Exploring the Relationship Between DUX4 and Hypoxia-Inducible Factor (HIF1α)

Thuy-Hang Nguyen¹, Alexandra Tassin¹, Alexandre Legrand¹, Anne-Emilie Declèves², Nicolas Figeac³, Philipp Heher³, Christopher R. S. Banerji³ and Peter S. Zammit³

¹Lab. of Respiratory Physiology, Pathophysiology and Rehabilitation, ²Lab. Metabolic and Molecular Biochemistry, Health Institute, University of Mons, Belgium, ³Randall Centre for Cellular and Molecular Biophysics, King's College of London, UK

Background: Examining FSHD skeletal muscle molecular networks reveals pathways involved in hypoxic response and oxidative stress to be critically disturbed, with HIF1 α being of particular interest (Banerji et al., 2015, 10.1098/rsif.2014.0797).

Objectives: Our goal is to investigate potential relationships between DUX4 and HIF1 α and its contribution to muscle dysfunction.

Results: Human DUX4 inducible myoblasts were cultured under normoxia or hypoxia. Immunofluorescence studies showed that hypoxia increases HIF1 α protein levels, with a concomitant increase in proliferation rate. Hypoxia however, reduced myogenic differentiation into multinucleated myotubes. DUX4 induction reduces differentiation, and preliminary data indicates that HIF1 α levels are altered upon DUX4 expression, depending on the differentiation state. 52% of induced myoblast nuclei with DUX4 also contained HIF1 α protein. In vivo studies are ongoing, and include a murine model based on an intramuscular injection of a DUX4 expression vector followed by electroporation.

Conclusion: FSHD is linked to a greater sensitivity of muscle cells to oxidative stress. Using transcriptomic studies, we have found that HIF1 α signalling is deregulated in FSHD. Expression of DUX4 in human myoblasts associates with HIF1 α signalling, and we are investigating this association with the DUX4-induced phenotype.