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The talk in two slides (1/2)

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Focus on quantitative properties.

Several ways to look at the interactions, and in particular, the
nature of the environment.
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The talk in two slides (2/2)

Games
→ antagonistic adversary
→ guarantees on worst-case

MDPs
→ stochastic adversary
→ optimize expected value

BWC synthesis
→ ensure both

∧

Studied
value functions

Mean-Payoff Shortest Path
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Quantitative games on graphs

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

Graph G = (S ,E ,w) with w : E → Z
Two-player game G = (G, S1,S2)

� P1 states =
� P2 states =

Plays have values

� f : Plays(G)→ R ∪ {−∞, ∞}

Players follow strategies

� λi : Prefsi (G )→ D(S)
� Finite memory ⇒ stochastic output Moore

machine M(λi ) = (Mem,m0, αu, αn)
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Markov decision processes

1
2

1
2

2 2

5

−1 7
−4

MDP P = (G, S1,S∆,∆) with ∆: S∆ → D(S)

� P1 states =
� stochastic states =

MDP = game + strategy of P2

� P = G [λ2]
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Markov chains

1
2

1
2

1
4

3
4

2 2

5

−1 7
−4

MC M = (G, δ) with δ : S → D(S)

MC = MDP + strategy of P1

= game + both strategies

� M = P[λ1] = G [λ1, λ2]

Event A ⊆ Plays(G)

� probability PM
sinit

(A)

Measurable f : Plays(G)→ R ∪ {−∞, ∞}
� expected value EM

sinit
(f )
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Classical interpretations

System trying to ensure a specification = P1

� whatever the actions of its environment

The environment can be seen as
� antagonistic

two-player game, worst-case threshold problem for µ ∈ Q
∃?λ1 ∈ Λ1, ∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) ≥ µ

� fully stochastic

MDP, expected value threshold problem for ν ∈ Q
∃?λ1 ∈ Λ1, EP[λ1]

sinit (f ) ≥ ν
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What if you want both?

In practice, we want both

1 nice expected performance in the everyday situation,

2 strict (but relaxed) performance guarantees even in the event
of very bad circumstances.
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Example: going to work

home

station traffic

waiting
room

work

1
10

9
10

2
10

7
10

1
10

train
2

car
1

back home
1

bicycle
45

delay
1

wait
4

light
20

medium
30

heavy
70

departs
35

� Weights = minutes

� Goal: minimize our expected
time to reach “work”

� But, important meeting in
one hour! Requires strict
guarantees on the worst-case
reaching time.
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� Optimal expectation strategy:
take the car.

E = 33, WC = 71 > 60.

� Optimal worst-case strategy:
bicycle.

E = WC = 45 < 60.

� Sample BWC strategy: try
train up to 3 delays then
switch to bicycle.

E ≈ 37.56, WC = 59 < 60.
Optimal E under WC
constraint
Uses finite memory
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Beyond worst-case synthesis

Formal definition

Given a game G = (G,S1, S2), with G = (S ,E ,w) its underlying graph, an
initial state sinit ∈ S , a finite-memory stochastic model λstoch

2 ∈ ΛF
2 of the

adversary, represented by a stochastic Moore machine, a measurable value
function f : Plays(G)→ R ∪ {−∞, ∞}, and two rational thresholds µ, ν ∈ Q,
the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF

1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) > µ (1)

EG [λ1,λ
stoch
2 ]

sinit (f ) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!
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Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse

� avoid risk at all costs and optimize among safe strategies

2 Other notions of risk ensure low probability of risked behavior
[WL99, FKR95]

� without worst-case guarantee
� without good expectation

3 Trade-off between expectation and variance [BCFK13, MT11]

� statistical measure of the stability of the performance
� no strict guarantee on individual outcomes
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Mean-payoff value function

MP(π) = lim inf
n→∞

[
1

n
·
i=n−1∑
i=0

w
(
(si , si+1)

)]

Sample play π = 2, −1, −4, 5, (2, 2, 5)ω

� MP(π) = 3
� long-run average weight ; prefix-independent

worst-case expected value BWC

complexity NP ∩ coNP P NP ∩ coNP

memory memoryless memoryless pseudo-polynomial

� [LL69, EM79, ZP96, Jur98, GS09, Put94, FV97]

� Additional modeling power for free!
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Philosophy of the algorithm

� Classical worst-case and expected value results and algorithms
as nuts and bolts

