
Cylindrically symmetric solutions in conformal gravity

Y. Brihaye1,* and Y. Verbin2,†
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Cylindrically symmetric solutions in conformal gravity are investigated and several new solutions are

presented and discussed, among them a family of vacuum solutions, generalizations of the Melvin

solution, and cosmic strings of the Abelian Higgs model. The Melvin-like solutions have finite energy per

unit length, while the stringlike solutions do not.
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I. INTRODUCTION

Conformal gravity (CG) [1] was proposed as a possible
alternative to Einstein gravity (GR), which may supply the
proper framework for a solution to some of the most
annoying problems of theoretical physics like those of
the cosmological constant, the dark matter, and the dark
energy.

The gravitational field in CG is still minimally coupled
to matter, but the dynamical basis is different: it is obtained
by replacing the Einstein-Hilbert action with the Weyl
action based on the Weyl (or conformal) tensor C����

defined as the totally traceless part of the Riemann tensor:

C���� ¼ R���� � 1

2
ðg��R�� � g��R�� þ g��R��

� g��R��Þ þ R

6
ðg��g�� � g��g��Þ; (1.1)

so the gravitational Lagrangian is

L g ¼ � 1

2�
C����C

����; (1.2)

where � is a dimensionless parameter. The gravitational
field equations take the following form:

W�� ¼ �

2
T��; (1.3)

where T�� is the energy-momentum tensor and W�� is the

Bach tensor given by

W�� ¼ 1
3r�r�R�r�r�R�� þ 1

6ðR2 þr�r�R

� 3R��R
��Þg�� þ 2R��R���� � 2

3RR��: (1.4)

It was suggested (see [1] and references therein) that
while CG agrees with Newtonian gravity in Solar System
scales, it further produces a linearly growing potential that
could explain galactic rotation curves without invoking
dark matter. It was further argued that accelerating cosmo-
logical solutions of CG describe naturally the accelerated

expansion of the Universe thus removing the need for dark
energy.
On the other hand, CG has been criticized from several

aspects both phenomenological and formal. Arguments in
favor of the need of dark matter come from observations of
the unusual object called ‘‘bullet cluster’’ [2,3], whose
dynamics seems very difficult to understand without as-
suming a weakly interacting dark component.
More specifically, several authors claim that predictions

in the weak field limit of CG disagree with Solar System
observations [4], yield wrong light deflection [5], and that
the exterior solutions cannot be matched to any source with
a ‘‘reasonable’’ mass distribution [6]. Other authors find
evidence for tachyons or ghosts [7] or raise the fact that
only null geodesics are physically meaningful in this the-
ory since the ‘‘standard’’ point particle Lagrangian is not
conformally invariant [8].
Counter arguments to some of these objections were also

published [9,10], and the matter is, to our view, still waiting
for a consensus.
A somewhat different approach to the subject was sug-

gested recently [11] and solves naturally some of the
above-mentioned problems, like that of the meaning of
timelike geodesics. It is based on extending CG into a
scalar-tensor theory by introducing an additional real sca-
lar field, so the conformally invariant point particle
Lagrangian will be

Lpp ¼ �S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�� _x

� _x�
q

; (1.5)

where S is a real scalar field with the usual conformal
transformation laws.
It is therefore very much required to investigate further

the predictions and consequences of CG in its purely
tensorial formulation as well as in its scalar-tensor exten-
sion as much as possible.
Following our previous studies of spherically symmetric

solutions [11] including the non-Abelian case [12] in CG,
we move now to cylindrically symmetric solutions and
especially to cosmic strings, and we start an investigation
of their properties in this context. The present report may
be considered therefore as a third step of this program.
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Cosmic strings in CG will be the subject of the last
section (Sec. V) of this paper. After a short general dis-
cussion of the field equations of the self-gravitating
Abelian Higgs model in the cylindrically symmetric case
(Sec. II), we will start (Sec. III) with vacuum solutions of
CG and line source solutions. Then we will discuss purely
magnetic solutions (Sec. IV), i.e. the analogs of the Melvin
solution of ordinary GR and finally we will get to cosmic
strings of the Abelian Higgs model. We will see that unlike
their GR counterparts, the Abelian Higgs stringlike solu-
tions in CG, although localized, do not have finite energy
per unit length.

Since a large part of our discussion will be based on the
Abelian Higgs model, we end this section with a few words
about its coupling to CG.

