

Nodal properties of eigenfunctions of a generalized buckling problem on balls

Colette De Coster, Serge Nicaise, Christophe Troestler

LAMAV, Université de Valenciennes et du Hainaut Cambrésis, F-59313 Valenciennes Cedex 9, France {Colette.DeCoster, Serge.Nicaise}@univ-valenciennes.fr Département de Mathématique, Université de Mons, B-7000 Mons, Belgium Christophe.Troestler@umons.ac.be

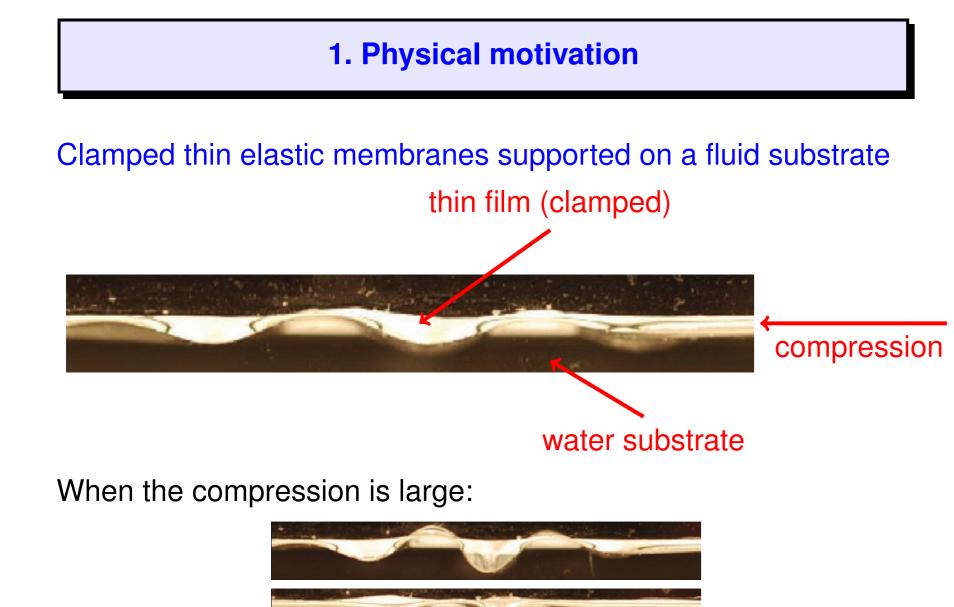
Using the ansatz $u(r, \theta) = R(r) e^{ik\theta}$ with $k \in \mathbb{Z}$, we have

5. Structure of the first eigenspace

We are interested in the following fourth order eigenvalue problem coming from the buckling of thin films on liquid substrates:

 $\begin{cases} \Delta^2 u + \kappa^2 u = -\lambda \Delta u & \text{in } B_1, \\ u = \partial_r u = 0 & \text{on } \partial B_1, \end{cases}$

where B_1 is the unit ball in \mathbb{R}^N . When $\kappa > 0$ is small, we show that the first eigenvalue is simple and the first eigenfunction, which gives the shape of the film for small displacements, is positive. However, when κ increases, we establish that the first eigenvalue is not always simple and the first eigenfunction may change sign.



```
\begin{split} (\Delta + \alpha^2) \big( R(r) \, \mathrm{e}^{\mathbf{i} k \theta} \big) &= 0 \iff (r \partial_r)^2 R + \alpha^2 r^2 R = k^2 R \\ \Leftrightarrow R(r) &= c J_{|k|}(\alpha r). \end{split}
```

Hence a solution to (4) is in the form (2), with $c, d \in \mathbb{C}$. The boundary conditions in r = 1 give a 2×2 system:

$$\begin{cases} c J_{|k|}(\alpha) + d J_{|k|}(\frac{\kappa}{\alpha}) = 0, \\ c \alpha J'_{|k|}(\alpha) + d \frac{\kappa}{\alpha} J'_{|k|}(\frac{\kappa}{\alpha}) = 0. \end{cases}$$

That leads to (3).

