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We study static, spherically symmetric and electrically charged black hole solutions in a quadratic 
Einstein-scalar-Gauss-Bonnet gravity model. Very similar to the uncharged case, black holes undergo 
spontaneous scalarization for sufficiently large scalar-tensor coupling γ – a phenomenon attributed to 
a tachyonic instability of the scalar field system. While in the uncharged case, this effect is only 
possible for positive values of γ , we show that for sufficiently large values of the electric charge Q two 
independent domains of existence in the γ -Q -plane appear: one for positive γ and one for negative 
γ . We demonstrate that this new domain for negative γ exists because of the fact that the near-
horizon geometry of a nearly extremally charged black hole is AdS2 × S2. This new domain appears for 
electric charges larger than approximately 74% of the extremal charge. For positive γ we observe that a 
singularity with diverging curvature invariants forms outside the horizon when approaching extremality.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes are a a priori theoretical prediction of the best the-
ory of gravity that we have to this day, General Relativity [1]. 
Recent direct detections of gravitational waves (GWs) [2] seem to 
provide mounting evidence that these compact objects – indeed – 
exist in the universe. In order to extract data from the detected GW 
signals, it is very important to understand the processes that led 
to their emission. As such, exact solutions to GR are very impor-
tant. And although GR is highly non-linear, solutions of this type 
do exist and are well understood. Next to the spherically symmet-
ric solutions to the (electro)vacuum Einstein equation [3,4] – which 
are necessarily static [5,6] – stationarily rotating (electro)vacuum 
solutions exist in the form of the Kerr(-Newman) solutions [7], 
which are necessarily axisymmetric [8]. Interestingly, these black 
hole solutions are described uniquely by a very small amount of 
parameters that are subject to a Gauss law: mass M , charge Q
and angular momentum J [9–12]. This fact was summarized in 
the statement that black holes have no hair.

The question then arises what happens if next to electromag-
netic fields additional matter fields are present. When considering 
static scalar fields, a number of no-hair theorems have been proven 
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for asymptotically flat black hole space-times in standard GR. 
Black holes with regular event horizon can neither support static, 
massless scalar fields [13,14] nor massive scalar fields [14,15]
nor scalar fields with self-interaction potential and non-negative 
energy-density [16]. Interestingly, in [16] it was also demonstrated 
that the theorem can be extended to the Brans-Dicke scalar-gravity 
model. In this latter model, a real scalar field is non-minimally 
coupled to gravity by replacing the Einstein-Hilbert term R/G by 
φR , where R is the Ricci scalar [17]. The scalar field hence plays 
the rôle of a varying Newton’s constant φ = G−1. Brans and Dicke 
introduced this coupling in order to take Mach’s principle into ac-
count.

In recent times, scalar-tensor gravity models have become pop-
ular again. One reason being the application to cosmology where 
a scalar field is believed to have driven the very rapid expansion 
of the universe very shortly after the Planck era, which is typically 
referred to as “inflation”. Models that have been discussed exten-
sively in this direction are the so-called Horndeski scalar-tensor 
gravity models [18], which constitute all possible scalar-tensor 
gravity models that lead to second order equations of motion [19,
20]. These models are, however, also interesting with view to the 
above mentioned no-hair theorems. In contrast to minimally cou-
pled scalars and Brans-Dicke theory, Horndeski models allow static, 
asymptotically flat black holes that carry scalar hair [21,22]. In 
[21] a concrete example was provided using a model that next to 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the Einstein-Hilbert action contains a scalar-tensor coupling of the 
form φG , where G is the Gauss-Bonnet term. This model possesses 
a shift symmetry for the scalar field of the form φ → φ + c, where 
c is a constant, which leads to an associated conserved Noether 
current.

