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Abstract: Liquid crystal polymers have attracted massive attention as stimuli-responsive shape
memory materials due to their unique reversible large-scale and high-speed actuations. These
materials can be utilized to fabricate artificial muscles, sensors, and actuators driven by thermal
order–disorder phase transition or trans–cis photoisomerization. This review collects most commonly
used liquid crystal monomers and techniques to macroscopically order and align liquid crystal
materials (monodomain), highlighting the unique materials on the thermal and photo responsive
reversible shape memory effects. Challenges and potential future applications are also discussed.

Keywords: liquid crystal polymers; shape memory materials; reversible strain; thermal responsive;
photo responsive

1. Introduction

Liquid crystal polymers (LCPs) are of intense interest due to their unique anisotropic shape
changing and mechanical properties [1]. During the past decade, researchers are examining and
discovering their fascinating properties, such as rapid and large reversible actuation in order to make
this class of materials good candidates for stimuli-responsive reversible shape memory materials [2–4].
Compared to traditional shape memory materials, one of the most remarkable properties of LCPs is a
fully reversible, equilibrium phenomenon. It also has astonishingly large amplitude (200–300%), and
can be stimulated by temperature change or irradiation by light [5]. The possibility of applications
ranges from actuators and sensors [6,7] to artificial muscles [8] and active smart surface [9–11]. In this
review, order–disorder phase transition of the thermal or trans–cis photoisomerization mechanisms of
shape change of LCPs will be introduced in Section 2. We summarize several pathways to prepare
monodomain LCPs in Section 3, highlighting the unique materials applied to free-standing reversible
shape memory effects in Section 4.

2. Mechanisms of Shape Change in LCPs

The basic principle behind the shape change of LCPs depends on alignment directions and
relevant phase transitions (nematic, cholesteric, smectic, or isotropic) [3]. The majority of studies on
the actuation of LCPs based on thermally induced order–disorder phase transition are illustrated in
Figure 1a [2,12]. Materials exhibit anisotropic deformation along the director orientation as the order
parameter (S) change above the phase transition temperature. For another photoinduced type, such as
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azobenzene-containing LCPs, the stabilized rod-like trans azobenzene mesogens transfer to unstable
bent cis isomers irradiation with UV light, resulting in the decrease of the order parameter. Then, the
volume shrinkage in the film surface cause bending behavior (Figure 1b) [13]. Based on the mechanisms,
the widely studied monomers are adopted to fabricated LCPs illustrated in Figure 1c [2,3,11,14,15].
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Figure 1. (a) Mechanisms of liquid crystal polymers (LCPs) shape change of the polymer chain
suffering from anisotropic deformation to its coiled conformation above the nematic-to-isotropic phase
transition. Reproduced with permission from [2]. Copyright© 2010 WILEY-VCH. (b) Mechanisms
of the photoinduced bending behavior in the azobenzene-containing LCPs caused by a trans–cis
photochemical phase transition in the surface. Reproduced with permission from [13]. Copyright©
2006 WILEY-VCH. (c) Chemical structures of common liquid crystal monomers [2,3,11,14,15].

3. Strategy for Preparation of Monodomain LCPs

To observe free-standing reversible actuation, macroscopic alignment of the mesogens is necessary
to form a LC monodomain. Up to now, a variety of approaches has been used to generate uniformly
macroscopic LCPs. This section will discuss the commonly used methods.

A two-step crosslinking technique is one of the most commonly implemented and simplest
methods to dictate alignment. Multifunctional groups are designed in monomers to fabricate a network
controlled by react ratio [16–18]. In the initial step, a weakly crosslinked elastic network is formed
and aligned by mechanical stretching of the polymer chains, against the entropy. The liquid crystal
phase is further locked in the conformation of the backbone by a following second crosslinking step.
Küpfer and Finkelmann introduced a fast and a slow crosslinking process for polysiloxane-based LCPs.
An optically clear film was fabricated and fixed with an external load during the second crosslinking
stage. The highly ordered monodomain of the sample has been proven by the X-ray experiment [16].
However, it should be noted that a high internal stress in the network and a limited ordering of the
mesogens inhibited this approach, because the first stage required a partly crosslinked network to
facilitate subsequent programming.