Among all the higher order gravitational theories, CG is
unique in the sense it is based on an additional symmetry
principle. The conformal symmetry imposes severe limi-
tations on the allowed matter Lagrangian, but the Abelian
Higgs model is essentially still consistent with the confor-
mal symmetry provided the scalar field ‘‘mass term’’ is
replaced with the appropriate ‘‘conformal coupling’’ term
which introduces a coupling to the Ricci scalar R. The
matter Lagrangian is therefore

L m ¼ 1

2
ðD��Þ�ðD��Þ � 1

12
Rj�j2 � �

4
j�j4

� 1

4
F��F

��; (1.6)

and the resulting field equations are

D�D
��þ �j�j2�þ R

6
� ¼ 0

r�F
�� ¼ � ie

2
½��ðD��Þ ��ðD��Þ�� ¼ J�:

(1.7)

The energy-momentum tensor T�� is given by

T�� ¼ TðminimalÞ
�� þ 1

6ðg��r�r�j�j2 �r�r�j�j2
�G��j�j2Þ; (1.8)

TðminimalÞ
�� being the ordinary (‘‘minimal’’) energy-

momentum tensor and G�� is the Einstein tensor.

We can see already at this stage that in order to obtain
stringlike solutions with j�j approaching asymptotically a
constant, the geometry cannot be asymptotically flat. The
most that can be obtained are solutions which have an
asymptotically constant and negative Ricci scalar.
Actually, a constant Ricci scalar is not a ‘‘gauge invariant’’
concept in CG; neither is a constant scalar field. Thus, it is
only a matter of convenience which can be obtained by a
proper gauge choice. Moreover, we would like the gauge
choice to be consistent with symmetric vacuum solutions.
Thus, we will choose a gauge which allows one to impose
the condition

R
�
� ! ��

4
�
�
� for r ! 1; (1.9)

where � is a positive parameter. We will also limit our
solutions to those exhibiting boost symmetry in one direc-
tion (say, z), as for ordinary cosmic strings. These restric-
tions will simplify considerably the very cumbersome
expressions of the components of the Bach tensor and
will enable a clear physical picture.
The scalar-tensor extension of CG is done along these

lines. The gravitational Lagrangian (1.2) will be modified
to

Lg ¼ 1

�

�
�1

2
C����C

���� þ 1

2
r�Sr�S� 1

12
RS2 ��

4
S4
�
;

(1.10)

where S is a real scalar field with the usual conformal
transformation laws and � is a possible self-coupling pa-
rameter. This should go together with postulating the con-
formally invariant point particle Lagrangian (1.5). Point
particles couple in this picture to the ‘‘physical metric’’
S2g��.

However, when the Higgs field is present, we may
identify S with j�j so having a more economic model
where the Higgs field is responsible for the mass of point
particles also in this classical framework.

II. CYLINDRICALLY SYMMETRIC SOLUTIONS

The general cylindrically symmetric line element has the
form

ds2 ¼ B2ðrÞdt2 �M2ðrÞdr2 � L2ðrÞd’2 � K2ðrÞdz2
(2.1)

and the general expression for the Ricci tensor turns out to
be

R0
0 ¼ � 1

BLKM

�
KLB0

M

�0
;

Rr
r ¼ � 1

M2

�
B00

B
þ L00

L
þ K00

K
�M0

M

ðKLBÞ0
KLB

�

R’
’ ¼ � 1

BLKM

�
KBL0

M

�0
;

Rz
z ¼ � 1

BLKM

�
BLK0

M

�0

(2.2)

with the Ricci scalar

R ¼ 2

M2

�
�B00

B
� L00

L
� K00

K
� B0

B

L0

L
� L0

L

K0

K

� K0

K

B0

B
þM0

M

ðKLBÞ0
KLB

�
: (2.3)

Since all the solutions that we will consider in this work
can be thought technically as special cases of the solutions

Y. BRIHAYE AND Y. VERBIN PHYSICAL REVIEW D 81, 124022 (2010)

124022-2



of the Abelian Higgs model coupled to CG, we discuss now
the field equations of this system.

