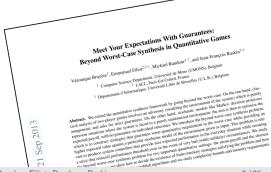
Mean-Payoff

Shortest Path

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Advertisement

Featured in STACS'14 [BFRR14] Full paper available on arXiv: abs/1309.5439



Bruyère, Filiot, Randour, Raskin

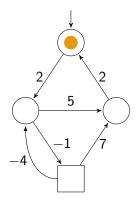
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

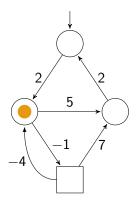
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000



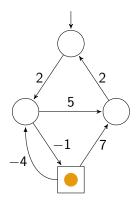
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000
		/		



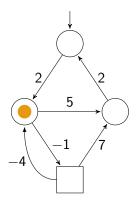
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000



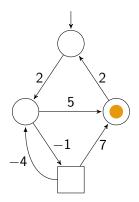
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000
		/		



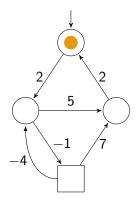
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000
		/		



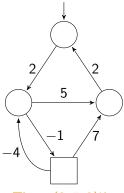
- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000



- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
●000	00000	00000	0000	000

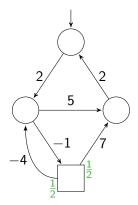


Then, $(2, 5, 2)^{\omega}$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \ \mathcal{P}_1 \ \mathsf{states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \Box$
- Plays have values
 - $\triangleright \ f \colon \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

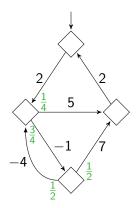
Markov decision processes



MDP P = (G, S₁, S_Δ, Δ) with Δ: S_Δ → D(S)
P₁ states = ○
stochastic states = □
MDP = game + strategy of P₂
P = G[λ₂]

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
00●0		00000	0000	000

Markov chains

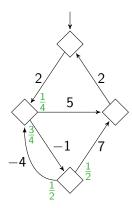


- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $\blacksquare MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$\triangleright \ M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
00●0		00000	0000	000

Markov chains



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$> M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

- Event $\mathcal{A} \subseteq \mathsf{Plays}(\mathcal{G})$ \triangleright probability $\mathbb{P}^M_{s_{\mathsf{init}}}(\mathcal{A})$
- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$ \triangleright expected value $\mathbb{E}^{M}_{\text{snit}}(f)$

Context 000●	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - ▷ whatever the actions of its **environment**

Context 000●	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - ▷ whatever the actions of its **environment**
- The environment can be seen as
 - ▷ antagonistic
 - \blacksquare two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
 - $\exists ? \lambda_1 \in \Lambda_1, \, \forall \, \lambda_2 \in \Lambda_2, \, \forall \, \pi \in \mathsf{Outs}_G(\mathbf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), \, f(\pi) \geq \mu$

Context 000●	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - ▷ whatever the actions of its **environment**
- The environment can be seen as
 - ▷ antagonistic
 - \blacksquare two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
 - $\exists ? \lambda_1 \in \Lambda_1, \, \forall \, \lambda_2 \in \Lambda_2, \, \forall \, \pi \in \mathsf{Outs}_G(\mathbf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), \, f(\pi) \geq \mu$
 - ▷ fully stochastic
 - **•** MDP, *expected value* threshold problem for $\nu \in \mathbb{Q}$
 - $\blacksquare \exists ? \lambda_1 \in \Lambda_1, \mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000	00000	0000	000

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path 0000	Conclusion
0000	0000	00000	0000	000

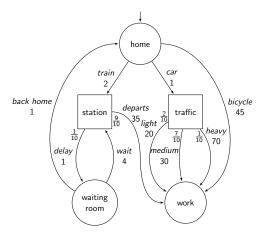
What if you want both?

In practice, we want both

- 1 nice expected performance in the everyday situation,
- 2 strict (but relaxed) performance guarantees even in the event of very bad circumstances.

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000

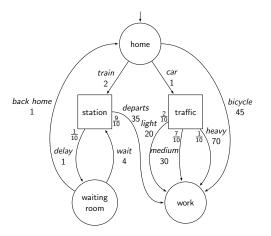
Example: going to work



- Weights = minutes
- Goal: minimize our expected time to reach "work"
- But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000
				l

Example: going to work



 Optimal expectation strategy: take the car.

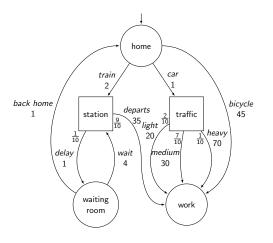
• $\mathbb{E} = 33$, WC = 71 > 60.

 Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000		00000	0000	000

Example: going to work



 Optimal expectation strategy: take the car.

• $\mathbb{E} = 33$, WC = 71 > 60.

 Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - $\mathbb{E} \approx 37.56$, WC = 59 < 60.
 - Optimal E under WC constraint
 - Uses finite memory

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Beyond worst-case synthesis

Formal definition

Given a game $G = (\mathcal{G}, S_1, S_2)$, with $\mathcal{G} = (S, E, w)$ its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f : \text{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the *beyond worst-case (BWC) problem* asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$(\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
 (1)

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1,\lambda_2^{\text{stoch}}]}(f) > \nu$$
(2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Beyond worst-case synthesis

Formal definition

Given a game $G = (\mathcal{G}, S_1, S_2)$, with $\mathcal{G} = (S, E, w)$ its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f : \text{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the *beyond worst-case (BWC) problem* asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$(\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(\mathbf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
(1)

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1,\lambda_2^{\text{stoch}}]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!

Beyond Worst-Case Synthesis

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	○○○○●	00000	0000	000

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are *strongly risk averse*

▷ avoid risk at all costs and optimize among safe strategies

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	0000●	00000	0000	000

Related work

Common philosophy: avoiding outlier outcomes

- **1** Our strategies are *strongly risk averse*
 - $\,\triangleright\,$ avoid risk at all costs and optimize among safe strategies
- Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
 - ▷ without worst-case guarantee
 - ▷ without good expectation

Context 0000	BWC Synthesis 0000●	Mean-Payoff 00000	Shortest Path 0000	Conclusion 000

Related work

Common philosophy: avoiding outlier outcomes

- 1 Our strategies are strongly risk averse
 - \triangleright avoid risk at all costs and optimize among safe strategies
- Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
 - ▷ without worst-case guarantee
 - without good expectation
- 3 Trade-off between expectation and variance [BCFK13, MT11]
 - > statistical measure of the stability of the performance
 - no strict guarantee on individual outcomes

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	• 0 000	0000	000

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Mean-payoff value function

•
$$\mathsf{MP}(\pi) = \liminf_{n \to \infty} \left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w((s_i, s_{i+1})) \right]$$

• Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$

$$\triangleright$$
 MP(π) = 3

ho long-run average weight \sim *prefix-independent*

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Mean-payoff value function

•
$$\mathsf{MP}(\pi) = \liminf_{n \to \infty} \left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w((s_i, s_{i+1})) \right]$$

• Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$

$$\triangleright$$
 MP(π) = 3

▷ long-run average weight ~> prefix-independent

	worst-case	expected value	BWC
complexity	$NP\capcoNP$	Р	$NP\capcoNP$
memory	memoryless	memoryless	pseudo-polynomial

- ▷ [LL69, EM79, ZP96, Jur98, GS09, Put94, FV97]
- Additional modeling power for free!

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	○○●○○	0000	000

Philosophy of the algorithm

- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- Screw them together in an adequate way

Context 0000	BWC Synthesis	Mean-Payoff ○○●○○	Shortest Path 0000	Conclusion 000

Philosophy of the algorithm

- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- ▷ Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at *end-components* (ECs)
- 2 Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement!
- **3** Inside a WEC, we have an interesting way to play...

Context 0000	BWC Synthesis	Mean-Payoff ○○●○○	Shortest Path 0000	Conclusion 000

Philosophy of the algorithm

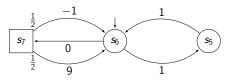
- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- ▷ Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at *end-components* (ECs)
- 2 Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement!
- 3 Inside a WEC, we have an interesting way to play...
- \implies Let's focus on an ideal case

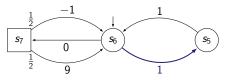
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

An ideal situation



Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000
				1

An ideal situation

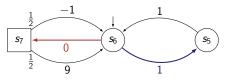


Game interpretation

- \triangleright Worst-case threshold is $\mu = 0$
- ▷ **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000
				1

An ideal situation



Game interpretation

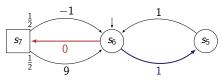
- \triangleright Worst-case threshold is $\mu = 0$
- ▷ **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$

MDP interpretation

▷ Memoryless optimal expected value strategy $\lambda_1^e \in \Lambda_1^{PM}(P)$ achieves $\nu^* = 2$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

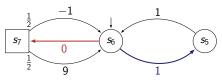
A cornerstone of our approach



BWC problem: what kind of threholds $(0, \nu)$ can we achieve?

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

A cornerstone of our approach



BWC problem: what kind of threholds $(0, \nu)$ can we achieve?