External fields alignments are the useful methods to prepare LCPs. Typically, the low viscous
liquid crystal monomers are melted and cooled into liquid crystal phase, then aligned by external fields
(such as surface rubbing [19,20], photo alignment [21,22], electric [23], or magnetic alignment [24,25].
Finally, the mesogens are fixed by further polymerization. The direction of liquid crystal relative to a
substrate surface plane is critically determined by the nature of the surface. Rubbing on polyimide
alignment layers has been used to fabricate a monodomain LCP film [26,27]. The monomeric mixtures
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are melted on a glass substrate coated with a rubbed polymer film (polyimide, poly (vinyl alcohol)),
cooled into liquid crystal phase parallel to the rubbing direction, and polymerized. This kind of
photoalignment was first reported by Ichimura et al. in 1988 [28]. A substrate surface is modified
with photochromic units (such as azobenzene) in molecular levels to alter the chemical structures and
molecular orientation by irradiation. The alignment of the mesogens is controlled by photochromic
reactions such as trans–cis photoisomerization [29,30]. Ferroelectric liquid crystal monomers possess a
very strong dipole moment. The materials prefer to be parallel to the direction of electric field, orienting
the monodomain. An anisotropic film can be obtained by crosslinking under an appropriate field [31,32].
The monodomain LCP film can be synthesized by the use of magnetic fields for the alignment of
nematic liquid crystals [24,33]. Due to strong diamagnetism, the mesogens are aligned along the
orientation of applied magnetic field when cooling to the nematic phase from isotropic phase. Based on
this basis, many methods were recently developed for monodomain LCPs including the electrospinning
process [34], microfluidics [35,36], inkjet 3D printing [37–39], and soft lithography [40,41]. Despite
much success in implementation of the aforementioned external assisted methods, monodomain LCPs
also present unique challenges such as limited sample size, the inability to reprogram, or complex
3D structure.

More recently, to break through these bottlenecks, researchers put forward a new strategy by
synthesizing monodomain LCEs with dynamic covalent bond exchange, called covalent adaptable
networks (CANs), or vitrimers [42–44]. Vitrimers are able to change their topological structure due
to the exchange reactions under certain external stimuli. To date, most of the monodomain LCPs
with exchangeable links were prepared based on transesterification [45–47], transcarbamoyalation [48],
boronic-ester bond [49], disulfide [50,51], and allyl sulfide groups [52–54]. Summarized in Figure 2,
Ji et al. demonstrated that after programming the LCEs monodomain with the topological network
rearrangement were facilitated by thermo-induced transesterification. The material showed excellent
reversible shape memory effects and 3D shape change [47]. Bowman et al. reported a spatiotemporal
control of alignment based on photoactivated allyl sulfide bond exchange, which represents a powerful
way to create thermal reversible freestanding films [52]. Although precious structures and external
stimuli in the arrangement are required in the process, CANs serve as a powerful tool to achieve
monodomain LCPs.
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4. Shape Change of LCPs Triggered by Different Stimuli

As already described in Section 2, thermal and photo are primary stimuli used to actuate shape
change of monodomain LCPs. The phase transition driven by direct heating is the simplest and
easily available stimuli, which has been widely observed in LCPs. In many cases, light emerges as a
contactless energy source as it can be directed for microscale devices from rapidly turned on or off and
spatially remote distances [55], including photo-heat effect and trans–cis photoisomerization. In this
review, the ratio of shape change is calculated to the original stain of samples.