� Screw them together in an adequate way

Three key ideas

1 To characterize the expected value, look at end-components
(ECs)

2 Winning ECs vs. losing ECs: the latter must be avoided to
preserve the worst-case requirement!

3 Inside a WEC, we have an interesting way to play. . .

=⇒ Let’s focus on an ideal case
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An ideal situation

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9
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An ideal situation

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Game interpretation

� Worst-case threshold is µ = 0

� All states are winning: memoryless optimal worst-case
strategy λwc1 ∈ ΛPM

1 (G ), ensuring µ∗ = 1 > 0
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1
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0

−1

9

Game interpretation

� Worst-case threshold is µ = 0

� All states are winning: memoryless optimal worst-case
strategy λwc1 ∈ ΛPM

1 (G ), ensuring µ∗ = 1 > 0

MDP interpretation

� Memoryless optimal expected value strategy λe1 ∈ ΛPM
1 (P)

achieves ν∗ = 2
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of threholds (0, ν) can we achieve?
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of threholds (0, ν) can we achieve?

Key result

For all ε > 0, there exists a finite-memory strategy of P1 that
satisfies the BWC problem for the thresholds pair (0, ν∗ − ε).

� We can be arbitrarily close to the optimal expectation
while ensuring the worst-case!

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 18 / 26



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Combined strategy

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Outcomes of the form

WC > 0
E =??

K steps

∑
> 0

∑
> 0

∑
≤ 0

L steps

compensate
∑

> 0
∑
≤ 0 compensate
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Outcomes of the form

WC > 0
E =??

K steps

∑
> 0

∑
> 0

∑
≤ 0

L steps

compensate
∑

> 0
∑
≤ 0 compensate

What we want

E = ν∗ = 2

K , L→∞
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Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

When K grows, L needs to grow linearly to ensure WC

When K grows, P( )→ 0 and it decreases exponentially
fast

� application of Chernoff bounds and Hoeffding’s inequality for
Markov chains [Tra09, GO02]

Overall we are good: WC > 0 and E > ν∗ − ε for sufficiently
large K , L.
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Shortest path - truncated sum

Assume strictly positive integer weights, w : E → N0

Let T ⊆ S be a target set that P1 wants to reach with a path
of bounded value (cf. introductory example)

� inequalities are reversed, ν < µ

TST (π = s0s1s2 . . . ) =
∑n−1

i=0 w((si , si+1)), with n the first
index such that sn ∈ T , and TST (π) =∞ if ∀ n, sn 6∈ T

worst-case expected value BWC

complexity P P pseudo-poly. / NP-hard

memory memoryless memoryless pseudo-poly.

� [BT91, dA99]

� Problem inherently harder than worst-case and expectation.

� NP-hardness by K th largest subset problem [JK78, GJ79]
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� [BT91, dA99]

� Problem inherently harder than worst-case and expectation.

� NP-hardness by K th largest subset problem [JK78, GJ79]
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Key difference with MP case

Useful observation

The set of all worst-case winning strategies for the shortest path
can be represented through a finite game.

Sequential approach solving the BWC problem:

1 represent all WC winning strategies,

2 optimize the expected value within those strategies.
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Pseudo-polynomial algorithm: sketch

s1 s2

s3

1
2

1
2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q
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1
2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q

2 Build G ′ by unfolding G, tracking the current sum up to the
worst-case threshold µ, and integrating it in the states of G′.
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Pseudo-polynomial algorithm: sketch

3 Compute R, the attractor of T with cost < µ = 8

4 Consider Gµ = G ′ � R
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Pseudo-polynomial algorithm: sketch

5 Consider P = Gµ ⊗M(λstoch
2 )

6 Compute memoryless optimal expectation strategy

7 If ν∗ < ν, answer Yes, otherwise answer No
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In a nutshell

BWC framework combines worst-case and expected value
requirements

� a natural wish in many practical applications
� few existing theoretical support

Mean-payoff: additional modeling power for no complexity
cost (decision-wise)

Shortest path: harder than the worst-case, pseudo-polynomial
with NP-hardness result

In both cases, pseudo-polynomial memory is both sufficient
and necessary

� but strategies have natural representations based on states of
the game and simple integer counters
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Beyond BWC synthesis?

Possible future works include

study of other quantitative objectives,

extension of our results to more general settings
(multi-dimension [CDHR10, CRR12], decidable classes of
games with imperfect information [DDG+10], etc),

application of the BWC problem to various practical cases.

Thanks!
Do not hesitate to discuss with us!
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