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Abstract

We are interested in the following fourth order eigenvalue problem
coming from the buckling of thin films on liquid substrates:∆2u + κ2u = −λ∆u in B1,

u = ∂ru = 0 on ∂B1,

where B1 is the unit ball in RN. When κ > 0 is small, we show that
the first eigenvalue is simple and the first eigenfunction, which
gives the shape of the film for small displacements, is positive.
However, when κ increases, we establish that the first eigenvalue
is not always simple and the first eigenfunction may change sign.

1. Physical motivation

Clamped thin elastic membranes supported on a fluid substrate

water substrate

thin film (clamped)

compression

When the compression is large:

2. Mathematical model

If Ω is the reference domain, the shape of the film after compres-
sion is given by the function uε : Ωε → R (which represents the
vertical displacement of the film) which minimizes

H2
0(Ωε)→ R : v 7→

∫
Ωε

|∆v|2︸    ︷︷    ︸
bending

+ κ2
∫

Ωε

v2︸    ︷︷    ︸
potential energy

under the constraint that the membrane can bend but not stretch,
thus that its total area does not change.
As ε → 0, uε behaves like u where u ∈ H2(Ω) \ {0} satisfies
(see [2]): ∆2u + κ2u = −λ∆u in Ω,

u = ∂u
∂ν = 0 on ∂Ω.

(1)

For the case Ω = ]−L, L[ ⊆ R, see [3]. For related works, we refer
to [1,4,5].

Here we consider the case Ω = {x ∈ RN : |x| < 1}, N = 2, κ > 0.

3. The spectrum

Proposition 1. The eigenfunctions of the boundary value prob-
lem (1) are of the form u = R(r) eikθ with k ∈ Z and R given by

R(r) := cJ|k|(αr) + dJ|k|
(κ
α

r
)
, (2)

where Jk denotes the Bessel function of first kind and α ,
√
κ is

a positive solution to

Fk(α) :=
κ

α
J|k|(α)J′

|k|

(κ
α

)
− αJ|k|

(κ
α

)
J′
|k|(α) = 0. (3)

The corresponding eigenvalue is λ = α2 + κ2/α2.

Sketch of the proof.
The equation

∆2u + κ2 u = −λ∆u (4)

can be written under the form(
∆ + α2)(∆ + β2)u = 0,

with αβ = κ and α2 + β2 = λ.

Using the ansatz u(r, θ) = R(r) eikθ with k ∈ Z, we have

(∆ + α2)
(
R(r) eikθ) = 0 ⇔ (r∂r)2R + α2r2R = k2R

⇔ R(r) = cJ|k|(αr).

Hence a solution to (4) is in the form (2), with c, d ∈ C. The bound-
ary conditions in r = 1 give a 2 × 2 system:

c J|k|(α) + d J|k|
( κ
α

)
= 0,

cαJ′
|k|(α) + d κ

αJ′
|k|
( κ
α

)
= 0.

(5)

That leads to (3). �

4. Roots of Fk

Theorem 1. For all k ∈ N and κ > 0, there exists an increasing
sequence αk,` = αk,`(κ) > 0, with ` ∈ Z, solutions to (3) s.t.

∀` ≥ 0, αk,−` =
κ

αk,`
,

αk,0 =
√
κ and, ∀` > 0, αk,` >

√
κ > αk,−`,

αk,` → +∞ if ` → +∞,

αk,` → 0 if ` → −∞.

Sketch of the proof. By the asymptotic behaviour of the Bessel
functions, we have

Fk(α) =

√
2
π

κk

2k k!αk−1/2

(
cos

(
α − 2k+3

4 π
)

+ o(1)
)

as α→ +∞.

�

Lemma 1 (Intersection points). α ,
√
κ is a solution to Fk(α) = 0

and Fk+1(α) = 0 iff there exist m and n s.t.

• α = jk,n, κ/α = jk,m and κ = jk,m jk,n, or

• α = jk+1,n, κ/α = jk+1,m and κ = jk+1,m jk+1,n.

Sketch of the proof. We have

Fk(α) = αJk
(κ
α

)
Jk+1(α) −

κ

α
Jk(α)Jk+1

(κ
α

)
.

Fk+1(α) =
κ

α
Jk

(κ
α

)
Jk+1(α) − αJk(α)Jk+1

(κ
α

)
.

If Fk(α) = 0, we obtain

Fk+1(α) =
κ2 − α4

κα
Jk+1(α)Jk

(κ
α

)
. �

Proposition 2. For all κ > 0, we have

ᾱ(κ) := min
{
αk,`(κ)

∣∣∣ k ∈ N, ` ≥ 1
}

= min
{
α0,1(κ), α1,1(κ)

}
.

Moreover, the first eigenvalue λ1(κ) is given by λ1(κ) = ᾱ2(κ) +

κ2/ᾱ2(κ).
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Figure 1: Some roots of F0, F1

5. Structure of the first eigenspace

Theorem 2. Denote Rk,` a function defined by equation (2) with
(c, d) a non-trivial solution of (5) and α = αk,` with αk,` given by
Theorem 1.

• If κ ∈ [0, j0,1 j0,2[, the first eigenvalue is simple and is given
by λ1(κ) = α2

0,1(κ) + κ2/α2
0,1(κ) and the eigenfunctions ϕ1 are

radial, one-signed and |ϕ1| is decreasing with respect to r.

• If κ ∈ ] j1,n j1,n+1, j0,n+1 j0,n+2[, for some n ≥ 1, the first eigen-
value is simple and given by λ1(κ) = α2

0,1(κ) + κ2/α2
0,1(κ) and

the eigenfunctions are radial and have n + 1 nodal regions.

• If κ ∈ ] j0,n+1 j0,n+2, j1,n+1 j1,n+2[, for some n ≥ 0, the first
eigenvalue is given by λ1(κ) = α2

1,1(κ) + κ2/α2
1,1(κ) and the

eigenfunctions ϕ1 have the form

R1,1(r)(c1 cos θ + c2 sin θ), c1, c2 ∈ R.

Moreover the function R1,1 has n simple zeros in ]0, 1[, i.e., ϕ1
has 2(n + 1) nodal regions.
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Figure 2: Graph of ϕ1 for κ ∈ [0, j0,1 j0,2[.
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Figure 3: Graph of ϕ1 for κ ∈ ] j0,1 j0,2, j1,1 j1,2[.
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Figure 4: Graph of ϕ1 for κ ∈ ] j1,1 j1,2, j0,2 j0,3[.
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