4.1. Thermal Responsive LCPs

Thermal responsive LCPs exhibit shape change along the director orientation as the order parameter
changes by the heating above and cooling below the phase transition temperature. Contraction and
expansion behaviors of LCPs driving by direct heating and cooling along the aligned orientation
director is shown in Figure 3. The first reported monodomain LCP was prepared by Finkelmann et al.
using a two-step crosslinking method depending on the react speed of C=C double bonds of vinyl
groups and methacrylate groups to the Si-H of polyhydrosiloxane chain. A shape change in length of
90% parallel to the alignment direction was obtained during the nematic–isotropic phase transition [16].
A reversible actuation of an LCP film can lift up and put down a 10 g weight when heating and
cooling (Figure 3a) [56]. In our previous work, we fabricated a monodomain LCP synthesized
by a commercial liquid crystal monomer RM82 via thiol-Michael reaction. This material shows
independent isotropic−nematic and nematic−smectic phase transitions. A single system possessed
two-way reversible strains and multiple shape memory effects (Figure 3b) [48]. In Figure 3c, Ratna
et al. reported side chain polyacrylate LCPs that exhibit strains of 35–45% to the stresses of 210 kPa.
These muscle-like materials have potential possibility to design artificial muscle actuators (compared
to muscle shrinkage stress of 300 kPa) [27]. In addition to the macro-sized system, micro- or nano-sized
actuators are desirable for practical application. Keller et al. utilized a soft lithography technique
to prepare micron-sized responsive liquid crystal pillars [35,57]. The pillars underwent a reversible
contraction and expansion in the order of 30–40% when heating and cooling (Figure 3d). A similar
micrometer-size actuator was shown in Figure 3e synthesized by Zental et al. via the microfluidic
method. The particles consisting of monodomains showed a reversible change in length of about
70% [36].

Aligned LCPs exhibit dimensional changes along the alignment direction in response to
temperature changes. However, the implementation of programmable shape change in applications
requires the further development of soft materials that exhibit spatial, predictable, and complex
reversible variations. Some precious works have been reported by researchers, such as patterned
approach and 3D printing [58,59]. In Figure 4a, White et al. prepared a spatially heterogeneous liquid
crystal elastomers with surface alignment and optical patterning methods. They demonstrated a
variety of three-dimensional programmable actuation and shape changes [60]. Photoinduced dynamic
exchange processes enable spatial resolution and patterned reprogramming in any topography state,
such as allyl dithiol. Bowman et al. prepared a diacrylate oligomers by thiol-Michael addition reaction
and then created complex, predictable, and spatially reversible shape changes by programming LCP
in the LC phase or isotropic phase (Figure 4b) [53,61]. Nowadays, the 3D printing technique offers
new scope to construct complex topography. Lewis et al. printed a various of complex 3D LCPs that
resulted in reversible shape change (Figure 4c) [39] and the transformed shapes can be locked on
demand with photo-activated dynamic bond [54].
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Figure 3. Contraction and expansion behaviors of LCPs along aligned orientation director. (a) Schematic
illustration of a two-step crosslinking method and a reversible strain can lift up and put down a 10 g
weight. Reproduced with permission from [16]. Copyright© 1991 WILEY-VCH. (b) The two-stage
reversible strains were achieved by smectic A−nematic and nematic−isotropic phase transitions upon
thermal cycling (from left to right). Reprinted with permission from [48]. Copyright (2018) American
Chemical Society. (c) Iso-strain measurement on side-chain LCPs heating through the nematic to
isotropic phase transition. Reprinted with permission from [27]. Copyright (2001) American Chemical
Society. (d) An isolated pillar exhibits a contraction with the order of 35%. Reprinted with permission
from [35]. Copyright (2006) American Chemical Society. (e) LC-particles possess reversible changes
from spherical to cigar-like. Reproduced with permission from [36]. Copyright© 2009 WILEY-VCH.
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Figure 4. Predictable and complex reversible variations of LCPs. (a) LCP films prepared with a 3 × 3
array of +1 radial defects can be actuated to generate periodic topographical surfaces. Reproduced
with permission from [60]. Copyright © 2015, AAAS. (b) The polymer was folded, fixed, and
light-induced reprogrammed with 320 to 500 nm resulting in unfolding at high temperatures and
folding during cooling. Reproduced with permission [53]. Copyright 2018, The Authors, some
rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed
under a CC BY-NC 4.0 license, published by American Association for the Advancement of Science.
(c) Programmable shape morphing LCPs fabricated by the 3D printing possess capable of reversible
actuation. Reproduced with permission [39]. Copyright© 2019 WILEY-VCH.