(5)

4. Roots of F_k

Theorem 1. For all $k \in \mathbb{N}$ and $\kappa > 0$, there exists an increasing sequence $\alpha_{k,\ell} = \alpha_{k,\ell}(\kappa) > 0$, with $\ell \in \mathbb{Z}$, solutions to (3) s.t.

$$\begin{aligned} \forall \ell \geq 0, \qquad \alpha_{k,-\ell} &= \frac{\kappa}{\alpha_{k,\ell}}, \\ \alpha_{k,0} &= \sqrt{\kappa} \quad \text{and}, \quad \forall \ell > 0, \quad \alpha_{k,\ell} > \sqrt{\kappa} > \alpha_{k,-\ell}, \\ \alpha_{k,\ell} &\to +\infty \text{ if } \ell \to +\infty, \\ \alpha_{k,\ell} \to 0 \text{ if } \ell \to -\infty. \end{aligned}$$

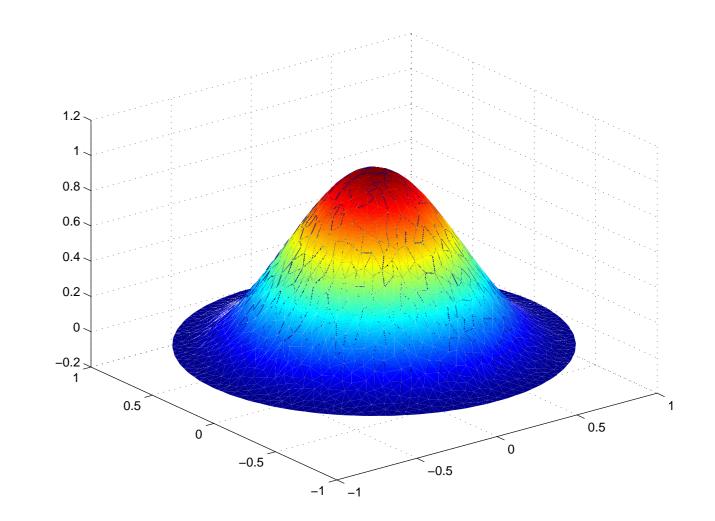
Sketch of the proof. By the asymptotic behaviour of the Bessel functions, we have

Theorem 2. Denote $R_{k,\ell}$ a function defined by equation (2) with (c,d) a non-trivial solution of (5) and $\alpha = \alpha_{k,\ell}$ with $\alpha_{k,\ell}$ given by Theorem 1.

- If $\kappa \in [0, j_{0,1}j_{0,2}[$, the first eigenvalue is simple and is given by $\lambda_1(\kappa) = \alpha_{0,1}^2(\kappa) + \kappa^2 / \alpha_{0,1}^2(\kappa)$ and the eigenfunctions φ_1 are radial, one-signed and $|\varphi_1|$ is decreasing with respect to r.
- If $\kappa \in]j_{1,n}j_{1,n+1}, j_{0,n+1}j_{0,n+2}[$, for some $n \ge 1$, the first eigenvalue is simple and given by $\lambda_1(\kappa) = \alpha_{0,1}^2(\kappa) + \kappa^2/\alpha_{0,1}^2(\kappa)$ and the eigenfunctions are radial and have n + 1 nodal regions.
- If $\kappa \in [j_{0,n+1}j_{0,n+2}, j_{1,n+1}j_{1,n+2}[$, for some $n \ge 0$, the first eigenvalue is given by $\lambda_1(\kappa) = \alpha_{1,1}^2(\kappa) + \kappa^2/\alpha_{1,1}^2(\kappa)$ and the eigenfunctions φ_1 have the form

 $R_{1,1}(r)(c_1\cos\theta + c_2\sin\theta), \qquad c_1, c_2 \in \mathbb{R}.$

Moreover the function $R_{1,1}$ has *n* simple zeros in]0, 1[, i.e., φ_1 has 2(n + 1) nodal regions.



2. Mathematical model

If Ω is the reference domain, the shape of the film after compression is given by the function $u_{\mathcal{E}} : \Omega_{\mathcal{E}} \to \mathbb{R}$ (which represents the vertical displacement of the film) which minimizes

 $H_0^2(\Omega_{\mathcal{E}}) \to \mathbb{R} : v \mapsto \underbrace{\int_{\Omega_{\mathcal{E}}} |\Delta v|^2 + \kappa^2 \int_{\Omega_{\mathcal{E}}} v^2}_{\text{bending}} \underbrace{\int_{\Omega_{\mathcal{E}}} v^2}_{\text{potential energy}}$

under the constraint that the membrane can bend but not stretch, thus that its total area does not change. As $\varepsilon \to 0$, u_{ε} behaves like u where $u \in H^2(\Omega) \setminus \{0\}$ satisfies (see [2]):

$$\begin{cases} \Delta^2 u + \kappa^2 u = -\lambda \Delta u & \text{in } \Omega, \\ u = \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega. \end{cases}$$

For the case $\Omega =]-L, L[\subseteq \mathbb{R}, \text{ see [3]}$. For related works, we refer to [1, 4, 5].