In the following, models with non-minimal coupling between 
the scalar field and the metric (as well as other fields) have been 
discussed. Typically, so-called “scalarization” of black holes appears 
in models that contain non-minimal coupling terms of the form 
f (φ)I(gμν; �), where f (φ) is a function of the scalar field and 
I depends on the metric gμν and/or other fields � and acts as 
a “source term” in the scalar field equation. The first example of 
this type was given in a model of a conformally coupled scalar 
field with interaction term of the form 1/6φ2 R [23], where R
is the Ricci scalar. Recently, the scalarization of static, uncharged 
black holes with I = G have been discussed – for f (φ) = φ2 [24]
and for different other forms of f (φ) with a single tem in f (φ)

[25–27] as well as a combination of different powers of φ [28]. In 
all case, the scalarization appears only for sufficiently large cou-
pling between the scalar field and the GB term. In [29] a model 
combining the original shift symmetric scalar field and a quadratic 
scalar field coupled to the GB term has been studied bridging be-
tween shift symmetry and spontaneous scalarization. The stability 
of scalarized, static black holes has also been discussed recently 
[30]. The models can be extended to include charge of the black 
hole. This has been achieved in the conformally coupled scalar 
field case [23] as well as for a complex scalar field and f (φ) dif-
ferent from φ2 [31]. In fact, electromagnetic fields can source the 
scalar field when non-minimally coupled. This was demonstrated 
for f (φ) = exp(−αφ2) and I = Fμν F μν , where Fμν is the electro-
magnetic field strength tensor, in [32]. Moreover, models contain-
ing higher order terms in Fμν can also lead to scalarization [33].

In this paper, we are investigating the model discussed in [31], 
but are mainly interested in the scalarization of near-extremal 
black holes and show that new features appear. The RN – in con-
trast to the Schwarzschild – black hole possesses an extremal limit 
at which the Hawking temperature of the black hole tends to zero. 
In this limit, the near-horizon geometry of the RN is given by a 
product of a 2-dimensional Anti-de Sitter geometry AdS2 and a 
2-dimensional sphere S2 with the additional property that the cur-
vature radius of the AdS2 and the radius of the sphere are both 
equal to the mass of the solution (see e.g. [34] for a detailed dis-
cussion on the geometry of extremal RN solutions). The fact, that 
an AdS factor appears makes it possible to associate a dual Confor-
mal Field Theory (CFT) to it via the AdS/CFT correspondence [35]
and hence compute the black hole entropy via the dual CFT [36].

The RN solution is often considered a simpler “toy model” for 
the Kerr metric [37] as the latter possesses also an extremal limit 
and a similar causal structure of the space-time. We will follow 
this point view here and will study the scalarization of charged, 
static and spherically symmetric black hole solutions also with the 
motivation to learn something about the scalarization of stationary 
solutions with angular momentum.

Our paper is organized as follows: in Section 2, we will in-
troduce the model and Ansatz. In Section 3, we will discuss the 
scalarization of the RN solution, solving the scalar field equation 
in the background of this black hole solution. Section 4 contains 
our results on the full back-reacted problem. We summarize and 
conclude in Section 5.

2. The model

The model we are studying in this paper is a scalar-tensor grav-
ity model that contains a non-minimal coupling between a real 
scalar field and the Gauss-Bonnet term. This model reads:
S =
∫

d4x
√−g

[
R

2
+ γ φ2G − DμφDμφ − 1

4
Fμν F μν

]
, (1)

where the Gauss-Bonnet term G is given by

G = Rμνρσ Rμνρσ − 4Rμν Rμν + R2 , (2)

and units are chosen such that 8πG ≡ 1. Dμ denotes the gravita-
tional covariant derivative, and we keep the covariant notation for 
clarity, remembering that Dμφ = ∂μφ.

Variation with respect to the scalar field, U(1) gauge field and 
metric, respectively, leads to the following equations of motion:

�φ + 2γ φG = 0 , (3)
1√−g

∂μ

(√−g F μν
) = 0 , (4)

Gμν = DμφDνφ − 1

2
gμν DαφDαφ

− γ
(

gμρ gνσ + gνρ gμσ

)
εραβγ εδσζχ Rβγ ζχ Dα Dδ

(
φ2

)
.

(5)

The above model has been discussed for vanishing electromag-
netic field for the first time in [24]. The black hole solutions of this 
model undergo a spontanenous scalarization for γ sufficiently large 
and positive. In this paper, we are interested in the scalarization 
of a charged, spherically symmetric black hole. For the metric and 
the scalar field, we choose the following Ansatz:

ds2 = −N(r)σ (r)2dt2 + 1

N(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

φ = φ(r) , (6)

while the U(1) gauge field is:

Aμdxμ = V (r)dt . (7)

The black holes will therefore be electrically charged. For φ(r) ≡
0, the model has a spherically symmetric, static solution: the 
Reissner-Nordström solution [4] which is uniquely determined by 
its ADM mass and (electric and/or magnetic) charge.