The general cylindrically symmetric matter fields are
parametrized by

� ¼ fðrÞeim’; eA�dx
� ¼ AðrÞd’: (2.4)

Using the above parametrizations, the field equations for
the scalar and vector fields get the following simple form:

f00 þ
�
2B0

B
þ L0

L

�
f0 �

��
m� A

L

�
2 þ R

6
þ �f2

�
f ¼ 0

(2.5)

A00 þ
�
2B0

B
� L0

L

�
A0 þ eðm� AÞf2 ¼ 0: (2.6)

The gravitational part of the field equations is less simple
due to the complicated form of the Bach tensor. First, we
write explicitly the nonvanishing components of T�

� and in
order to simplify matters we define the following partial
energy densities:

"s ¼ ðf0Þ2
2

; "v ¼ 1

2

�
A0

L

�
2
;

"sv ¼ 1

2

�
m� A

L

�
2
f2; u ¼ �

4
f4:

(2.7)

In terms of these the components of T
�
� will be

T0
0 ¼ Tz

z ¼ "v þ 1

3
ð"s þ "sv � uÞ � f2

6

�
R0
0 �

R

6

�

þ ff0

3

B0

B

Tr
r ¼ �"v � "s þ "sv þ u� f2

6

�
Rr
r � R

2

�

� ff0

3

�
2B0

B
þ L0

L

�

T’
’ ¼ �"v þ 1

3
ð"s � 5"sv � uÞ � f2

6

�
R’
’ � R

6

�

þ ff0

3

L0

L
;

(2.8)

where the Ricci tensor components are given in Eq. (2.2).
As an easy check, one can verify that indeed the sum of
these components vanishes as it should. Note that unlike in
GR, this does not force a vanishing Ricci scalar since the
gravitational field equations are given by Eq. (1.3). In the
present case they reduce to two components of (1.3) which
we may choose to be the tt and rr components:

W0
0 ¼

�

2

�
"v þ 1

3
ð"sþ "sv� uÞ� f2

6

�
R0
0 �

R

6

�
þ ff0

3

B0

B

�

Wr
r ¼ �

2

�
�"v � "s þ "svþu� f2

6

�
Rr
r �R

2

�

� ff0

3

�
2B0

B
þL0

L

��
:

(2.9)

We still refrain from writing explicitly the components of
W

�
� anticipating further simplifications.
In order to find solutions for this system, we have to fix

the arbitrariness of the radial coordinate and the arbitrary
rescaling of the metric due to the conformal symmetry.
This, together with the boost symmetry in the tz plane
leaves one independent metric component. So only one
of the gravitational field equations has to be solved. We
chose to solve the lower order rr equation of (2.9), and
used the higher order tt equation as a consistency check.
The choice of the conformal rescaling further has to be

compatible with the condition R�
� / ��

� asymptotically

[see (1.9)]. This is not obvious even in vacuum: for in-
stance, in the cylindrical version of the ‘‘Mannheim
gauge’’ [1] MðrÞ ¼ 1=BðrÞ, LðrÞ ¼ r with KðrÞ ¼ BðrÞ,
the vacuum equations are inconsistent; in the gauge
MðrÞ ¼ 1, KðrÞ ¼ 1, the vacuum equations are consistent
but the solutions are such that the diagonal components of
Ricci tensor depend linearly on r for r ! 1.
One convenient ansatz which solves these problems is

M ¼ 1; L ¼ dB

dr
; KðrÞ ¼ BðrÞ; (2.10)

where we also resort to dimensionless coordinates.
Moreover, all the thin string (line source) solutions of

GR with a negative cosmological constant [13] which
solve for r > 0,

R
�
� ¼ ��

4
�
�
� ; (2.11)

satisfy also the CG vacuum equations W�� ¼ 0. Among

those solutions is also found the (four-dimensional) anti-de
Sitter (AdS) soliton [14] (see also [15–17]) which is a
cylindrically symmetric regular solution of the same equa-
tion (2.11) and is therefore distinct from AdS space.
In this gauge the components of the Bach tensor are

W0
0 ¼ Wz

z

¼ Bð5Þ

3B0 þ
2Bð4Þ

3B
� Bð4ÞB00

3B02 þ B000B002

3B03 þ 2B000B00

3BB0

� 2B000B0

3B2
� 2B0002

3B02 � 4B002

3B2
þ 4B02B00

3B3
� B04

3B4

(2.12)

Wr
r ¼ 2Bð4Þ

3B
� 2Bð4ÞB00

3B02 þ 2B000B002

3B03 � 2B000B00

BB0 þ 2B000B0

3B2

þ B0002

3B02 þ
4B002

3B2
� 4B02B00

3B3
þ B04

3B4
(2.13)

while the fourth one, W’
’ , can be obtained immediately

from the identity W�
� ¼ 0.