Here we consider the case $\Omega = \{x \in \mathbb{R}^N : |x| < 1\}, N = 2, \kappa > 0.$

3. The spectrum

Proposition 1. The eigenfunctions of the boundary value problem (1) are of the form $u = R(r) e^{ik\theta}$ with $k \in \mathbb{Z}$ and R given by

$$F_k(\alpha) = \sqrt{\frac{2}{\pi}} \frac{\kappa^k}{2^k \, k! \, \alpha^{k-1/2}} \left(\cos(\alpha - \frac{2k+3}{4}\pi) + o(1) \right) \text{as } \alpha \to +\infty.$$

Lemma 1 (Intersection points). $\alpha \neq \sqrt{\kappa}$ is a solution to $F_k(\alpha) = 0$ and $F_{k+1}(\alpha) = 0$ iff there exist *m* and *n* s.t.

• $\alpha = j_{k,n}$, $\kappa/\alpha = j_{k,m}$ and $\kappa = j_{k,m} j_{k,n}$, or

• $\alpha = j_{k+1,n}$, $\kappa / \alpha = j_{k+1,m}$ and $\kappa = j_{k+1,m} j_{k+1,n}$.

Sketch of the proof. We have

$$F_{k}(\alpha) = \alpha J_{k} \left(\frac{\kappa}{\alpha}\right) J_{k+1}(\alpha) - \frac{\kappa}{\alpha} J_{k}(\alpha) J_{k+1} \left(\frac{\kappa}{\alpha}\right).$$
$$F_{k+1}(\alpha) = \frac{\kappa}{\alpha} J_{k} \left(\frac{\kappa}{\alpha}\right) J_{k+1}(\alpha) - \alpha J_{k}(\alpha) J_{k+1} \left(\frac{\kappa}{\alpha}\right).$$

If $F_k(\alpha) = 0$, we obtain

(1)

(2)

(4)

$$F_{k+1}(\alpha) = \frac{\kappa^2 - \alpha^4}{\kappa \alpha} J_{k+1}(\alpha) J_k \left(\frac{\kappa}{\alpha}\right).$$

Proposition 2. For all $\kappa > 0$, we have

 $\bar{\alpha}(\kappa) := \min\{\alpha_{k,\ell}(\kappa) \mid k \in \mathbb{N}, \ell \ge 1\} = \min\{\alpha_{0,1}(\kappa), \alpha_{1,1}(\kappa)\}.$

Moreover, the first eigenvalue $\lambda_1(\kappa)$ is given by $\lambda_1(\kappa) = \bar{\alpha}^2(\kappa) + \kappa^2/\bar{\alpha}^2(\kappa)$.

Figure 2: Graph of φ_1 for $\kappa \in [0, j_{0,1}j_{0,2}[$.

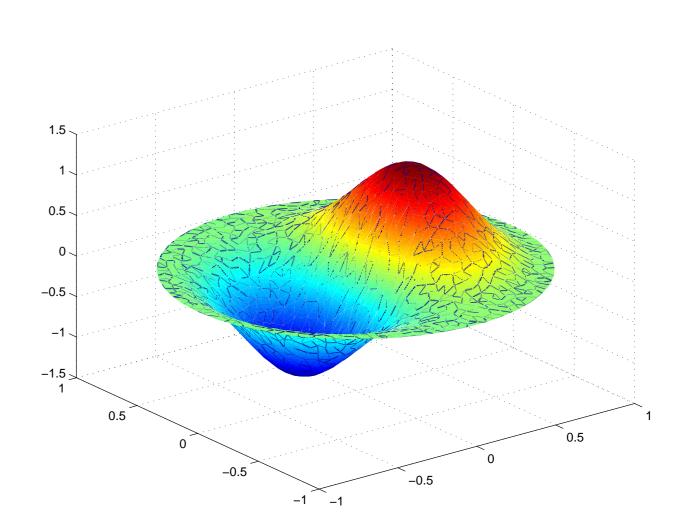
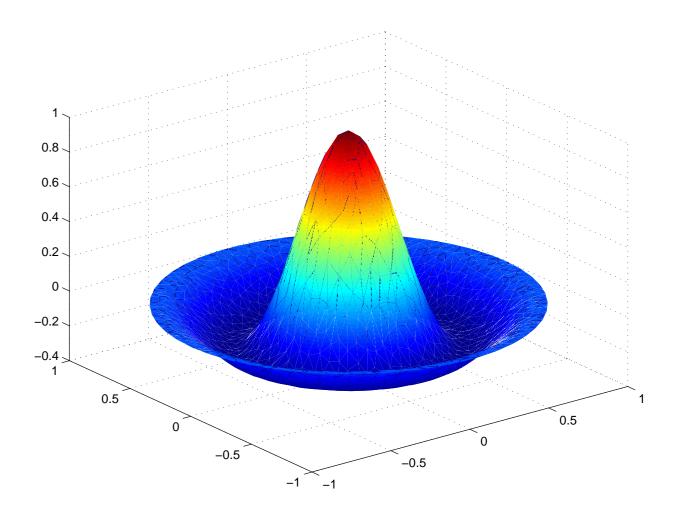


Figure 3: *Graph of* φ_1 *for* $\kappa \in]j_{0,1}j_{0,2}, j_{1,1}j_{1,2}[$.