In addition to the direct heating to actuate the shape change of LCPs, light is employed to trigger
the shape changes in a precise and remote control. Light is a contactless energy source as it can be
directed for microscale devices from rapidly turned on or off and spatially remote distances [55].
A noncontact actuation by doping the LCP matrix with a light-heat transfer agent to trigger the
order–disorder transition of mesogens is summarized in Figure 5. These photothermal materials
include graphene [62,63], carbon nanotubes [64,65], conjugated polymers [66], chromophore [67],
organic dyes [68], and gold nanocrystals [45,69].

In Figure 5a, Terentjev et al. prepared a series of LCPs mixed with carbon nanotubes (CNTs). They
demonstrated that CNTs can absorb infra-red/visible light and convert it into local heat, thus triggering
thermal response of LCPs [70,71]. Yang et al. synthesized a monodomain polyaniline nanoparticle/LCP
composite with respect to the NIR-stimulated photo-activated performances. The material exhibited a
fully reversible shape memory effect when turning on or off the NIR light [66]. Taking advantage of the
extraordinary photothermal conversion property of NIR chromophore, an ultrafast photo responsive
speed soft actuator has been reported by Yang’s group. The material can raise the local temperature
from 18 to 260 ◦C in 8 s, and lift up its 5600 times weight irradiation by 808 nm NIR light (Figure 5b) [67].
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Figure 5. Photo responsive LCPs based on photo-heat effect. (a) An actuation stress measured by
Iso-strain geometry on carbon nanotubes (CNTs)/LCPs composites irradiation with infrared light [71].
(b) The chemical structures of near-infrared spectroscopy (NIR) chromophore and LC monomers. A
LCP film lifts up a load under NIR illumination irradiation. Reprinted with permission from [67].
Copyright (2017) American Chemical Society.

4.2. Photo Responsive LCPs

Apart from thermal responsive LCPs, photo-driven LCPs containing azobenzene mesogens
are typical kinds of materials that have been widely used for fabricating shape change actuators.
The reversible trans–cis photoisomerization leads to a tiny decrease in the order parameter of LCPs
which contribute to the shrinkage in the film surface. Figure 6 shows a variety of behaviors which
has been explored such as bending and unbending [26,72–74], twisting [75], oscillations [76–78], and
three-dimensional movements [14,79].

Ikeda and Yu et al. synthesized the first azo-LCP film exhibited bending behavior in response to
the chosen direction by linearly polarized light (Figure 6a) [72]. The new 3D movement of azo-LCN
composite materials was also reported by the same group. Based on this concept, a new photomechanical
nanoscale plastic motor was developed to convert light to mechanical energy directly by simultaneous
irradiation with UV and visible light at room temperature (Figure 6b) [14]. White et al. prepared
azobenzene-containing monolithic LCPs (azo-LCNs) exhibiting photoinduced motion irradiation with
UV–visible light. The twisted-nematic orientation transforms the films from flat to spiral ribbons,
resulting in complex controllable photomechanical behaviors (Figure 6c) [75]. With the concept of the
reversible change of order parameters of azobenzene units, Broer et al. designed a smart chiral nematic
surface coating exhibited reversible change in the surface topology upon exposure to UV and visible
light (Figure 6d) [11,80], A sponge-like coating has been developed that exhibited the ability to release
and absorb a liquid after irradiation with light. The surface forces between the coating and an opposing
surface can be controlled by light, resulting in tunable adhesion [81]. More recently, an interesting
light-driven robot was prepared by Xia and Zhao et al. This AuNRs hybrid azobenzene LCP combined
two photo responsive mechanisms of the trans–cis photoisomerization of azobenzene exposure to UV
and LC–isotropic phase transition by AuNR’s NIR photo-heat effect, showing preciously controllable
motions (Figure 6e) [45].
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Figure 6. Photo responsive LCPs based on trans–cis photoisomerization of azobenzene irradiation by
UV and visible light. (a) Precise control of the film bending and unbending in different directions
in response to linearly polarized light. Reproduced with permission from [72]. Copyright 2003,
Nature Publishing Group. (b) The rotation of the LCP laminated plastic motor driven by simultaneous
irradiation with UV and visible light at room temperature. Reproduced with permission from [14].
Copyright© 2008 WILEY-VCH. (c) Photo motility of an azo-LCP strip in the twisted nematic geometry
forms a spiral ribbon and continuously moves to the right. Reproduced under the terms of the CC BY
4.0 license from [75]. Copyright 2016, The Authors, published by Springer Nature. (d) The reversible
surface change of chiral nematic surface coatings. Reproduced with permission from [11]. Copyright©
2012 WILEY-VCH. (e) Preciously controllable motions of a light driven robot to grasp, lift up, lower
down, and release a tube. Reproduced with permission from [45]. Copyright© 2018 WILEY-VCH.