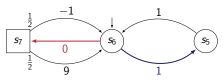
Key result

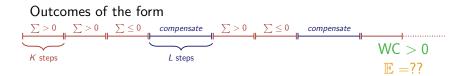
For all $\varepsilon > 0$, there exists a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for the thresholds pair $(0, \nu^* - \varepsilon)$.

▷ We can be arbitrarily close to the optimal expectation while ensuring the worst-case!

0000 00000 0000 0000 0000	Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
	0000	00000	00000	0000	000

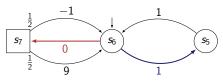
Combined strategy

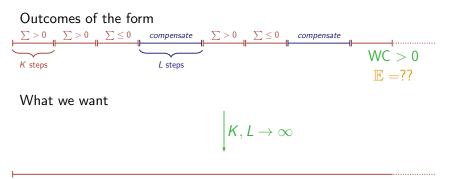




0000 00000 C	00000	0000	000

Combined strategy





Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

• When K grows, L needs to grow linearly to ensure WC

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

- When K grows, L needs to grow linearly to ensure WC
- When K grows, $\mathbb{P}(\vdash H) \rightarrow 0$ and it decreases exponentially fast
 - application of Chernoff bounds and Hoeffding's inequality for Markov chains [Tra09, GO02]

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

- When K grows, L needs to grow linearly to ensure WC
- When K grows, $\mathbb{P}(\longmapsto) \rightarrow 0$ and it decreases exponentially fast
 - application of Chernoff bounds and Hoeffding's inequality for Markov chains [Tra09, GO02]
- Overall we are good: WC > 0 and E > ν* ε for sufficiently large K, L.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	● 0 00	000

1 Context

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

5 Conclusion

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	000	000

Shortest path - truncated sum

- Assume strictly positive integer weights, $w \colon E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a *target set* that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)

 \triangleright inequalities are reversed, $\nu < \mu$

■ $\mathsf{TS}_{\mathcal{T}}(\pi = s_0 s_1 s_2 \dots) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with *n* the first index such that $s_n \in \mathcal{T}$, and $\mathsf{TS}_{\mathcal{T}}(\pi) = \infty$ if $\forall n, s_n \notin \mathcal{T}$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	000	000

Shortest path - truncated sum

- Assume strictly positive integer weights, $w \colon E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a *target set* that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)

 \triangleright inequalities are reversed, $\nu < \mu$

■ $\mathsf{TS}_T(\pi = s_0 s_1 s_2 \dots) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with *n* the first index such that $s_n \in T$, and $\mathsf{TS}_T(\pi) = \infty$ if $\forall n, s_n \notin T$

	worst-case	expected value	BWC
complexity	Р	Р	pseudo-poly. / NP-hard
memory	memoryless	memoryless	pseudo-poly.

- ⊳ [BT91, dA99]
- ▷ Problem **inherently harder** than worst-case and expectation.
- \triangleright NP-hardness by K^{th} largest subset problem [JK78, GJ79]

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

Key difference with MP case

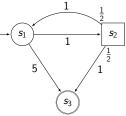
Useful observation

The set of all worst-case winning strategies for the shortest path can be represented through a finite game.

Sequential approach solving the BWC problem:

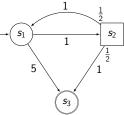
- represent all WC winning strategies,
- 2 optimize the expected value within those strategies.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000



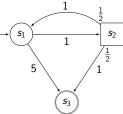
1 Start from
$$G = (\mathcal{G}, S_1, S_2)$$
, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\text{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$

(BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
(0000	00000	00000	000●	000

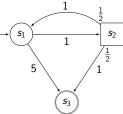


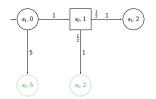
- Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\text{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$
- 2 Build G' by unfolding G, tracking the current sum up to the worst-case threshold μ, and integrating it in the states of G'.

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

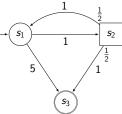


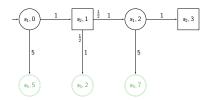
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000



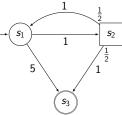


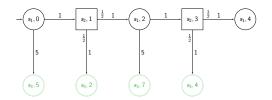
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000



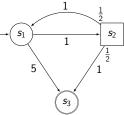


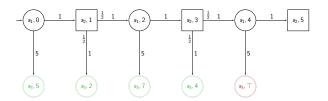
Context BWC Synthesis	Mean-Payoff 00000	Shortest Path	Conclusion 000



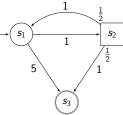


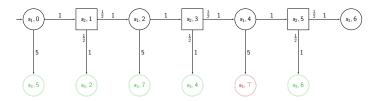
Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000		00000	○○○●	000