3. Scalarization of a Reissner-Nordström black hole

Here we will be interested in discussing the effect that the elec-
tric charge of a Reissner-Nordström (RN) solution can have on the 
process of spontaneous scalarization in our model. For that, we 
have first solved the scalar field equation in the background of the 
RN solution, which using our conventions reads:

ds2 = −Ndt2 + 1

N
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

N(r) = 1 − 2M

r
+ Q 2

2r2
, V (r) = Q

rh
− Q

r
, (8)

where we have fixed V (rh) = 0. M denotes the ADM mass and 
Q the electric charge of the solution. The event horizon of this 
solution is at rh = M + √

M2 − Q 2/2 with extremal limit at rh =
M = Q /

√
2. In the following, we will fix rh = 1, which determines 

the mass M in terms of the electric charge Q via the relation M =
(Q 2 + 2)/4. The extremal limit is then at rh = M = 1, Q = √

2.
The scalar field equation (3) in the background of the RN solu-

tion reads:

1

r2

(
r2Nφ′)′ = −γ2φGRN (9)

with the Gauss-Bonnet term of the RN solution given by:
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Fig. 1. We show the value of the derivative of the scalar field at the horizon, dφ
dr (rh), 

(solid purple) as well as the scalar charge of the solution, Q s, (dashed green) as 
function of the electric charge Q of the RN black hole. Note that the vertical line 
at Q = √

2 (dotted-dashed blue) corresponds to the extremal charge of a RN black 
hole with rh = 1.

GRN = 12

r6
+ 12(r − 2)Q 2

r7 + (3r2 − 12r + 10)Q 4

r8
. (10)

The prime now and in the following denotes the derivative with 
respect to r.

To solve (9), we need to fix the appropriate boundary condi-
tions. These are:

φ′(rh)

φ(rh)
= 2γ2

12 − 12Q 2 + Q 4

2 − Q 2
, φ(r → ∞) = Q s

r
+ O(r−2) .

(11)

The condition on the horizon r = rh is related to the require-
ment of regularity of the scalar field, while the condition at in-
finity determines the scalar charge Q s of the solution. We also fix 
φ(rh) = 1.

We have solved (9) numerically using a collocation solver for 
ordinary differential equations [39]. Note that for a fixed Q , the 
boundary condition fixes the derivative of the scalar field function 
at the horizon and that scalarized black hole exist only for a spe-
cific value of γ (Q ).

Our results are shown in Fig. 1, where we give the derivative of 
the scalar field at the horizon dφ

dr (rh) ≡ φ′(rh) as well as the scalar 
charge Q s of the solution as function of the electric charge Q . 
For Q = 0, we recover the result of [24]. Increasing Q from zero, a 
branch of scalarized black holes exists for positive values of γ with 
scalar charge Q s varying only marginally. However, the boundary 

condition at r = rh indicates that for Q > Q̃ =
√

2
(

3 − √
6
)

≈ 1.05

the derivative of φ at the horizon, φ′(rh), changes sign. This is, in 
fact, connected to the change of the sign of the GB term GRN at 
(and close to) the horizon rh = 1 – see (10). To demonstrate this, 
we show the Gauss-Bonnet term of the RN solution close to the 
horizon and for different values of Q in Fig. 2. While for Q < Q̃
the Gauss-Bonnet term is positive everywhere outside the horizon, 
this is no longer true for Q > Q̃ . When increasing the charge Q , 
the interval in r for which GRN is negative increases. This is not 
possible in the case of an uncharged black hole and is fundamen-
tally connected to the AdS2 × S2 near-horizon geometry of nearly 
extremally charged RN black holes (see Appendix for more details). 
Now remembering that it is a tachyonic instability in which the 
term γGRN acts as an “effective mass” of the scalar field, the re-
quirement that γ > 0 for the instability to appear is certainly no 
longer valid here. In fact, this explains the existence of a second 
branch of solutions of scalarized black holes that exists for Q > Q̃
Fig. 2. We show the Gauss-Bonnet term GRN of the RN solution close to the horizon 
rh = 1 for different value of the electric charge Q . Note that Q = √

2 corresponds 
to the extremal RN solution.