Considering the safety, cost, and power consumption, high-energy light UV is not an ideal
source for practical applications in the real world. Researchers are enthusiastic to design visible/NIR
light responsive systems. Yu et al. designed a novel molecule excited triplet−triplet annihilation
based on upconversion luminescence (Figure 7a). They doped the low-power activated mesogens
into azo-containing LCP matrix to create a photo responsive composite. The film achieved red and
NIR-light triggered bending via an emission-reabsorption process [82]. Furthermore, they constructed
robust tubular LCP micro-actuators, which exhibited asymmetric topologic variation irradiation with
intensity gradient visible light, resulting in capillary forces for liquid propulsion (Figure 7b) [83].
Fluorinated azobenzene molecules have been reported that can be switched solely by visible light [84].
To realize the application in sunlight, Broer et al. described that the LC soft actuator doped with a
visible light responsive ortho-fluoroazobenzene moiety exhibited continuous self-propelling oscillatory
motion upon exposure to sunlight shown in Figure 7c [77,78].
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Figure 7. Photo responsive LCPs based on trans–cis photoisomerization of azobenzene irradiation by
NIR light. (a) Chemical structures of LC monomers and the photographs of the as-prepared assembly
film bending toward the 635 nm laser. Reprinted with permission from [82]. Copyright (2006) American
Chemical Society. (b) Schematic illustration of the structure of artery walls of tubular micro-actuator,
(left)). Manipulation of fluid propulsion by photo-induced tubular micro-actuators, (right). Reprinted
with permission from [83]. Copyright 2016 Nature Publishing Group. (c) Chemical structures of
ortho-fluoroazobenzene mesogens and schematic of the LC splay aligned azobenzene-containing
film (left). Series of snapshots depict self-oscillatory motion of the film during sun exposure (right).
Reproduced under the terms of the CC BY 4.0 license [78]. Copyright 2016, The Authors, published by
Springer Nature.

5. Conclusions

Compared with traditional stimuli-responsive materials, LCPs are capable of fast and large-scale
reversible shape change, which enable the distinctive potential applications in artificial muscles,
actuators, sensors, and robotics. The key to generate spatial actuation in LCP materials is the fabrication
of monodomain. The alignment of mesogens toward monodomain has to be achieved through
several methods. Dynamic covalent bonds provide a promising approach to program the orientation
of mesogens and break through the limitation of permanent shapes. Combined with the recently
developed techniques will provide a promising opportunity to design programmable LCP actuators.
The preciously and controllable diverse range of spatial variation in directionality will further broaden
these stimuli-responsive materials research. One interesting aspect of LCPs is soft robotics that
responded to the surrounding stimuli exhibiting autonomous motions, such as oscillating, rotating,
rolling, or twisting. Another is the recently smart surface showing morphological changes to enable
tunable surface wettability, reflective color, adhesion, and haptic actuation. To develop a “real-life”
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application of LCPs, the development of patterned methods of LCPs and the low threshold actuation
of stimuli-responsive materials will require a multidisciplinary approach in theories and technologies.
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