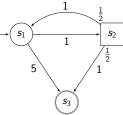


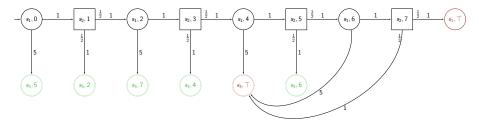
Cont 000	-)	 Shortest Path (DOO● (Conclusion 200





Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path	Conclusion 000





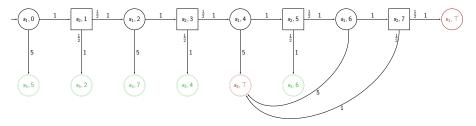
Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

3 Compute *R*, the attractor of *T* with cost $< \mu = 8$

4 Consider
$$G_{\mu} = G' \downarrow R$$



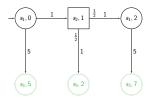
Beyond Worst-Case Synthesis

Bruyère, Filiot, Randour, Raskin

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	000

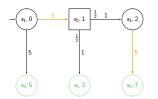
3 Compute *R*, the attractor of *T* with cost $< \mu = 8$

4 Consider
$$G_{\mu} = G' \downarrow R$$



Context BWC Syn	thesis Mean-Payoff	f Shortest Path	Conclusion
00000 00000	00000	0000	000

- **5** Consider $P = G_{\mu} \otimes \mathcal{M}(\lambda_2^{\text{stoch}})$
- 6 Compute memoryless optimal expectation strategy
- 7 If $\nu^* < \nu$, answer YES, otherwise answer NO



Here,
$$\nu^* = 9/2$$

Context	BWC Synthesis	Mean-Payoff	Shortest Path	Conclusion
0000	00000	00000	0000	•00

1 Context

2 BWC Synthesis

3 Mean-Payoff

4 Shortest Path

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - ▷ a natural wish in many practical applications
 - \triangleright few existing theoretical support

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion ○●○

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - \triangleright a natural wish in many practical applications
 - ▷ few existing theoretical support
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion ○●○

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - \triangleright a natural wish in many practical applications
 - ▷ few existing theoretical support
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result
- In both cases, pseudo-polynomial memory is both sufficient and necessary
 - ▷ but strategies have natural representations based on states of the game and simple integer counters

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 00●

Beyond BWC synthesis?

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG⁺10], etc),
- application of the BWC problem to various practical cases.

Context 0000	BWC Synthesis	Mean-Payoff 00000	Shortest Path 0000	Conclusion 00●

Beyond BWC synthesis?

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG⁺10], etc),
- application of the BWC problem to various practical cases.

Thanks!

Do not hesitate to discuss with us!

References I

T. Brázdil, K. Chatterjee, V. Forejt, and A. Kucera. Trading performance for stability in Markov decision processes. In Proc. of LICS, pages 331–340. IEEE Computer Society, 2013.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI, 2014.

D.P. Bertsekas and J.N. Tsitsiklis.

An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16:580–595, 1991.

K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Generalized mean-payoff and energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

K. Chatterjee, M. Randour, and J.-F. Raskin.

Strategy synthesis for multi-dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131. Springer, 2012.

L. de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

References II

A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk. Energy and mean-payoff games with imperfect information. In Proc. of CSL, LNCS 6247, pages 260–274. Springer, 2010.

1

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

Percentile performance criteria for limiting average Markov decision processes. Transactions on Automatic Control, pages 2–10, 1995.

J. Filar and K. Vrieze.

Competitive Markov decision processes. Springer, 1997.

M.R. Garey and D.S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness. Freeman New York, 1979.

P.W. Glynn and D. Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains. Statistics & Probability Letters, 56(2):143–146, 2002.

T. Gawlitza and H. Seidl.

Games through nested fixpoints. In Proc. of CAV, LNCS 5643, pages 291–305. Springer, 2009.

References III

D.B. Johnson and S.D. Kashdan.

Lower bounds for selection in X + Y and other multisets. Journal of the ACM, 25(4):556–570, 1978.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

T.M. Liggett and S.A. Lippman.

Stochastic games with perfect information and time average payoff. Siam Review, 11(4):604-607, 1969.

S. Mannor and J.N. Tsitsiklis.

Mean-variance optimization in Markov decision processes. In Proc. of ICML, pages 177–184. Omnipress, 2011.

M.L. Puterman.

Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

M. Tracol.

Fast convergence to state-action frequency polytopes for MDPs. Oper. Res. Lett., 37(2):123–126, 2009.

C. Wu and Y. Lin.

Minimizing risk models in Markov decision processes with policies depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47–67, 1999.

References IV

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343–359, 1996.