In terms of BðrÞ, the Ricci scalar and tensor take the
form

CYLINDRICALLY SYMMETRIC SOLUTIONS IN . . . PHYSICAL REVIEW D 81, 124022 (2010)

124022-3



R0
0 ¼ Rz

z ¼ �
�
B0

B

�
2 � 2

B00

B
;

Rr
r ¼ R’

’ ¼ �B000

B0 � 2
B00

B
;

R ¼ �2

��
B0

B

�
2 þ 4

B00

B
þ B000

B0

�
:

(2.14)

Returning now to the general Abelian Higgs system, we
are therefore left with the rr component of equations (2.9):

2Bð4Þ

3B
� 2Bð4ÞB00

3B02 þ 2B000B002

3B03 � 2B000B00

BB0 þ 2B000B0

3B2
þ B0002

3B02

þ 4B002

3B2
� 4B02B00

3B3
þ B04

3B4

¼ �

2

�
� 1

2

�
A0

L

�
2 � ðf0Þ2

2
þ 1

2

�
m� A

L

�
2
f2 þ �

4
f4

� f2

6

�
Rr
r � R

2

�
� ff0

3

�
2B0

B
þ L0

L

��
(2.15)

which should be solved together with the two equa-
tions (2.5) and (2.6).

III. VACUUM SOLUTIONS

We start by considering the vacuum equation W�� ¼ 0

associated with the metric (2.1) in the gauge (2.10). The
relevant equation for the function BðrÞ is just a special case
of Eq. (2.15), leading to

2Bð4Þ

3B
� 2Bð4ÞB00

3B02 þ 2B000B002

3B03 � 2B000B00

BB0 þ 2B000B0

3B2
þ B0002

3B02

þ 4B002

3B2
� 4B02B00

3B3
þ B04

3B4
¼ 0: (3.1)

Equation (3.1) has very interesting properties, namely, it is
autonomous and invariant under rescaling of B and of r.

The above-mentioned AdS soliton is just one member of
a continuous family of solutions of (3.1) [as well as of
(2.11)] given by

BðrÞ ¼ ða coshðkrÞ þ b sinhðkrÞÞ2=3: (3.2)

The case k ¼ ffiffiffiffiffiffiffiffi
3=2

p
and b ¼ 0 corresponds to the AdS

soliton which satisfies Eq. (2.11) with � ¼ 8. The other
values of k with b ¼ 0 correspond to thin string solutions
which are the counterparts of the conic solutions for � ¼ 0.
The solutions with a ¼ 0 are analogous to the ‘‘Melvin
branch’’ of thin strings. These have a power law behavior
near the string axis with the same powers of (2=3, �1=3,
2=3) as for � ¼ 0. Actually these exact power law � ¼ 0
solutions also solve Eq. (3.1) and may be viewed as a limit
of (3.2) where k ! 0 and kb remains finite:

BðrÞ ¼ ðaþ brÞ2=3: (3.3)

The complexified version of (3.2), namely,

BðrÞ ¼ ða cosðkrÞ þ b sinðkrÞÞ2=3; (3.4)

are closed solutions in analogy with the ‘‘inverted cones’’
of the � ¼ 0 case.
Since the gravitational field equations of CG are of

higher order, it is expected that more vacuum solutions
exist, i.e., new vacuum solutions which are special to CG.
Indeed the following family also solves Eq. (3.1), but
satisfies (2.11) only asymptotically:

BðrÞ ¼ ða coshðkrÞ þ b sinhðkrÞÞ2: (3.5)

Equation (3.1) is solved also by their complexified counter-
parts,

BðrÞ ¼ ða cosðkrÞ þ b sinðkrÞÞ2; (3.6)

as well as by the k ! 0 limit solutions whose Ricci scalar
vanishes asymptotically:

BðrÞ ¼ ðaþ brÞ2: (3.7)

We have again a similar pattern of two families of
stringlike solutions: an open one and a closed one, each
of them with the free parameters a, b, and k. The family of
open solutions with b ¼ 0 contains as before a solitonlike

regular solution for the specific value k ¼ 1=
ffiffiffi
2

p
. This one

is, however, a new solution special to CG. We write both
solitons explicitly:

� ¼ 8: BðrÞ ¼ cosh2=3ð ffiffiffiffiffiffiffiffi
3=2

p
rÞ;

RðrÞ ¼ �8

� ¼ 24: BðrÞ ¼ cosh2ðr= ffiffiffi
2

p Þ;
RðrÞ ¼ �12ð1þ tanh2ðr= ffiffiffi

2
p ÞÞ:

(3.8)

It is likely that Eq. (3.1) is integrable by quadrature but,
so far, we were unable to find the general solution analyti-
cally. One additional explicit solution that we found is
BðrÞ ¼ e�kr which is actually conformally flat and thus
uninteresting for us. In absence of knowledge about the
general set of analytical solutions, we investigated the
behavior of the solutions of Eq. (3.1) numerically.
Exploiting the different scale invariances of (3.1), the
boundary conditions of regular solutions can be specified
according to

Bð0Þ ¼ 1; B0ð0Þ ¼ 0;

B00ð0Þ ¼ 1; Rðr ! 1Þ ¼ ��;
(3.9)

where � is a positive constant. The two regular solutions
(3.8) already obey the boundary conditions (3.9). Note the
residual scaling symmetry of any solution obeying (3.9)
realized by the one-parameter family of solutions

BðrÞ ! B̂ðrÞ ¼ �B

�
rffiffiffiffi
�

p
�
; � ! �̂ ¼ �

�
: (3.10)

The combination �ðrÞ � ðBB00 � ðB0Þ2Þ=B has some
relevance in the analysis of the solutions. In particular,
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the zeros of this function constitute singular points of
Eq. (3.1). The occurrence of such points renders the solu-
tions problematic. For � < 8, our numerical analysis re-
veals that the function �ðrÞ develops nodes and suggests
that no regular solution on r 2 ½0;1� can be constructed.
The boundary conditions lead to �ð0Þ ¼ 1.

The functions BðrÞ of (3.8) and their derivatives B0ðrÞ ¼
LðrÞ are plotted in Fig. 1. We also added plots of RðrÞ and
�ðrÞ.

We then attempted to construct numerically the solu-
tions obeying (3.1) and (3.9) for different values of �. It
turns out that regular solutions exist only for � � 8. The
interpretation of the numerical solutions relies on the
understanding of their asymptotic behavior. The solutions
obtained obey the following asymptotic behavior:

logðBðr ! 1ÞÞ ¼ �0 þ �1rþ �2e
��r þOðe�2�rÞ;

�1 ¼
ffiffiffiffiffiffi
�

12

r
; (3.11)

where �0, �2, and � are positive constants. The relevant
component of the Bach tensor is

Wr
r ðr ! 1Þ ¼ ð3�1 � �Þð�1 � �Þ�

4�4
2

3�1
1

e�2�r; (3.12)

and, for the Ricci scalar, we have

Rðr ! 1Þ ¼ �12�2
1 þ 2

�2�

�1

ð3�1 � �Þð4�1 � �Þe��r:

(3.13)

Actually, this asymptotic form is general enough to be
useful for understanding the solutions where matter is
present (see next sections).

The numerical results give � ¼ �1 for the vacuum
solutions which is indeed consistent with the vacuum
condition W�� ¼ 0. The quantitative values of the other

parameters can be extracted from the numerical solutions.
The value �2 is related to the parameter � � �ð1Þ: �2 ¼
12 �

� e
��0 .

Several parameters characterizing the vacuum solutions
are presented as functions of � in Fig. 2; namely, the value
B0000ð0Þ, the difference � � Rð0Þ � Rð1Þ, and the parame-
ter � defined above. In fact, regular solutions exist for � �
8 but the picture is limited to � � 24. We notice that the
quantities presented in Fig. 2 all tend to zero in the limit
� ! 8 corresponding to the AdS soliton.
Finally, we consider the vacuum solutions of the scalar-

tensor CG, namely, those which are derived from the
Lagrangian (1.10). Technically, they are obtained easily
from Eq. (2.15) by substituting AðrÞ ¼ 0 and m ¼ 0 and
replacing fðrÞ by SðrÞ= ffiffiffiffi

�
p

and � by ��.
We find regular solitonlike solutions by imposing the

boundary conditions (3.9) together with

S0ð0Þ ¼ 0; Sðr ! 1Þ ¼ S0; (3.14)

where S0 fixes the asymptotic value of the Ricci scalar by
Rð1Þ ¼ �6�S20. Figure 3 contains the profiles of SðrÞ and
the metric components of a typical solution as well as the
‘‘physical metric’’ S2g�� which is the one which directly

couples to point particles—see (1.5). We notice that, since
the scalar field SðrÞ does not change very much, the
‘‘physical metric’’ is quite similar to the ‘‘conformal met-
ric.’’ Moreover, even the difference with respect to the
vacuum metric of the purely tensor theory shown in
Fig. 1 is not very pronounced.