Fig. 3. We show the profile of the scalar field function φ(r) for Q = 1.4 (i.e. a value 
of the charge close to the extremal limit Q = √

2) on the two different branches: for 
γ = 1.954 (solid purple) and for γ = −0.082 (dotted-dashed green), respectively.

and γ < 0. This is shown in Fig. 1. This branch possesses scalar 
charge Q s small and positive. In order to show the difference be-
tween the solutions for a fixed value of Q , we give the profile of 
the scalar field function φ(r) for Q = 1.4 on the two branches in 
Fig. 3. Close to the extremal limit of Q = √

2, the derivative of 
the scalar field at the horizon is already very large. This is to be 
expected from the boundary condition at rh , see (11), which indi-
cates that φ′(rh) → ±∞ for Q → √

2. This is also shown in Fig. 1, 
where we demonstrate that for Q → √

2, the value of the deriva-
tive of the scalar field function at the horizon, φ′(rh) → ±∞ for 
γ ≷ 0.

The profiles of the scalar field function in Fig. 3 also show that 
the scalar field is small on the negative-γ branch, while it be-
comes very large on the positive-γ branch. In fact, for positive γ , 
φ(r) possesses a maximum outside the horizon rh and extends to 
very large values of r (φ(r) tends to zero at r ≈ 106). This is very 
different for negative values of γ , where the scalar field is very 
small and tends to zero quickly. The maximum of the scalar field 
in this latter case is always at the horizon. Since the space-time 
is not dynamical, it is only the scalar field behaviour that leads to 
the critical behaviour. When taking the backreaction of the space-
time into account (see Section 4), we find that the behaviour of 
the scalar field strongly influences the space-time and leads to the 
appearance of a metric singularity.
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4. Including backreaction

In order to solve the full set of coupled non-linear differential 
equations numerically, we have to employ the appropriate bound-
ary conditions. At the regular horizon rh these are

N(rh) = 0 , A(φ′)2 + Bφ + C = 0 , (12)

where A, B , C are given as follows

A =
[

8γ σ 2φ
(

2σ 2r2
h − 64γ 2φ2(V ′)2 − (V ′)2r4

h

)]∣∣∣
r=rh

,

B = rh

[
(V ′)2σ 2

(
−r4

h − 64γ 2φ2
)

+ 2σ 4r3
h − 32r2

hγ
2φ2(V ′)4

]∣∣∣
r=rh

,

C =
[

2γ φ
(

12σ 4 − 12σ 2(V ′)2r2
h + (V ′)4r4

h

)]∣∣∣
r=rh

, (13)

such that the boundary condition for φ′ at the horizon rh is

φ′|r=rh = −B ± √
B2 − 4AC

2A
. (14)

The existence of scalarized black holes is hence limited by the re-
quirement that B2 − 4AC ≥ 0. In the following it will be useful to 
write this condition in terms of two factors as B2 − 4C = �2

1 · �2

with

�1 =
[

2σ 2 − V ′ 2r2
h

]∣∣∣
r=rh

,

�2 =
[
σ 4r2

h

(
r4

h − 384γ 2φ2
)

+ 128V ′ 2σ 2φ2γ 2
(

r4
h + 96γ 2φ2

)

+ 1024γ 4φ4r2
h V ′ 4

)∣∣∣
r=rh

(15)

In order for the solutions to be asymptotically flat and have 
finite energy, we require

σ(r → ∞) = 1 , V (r → ∞) = − Q

r
+ O(r−2) ,

φ(r → ∞) = Q s

r
+ O(r−2) (16)

In the following, we have fixed the horizon radius to rh = 1
without loss of generality and have constructed black hole solu-
tions numerically for different values of Q and γ . We find that 
for fixed values of Q scalarized black holes exist only in an in-
terval γ ∈ [γ0 : γcr]. This is shown in Fig. 4. For positive values 
of γ , we find that γ0 corresponds to the value of γ for which 
φ(rh) → 0. This value is equivalent to the value of γ for which 
the scalar field solutions in the background of the RN black hole 
exist (see Section 3). For a fixed Q , we have then decreased the 
value of γ (which is equivalent to increasing the value of φ(rh)) 
down to a value of γcr, where the solution with the largest pos-
sible value of φ(rh) exists. For Q ≤ Q̃ = 1.05, the solutions stop 
because �2 → 0. Moreover, as is obvious from Fig. 4, γ0 and γcr
are very close to each other. We give the numerical values for some 
charges in Table 1.