 $R(r) := cJ_{|k|}(\alpha r) + dJ_{|k|}\left(\frac{\kappa}{\alpha}r\right),$

where J_k denotes the Bessel function of first kind and $\alpha \neq \sqrt{\kappa}$ is a positive solution to

 $F_k(\alpha) := \frac{\kappa}{\alpha} J_{|k|}(\alpha) J'_{|k|}\left(\frac{\kappa}{\alpha}\right) - \alpha J_{|k|}\left(\frac{\kappa}{\alpha}\right) J'_{|k|}(\alpha) = 0.$ (3)

The corresponding eigenvalue is $\lambda = \alpha^2 + \kappa^2 / \alpha^2$. Sketch of the proof.

The equation

 $\Delta^2 u + \kappa^2 u = -\lambda \Delta u$

can be written under the form

 $(\Delta + \alpha^2)(\Delta + \beta^2)u = 0,$ with $\alpha\beta = \kappa$ and $\alpha^2 + \beta^2 = \lambda$.

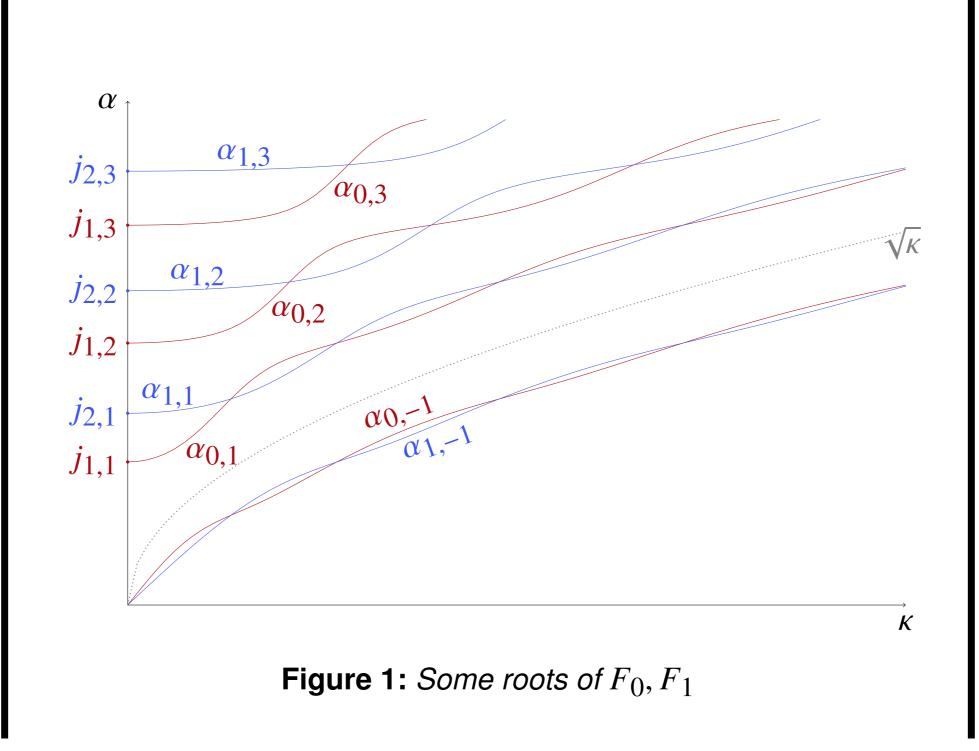


Figure 4: Graph of φ_1 for $\kappa \in [j_{1,1}j_{1,2}, j_{0,2}j_{0,3}[.$

References

- [1] L. M. Chasman. Vibrational modes of circular free plates under tension. *Appl. Anal.*, 90(12):1877–1895, 2011.
- [2] B. Desmons, S. Nicaise, C. Troestler, and J. Venel. Wrinkling of thin films laying on liquid substrates under small compression. *in preparation*, 2015.
- [3] B. Desmons and C. Troestler. Wrinkling of thin films laying on liquid substrates under small one-dimensional compression. *preprint*, 2015.
- [4] B. Kawohl, H. A. Levine, and W. Velte. Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions. SIAM J. Math. Anal., 24(2):327–340, 1993.
- [5] P. Laurençot and C. Walker. Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry. *J. Anal. Math.*, 2014. to appear.