FIG. 1 (color online). The two analytical regular solutions of
the vacuum equations. Profiles of BðrÞ, LðrÞ ¼ B0ðrÞ and of RðrÞ,
�ðrÞ. The line RðrÞ ¼ �8 for � ¼ 8 is not shown.

FIG. 2. The value B0000ð0Þ, � � �ð1Þ and � � 1� Rð0Þ=Rð1Þ
as a function of �. Note: � � 8.
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IV. MELVIN-LIKE SOLUTIONS

Setting � ¼ 0 in (1.6), we obtain the Weyl-Maxwell
Lagrangian and the corresponding cylindrically symmetric
equations are obtained by setting fðrÞ ¼ 0 in Eqs. (2.6) and
(2.15). The generalization of the Melvin solution to CG can
be looked for. In fact, the Maxwell equation can be inte-
grated directly, leading to AðrÞ ¼ Qm=BðrÞ, where Qm is
an integration constant which encodes the magnitude of the
magnetic field. Actually, the z component of the magnetic
field, given by BzðrÞ ¼ A0

’ðrÞ=LðrÞ, leads to Bzð0Þ ¼ Qm.

Also the choice A ! 0 as r ! 1 was taken.
The different components of the energy-momentum

tensor can then be computed in terms of BðrÞ, namely,

T0
0 ¼ �Tr

r ¼ "v ¼ Bzð0Þ2
2B4ðrÞ : (4.1)

The inertial mass per unit length of the conformal Melvin
solution can then be computed:

MI ¼
Z

d2x
ffiffiffiffiffiffiffi�g

p
T0
0 ¼ 2	Bzð0Þ2

Z 1

0
dr

B0

2B2
¼ 	Bzð0Þ2:

(4.2)

A. Background solutions: � ¼ 0

Setting first � ¼ 0 leads to solutions in the background
of a CG vacuum. The profiles of the magnetic functions A,
A0 corresponding to Bzð0Þ ¼ 1 are shown in Fig. 4 for the
cases � ¼ 8 and � ¼ 24 corresponding to the two analytic
solutions (3.8). The energy density T0

0 is supplemented on

the figure. Similar solutions exist for generic values of �;
the profiles of the magnetic function A depend only weakly
on �.

B. Gravitating solutions: � > 0

Next, we investigate the backreaction of the electromag-
netic field on gravity by solving the coupled equations (2.6)
and (2.15), for �> 0. Using the Maxwell equation to
eliminate A, we obtain a single equation for BðrÞ which
reads

2Bð4Þ

3B
� 2Bð4ÞB00

3B02 þ 2B000B002

3B03 � 2B000B00

BB0 þ 2B000B0

3B2
þ B0002

3B02

þ 4B002

3B2
� 4B02B00

3B3
þ B04

3B4
¼ ��Bzð0Þ2

4B4
: (4.3)

The constant Bzð0Þ can be clearly absorbed here in �, so
from now on we set Bzð0Þ ¼ 1 and study the solutions of
(4.3) for different values of � and �.

FIG. 3. A vacuum solution of scalar-tensor CG. Profiles of the
scalar field SðrÞ, the metric components BðrÞ and LðrÞ ¼ B0ðrÞ
and those of the ‘‘physical metric’’ SðrÞBðrÞ and SðrÞB0ðrÞ. � ¼
24 and � ¼ 1.

FIG. 4 (color online). Profiles of the magnetic potential A, A0
and of the energy density T0

0 in the background of the two

analytic solutions (3.8).

FIG. 5 (color online). Melvin-like solutions for � ¼ 24: Form
of RðrÞ and �ðrÞ for four values of �. For �< 0 see Sec. IVC.
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It should also be noticed that the function BðrÞ keeps
asymptotically the form (3.11) becauseWr

r in the left-hand
side in Eq. (4.3) is asymptotically of order expð�2�rÞwith
� ¼ ffiffiffiffiffiffiffiffiffiffiffi

�=12
p

while Tr
r in the right-hand side is asymptoti-

cally of order expð�4�rÞ. The deviation due to the matter
field therefore comes out as a next to leading order
correction.