For Q > Q̃ , the approach to criticality is very different. When 
decreasing γ (or equivalently increasing Q or φ(rh)), we find that 
a singularity in the metric curvature starts to form. We show this 
phenomenon for fixed value of φ(rh) = 0.01 and increasing Q in 
Fig. 5 and Fig. 6. The profile of the metric function N(r) as given 
in Fig. 5 demonstrates that at a specific radius outside the horizon, 
r = r∞ , the derivative of N(r) becomes infinite. This corresponds 
to a strong increase in the metric curvature – see the behaviour 
of the Kretschmann scalar K = Rμνρσ Rμνρσ given in Fig. 5. At 
Fig. 4. We show the domain of existence of scalarized, charged black holes in the 
γ -Q -plane. Solutions exist for values γ ∈ [γ0 : γcr], where γ0 (solid purple) corre-
sponds to the value of γ for which φ(r) << 1 or – equivalently – to the value of 
γ for which solutions of the scalar field equation in the background of the RN so-
lution exist (see Section 3). γcr (dotted-dashed green) corresponds to the critical 
value of γ to where scalarized black holes exist with the maximal possible value of 
φ(rh). The division of the domain into the two different approaches to criticality is 
indicated by a vertical line (dashed orange) at Q = 1.05, while the extremal value 
of the charge is indicated by a vertical line (dashed blue) at Q = √

2 ≈ 1.414.

Table 1
We give the values of γ where φ(rh) → 0, γ0, and the 
critical value of γ , γcr to where scalarized black holes 
exist with the maximal possible value of φ(rh). The up-
per index (+) (respectively (−)) indicates the branch 
with positive (negative) values of γ . When no negative 
γ is given, only the positive γ branch exists.

Q γ
(+)

0 γ
(+)

cr γ
(−)

0 γ
(−)

cr

0 0.181 0.173 − −
0.5 0.207 0.198 − −
1.0 0.455 0.414 − −
1.1 0.724 0.680 −6.980 −2.100
1.2 1.180 1.015 −0.770 −0.400
1.4 1.954 1.550 −0.082 −0.067

the same time, the electric field of the solution E(r) ∼ − dV
dr (see 

Fig. 6) develops an infinite derivative at r∞ , while the scalar field 
itself becomes non-differentiable there (see Fig. 6). For the so-
lution shown in Fig. 5 and Fig. 6, we find that r∞ ≈ 1.29 and 
γcr ≈ 1.19. For increasing (decreasing) γcr, we find that r∞ in-
creases (decreases), e.g. we find that for γcr ≈ 1.40 (corresponding 
to Q = 1.342) r∞ ≈ 1.40, while for γcr ≈ 0.68 (which corresponds 
to Q = 1.1) r∞ ≈ 1.09. All our results indicate that r∞ → rh = 1
for Q → Q̃ = 1.05. The reason for this behaviour becomes clear 
when investigating the behaviour of the GB term close and on the 
horizon. For Q > Q̃ , the GB term is negative on the horizon, but 
possesses a zero somewhere outside the horizon at r = r0 such 
that for r > r0 the GB term is positive. This value of r0 separates 
the interval of r into two intervals: a) r ∈ [rh : r0] for which the 
GB term acts as a regular (position dependent) “mass term” for 
the scalar field (see also the Appendix for more details) and b) 
r > r0 for which the tachyonic instability persists. Not surprisingly, 
the behaviour at the intersection between the two intervals be-
comes discontinuous. In fact, we have numerically confirmed that 
the value r∞ ≈ r0.

Similar to the case of the scalar field in the background of the 
RN solution, we find that scalarized black holes exist for negative 
values of γ when Q is sufficiently large. These solutions exist for 
Q > Q̃ = 1.05. We find a similar pattern as is the case of positive 
γ with φ(rh) → 0 for γ0 and φ(rh) having its maximal possible 
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Fig. 5. We show the profiles of the metric functions N(r) (left) and the Kretschmann scalar K = Rμνσρ Rμνσρ (right, same colour coding as left) close to the horizon rh = 1
for φ(rh) = 0.01.