In fact, the deviation of the metric and matter functions
with respect to the case � ¼ 0 is not substantial. The
deformation of the geometry by the matter fields appears
more clearly on the Ricci scalar RðrÞ and on the function
�ðrÞ defined in Sec. III. Figure 5 shows these functions for
� ¼ 24 and for three positive values of �. Our results
further show that the solutions exist up to a maximal value

of �, �c � 12:1. As another example, for � ¼ 10, we find
�c � 2:6. The r dependence of RðrÞ and �ðrÞ for � ¼ 10
and for three values of� is illustrated in Fig. 6. This feature
seems to occur for all values of � and we conclude that for
fixed �, the solutions exist up to a maximal value of � ¼
�cð�Þ forming a branch of solutions which we denote
‘‘branch I’’ for later convenience.
Remarkably, the domain of existence of solutions in the

�; � plane is determined by

�< �cð�Þ ¼ 0:675�� 4:1 (4.4)

with a very good accuracy. It looks as if, for a fixed �, CG
cannot support a magnetic field of arbitrary large strength.
In other words, the value jBzð0Þj has to be smaller than a
critical value [recall absorbing Bzð0Þ in �].
In order to complete the pattern of the solutions of

Eq. (4.3), we looked for another family of solutions. The
numerical analysis reveals, indeed, that a second branch (to
which we refer as ‘‘branch II’’) of self-gravitating solutions
exist for � 2�0; �c�. In the limit � ! �c the two branches
join, forming a cusp and no solutions exist for �> �c.
A natural point which is raised at this stage is under-

standing the behavior of the solutions of branch II for � !
0. It turns out that for sufficiently large values of �, the
value B0000ð0Þ becomes negative and the function �ðrÞ de-
velops a local minimum, say for �ðr0Þ ¼ �m. The results
further reveal that, in the limit � ! 0, the solutions of
branch II are such that �m ! 0. As a consequence, the
equation develops a singular point in this limit and regular
solutions no longer exist.
These phenomena are illustrated in Figs. 7(a) and 7(b),

where several parameters characterizing the solutions are
presented as functions of � for � ¼ 12.

FIG. 6 (color online). Melvin-like solutions for � ¼ 10: Form
of RðrÞ and �ðrÞ for three values of �.

(a) (b)

FIG. 7. Melvin-like solutions for � ¼ 12: � dependence of (a) � � �ð1Þ, �0 and �m; (b) B
0000ð0Þ and Rð0Þ=�. The labels I and II

distinguish the two branches. For �< 0 see Sec. IVC.
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A comparison between the two solutions corresponding
to � ¼ 12, � ¼ 2 is shown in Fig. 8. The figure reveals that
the rather tiny difference occurring for the matter fields has
a significant influence on the geometry; this appears clearly
on the shape of the Ricci scalar RðrÞ.

C. Gravitating solutions: � < 0

The solutions of Sec. IVA can be deformed for negative
values of �, leading to a continuation of branch I of
Sec. IVB for �< 0. Indeed, a negative value of � is a
‘‘wrong sign’’ choice since it yields a repulsive linear
potential of localized solutions in the spherically symmet-
ric case [11]. However, the attractive contribution from the
negative cosmological constant is dominant. Therefore we
do not exclude this possibility.

The corresponding data are shown in Fig. 7. For fixed �,
we observe that the parameter � decreases monotonically
with � and reaches � ¼ 0 at a minimum value � ¼ �mð�Þ.
For example, we find �mð12Þ 	 �1:25 and �mð20Þ 	
�12:0. For �< �m, Eq. (4.3) develops singular point
corresponding to �ðrÞ ¼ 0 and cannot be integrated nu-
merically. The difference of the geometric functions �ðrÞ
and RðrÞ for the two signs of � can be appreciated from
Fig. 5.

D. Solutions of the scalar-tensor theory

In order to get the Melvin-like solutions in the scalar-
tensor extension of the theory, one may start with the
general field equations of the Higgs model of Sec. II—
Eqs. (2.5), (2.6), and (2.15). We replace � by �� andffiffiffiffi
�

p
fðrÞ by the real (uncharged) scalar field SðrÞ.

Consequently, we cross out all the interaction terms con-
taining contributions of the form ðm� AÞf=L. We solve
the system numerically and find that the solutions are quite

similar to those of the purely tensorial one. Figure 9
presents the gauge potential, the scalar field, and the metric
components as well as those of the ’’physical metric,’’
SðrÞBðrÞ and SðrÞB0ðrÞ. Comparison with Figs. 1 and 4
shows that the additional scalar field does not change
much the functions AðrÞ and BðrÞ.