Fig. 6. We show the profiles of the electric field E(r) = − dV
dr (left) and of the scalar field function φ(r) (right, same colour coding as left) close to the horizon rh = 1 for 

φ(rh) = 0.01.
value for γ → γcr. At γcr we find that the solutions stop because 
the metric curvature diverges, indicated by a divergence of the 
Kretschmann scalar K , but at the horizon rh itself, and not, as in 
the case for positive γ at a point outside the horizon. The values 
of γ0 and γcr are given for some values of Q in Table 1. Note that 
in this case, the negative GB term and negative value of γ leads 
to the appearance of the tachyonic instability on and close to the 
horizon. Since the GB becomes positive and together with the neg-
ative value of γ becomes a “standard mass term” on and outside 
the horizon, a metric singularity outside the horizon does not ap-
pear in this case.

5. Conclusions and outlook

In this paper, we have studied the scalarization of charged, 
static, spherically symmetric black holes in a quadratic Einstein-
scalar-Gauss-Bonnet model. We observe that for sufficiently large 
values of the electric charge Q (at approximately 74% of extremal-
ity), new phenomena appear in contrast to uncharged and mildly 
charged black holes. We observe the formation of a curvature sin-
gularity outside the event horizon as well as the existence of new 
solutions for negative values of the coupling constant. The rea-
son for this is that the Gauss-Bonnet term that sources the scalar 
field becomes negative close and on the horizon. Depending on the 
choice of coupling, the source terms hence either acts as a stan-
dard, distance dependent “mass term” or as a term that drives the 
tachyonic instability and hence the scalarization of the black hole.

The system possesses solutions with radial excitations of the 
scalar field as well as angular excitations related to higher mul-
tipoles. We will report on these solutions in the future. Another 
interesting extension of our results would be to add a term of the 
form φ2 R as well as a fourth-order self-interaction of the scalar 
field to our model. Without the GB term this model describes 
Higgs inflation at constant, non-running coupling constants [40]. 
An interesting question is whether primordial black holes can form 
during inflation. Black hole production in Higgs inflation has been 
discussed recently [41]. Clearly, without the GB term, the black 
holes would be standard RN black holes as a quick investigation of 
the “tachyonic instability” argument shows. However, as we have 
shown in this paper, scalarized black holes with small (negative) 
value of γ can be constructed and it would be interesting to see 
how these solutions are influenced by the presence of the afore-
mentioned terms. This is currently under investigation.
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Appendix A. A tachyonic instability for extremal RN black holes

As noted in [24], the spontaneous scalarization of a black hole 
in a model containing a non-minimal coupling between the scalar 
field and the Gauss-Bonnet term is related to the appearance of a 
tachyonic instability of the scalar field. The reasoning in this latter 
paper is as follows: assume the background space-time to be fixed 
and write the scalar field perturbation δφ as δφ = f (r,t)

r Y�m(θ, ϕ)

with the Y�m being the spherical harmonics.
As background we choose the extremally charged RN solution 

which has r+ = M = Q /
√

2 and hence can be written as

ds2 = −
(

1 − M

r

)2

dt2 +
(

1 − M

r

)−2

dr2

+ r2
(

dθ2 + sin2 θdϕ2
)

(17)

which taking the near-horizon limit t → t̃/ε , r → M + ερ , ε → 0
and then substituting t̃ = M2τ becomes

ds2 − M2
(
ρ2dτ 2 + 1

ρ2
dρ2

)
+ M2

(
dθ2 + sin2 θdϕ2

)
. (18)

This is the well-known result that extremal black hole solutions 
possess an AdS2 × S2 near horizon geometry, in this case with 
AdS radius L and radius R S2 of the S2 fulfilling L = R S2 = M =
r+ = Q /

√
2.

Introducing the coordinate ρ∗ = ρ−1 and inserting the Gauss-
Bonnet term of the metric (18) GexRN = −8/M4 the equation for 
the scalar field perturbation δφ reads:

−∂2 f

∂τ 2
+ ∂2 f

∂ρ2∗
=

(
�(� + 1)

ρ2∗
Y�m + 16γ

M4

)
f . (19)

For γ > 0, the GB term now acts like a “standard” mass term 
with static, � = 0 solutions of the form f (ρ) = A exp (−κ/ρ) +
B exp (κ/ρ) with κ := 4

√
γ /M2 and A, B integration constants. 

These solutions are either zero or tend to infinity for ρ → 0, i.e. at 
the horizon.

The tachyonic instability as mentioned above appears for γ <

0. Solutions to (19) are then of the form f (ρ) = a sin(k/ρ) +
b cos(k/ρ), where k := 4

√−γ /M2 and a, b are integration con-
stants.
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