V. CONFORMAL STRINGS

We finally considered the equations of the Abelian
Higgs model coupled to Weyl gravity. Cosmic strings
[18] are a typical outcome in any field theory which
describes matter in the very early Universe, thus serving
very well the purpose of testing the implications of CG.
Relativistic magnetic flux tubes in flat space were first

obtained by Nielsen and Olesen [19] and their coupling to
Einstein gravity was shown to have important cosmologi-
cal consequences [18]. A complete classification of the
solutions of the self-gravitating Abelian Higgs model
was performed [20] and two branches of solutions were
shown to exist: the ‘‘string branch’’ consists of solutions
which tend asymptotically to Minkowski space-time with
an angular deficit, and a ‘‘Melvin branch’’ whose geometry
is asymptotically similar to that of the Melvin solution.
Gravitating cosmic strings in the presence of a cosmologi-
cal constant were studied in [15].
Cosmic strings in the Abelian Higgs model with a

conformal coupling to gravity have been also considered
before (see e.g. [21] and references therein), but only
within the context of GR.
Now we turn to the analogous solutions within CG,

namely, solving the full system of the three equa-
tions (2.5), (2.6), and (2.15).
Since we are interested in localized solutions, the com-

ponents of T
�
� should vanish asymptotically. This, together

with the boundary conditions fðrÞ ! v and AðrÞ ! m as

FIG. 8 (color online). Comparison of RðrÞ, �ðrÞ and of the
magnetic field BmðrÞ for the two solutions with � ¼ 12, � ¼ 2.
The red (respectively, black) curves refer to branch I (respec-
tively, branch II).

FIG. 9. Profiles of a Melvin-like solution in scalar-tensor CG.
� ¼ 1, � ¼ 1, and � ¼ 24.
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r ! 1, fixes the asymptotic Ricci tensor to be given by
(1.9) with � ¼ 6�v2. Note that, unlike the ordinary cosmic
strings, here the asymptotic value fð1Þ ¼ v does not
originate from the Lagrangian, but is a free parameter
which characterizes the various solutions of the given
system.

The system of three equations has to be solved with the
boundary conditions

fð0Þ ¼ 0; fð1Þ ¼ v; Að0Þ ¼ 0; Að1Þ ¼ m

(5.1)

for the matter functions and (3.9) for the metric function
BðrÞ. The equations lead to several possible asymptotic
forms for the solutions, allowing a few kinds of exponential
corrections.

For j�j< 2, the form below appears to be the one which
best fits the numerical solutions obeying the boundary
conditions (5.1). For the metric function BðrÞ, we have
the same form as before:

logðBðr ! 1ÞÞ ¼ �0 þ �1rþ �2e
��r; �1 ¼

ffiffiffiffiffiffi
�

12

r
;

(5.2)

where �0, �2, and � are constants. The parameter �
encoding the decay rate of the first correction now depends
on �. For j�j< 2 we find a linear dependence,

� ¼ �1 þ p�; (5.3)

where the numerics shows p	 0:18. For the matter fields,
the asymptotic form is

fðr ! 1Þ ¼ v

�
1þ F0e

�4�1r � �2�ð3�1 � �Þ
3�1ð�þ �1Þ e��r

�
;

Aðr ! 1Þ ¼ A0e
��1sr (5.4)

with �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2=2

p
, s ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8=�
p Þ=2, and where

F0, A0 are constants. We limit our analysis to the case � ¼
1, so that s ¼ 2. The third term appearing in f in (5.4) is
specific to CG because it is related to a source term
appearing due to the coupling between the scalar field
and the Ricci scalar R; it dominates the standard homoge-
neous piece (the term proportional to F0) since j�j< 4�1.

The asymptotic form (5.4) leads to several qualitative
differences with respect to the Melvin case treated in the
previous section. The most significant difference resides in
the fact that the energy-momentum tensor decays accord-
ing to T0

0 / expð��rÞ. This implies, in particular [see

(5.3)], ffiffiffiffiffiffiffi�g
p

T0
0 / eð2�1�p�Þr: (5.5)

Within the set of parameters which we were able to ex-
plore, the exponent is positive and, as a consequence, the
inertial mass (per unit length) of these cosmic string solu-
tions in CG is divergent. The presence of the conformal
coupling and constant asymptotic curvature (‘‘cosmologi-

cal constant’’) has therefore important consequences on the
physical characteristics of the cosmic strings; similar phe-
nomena were observed in the context of spherically sym-
metric topological defects, namely, for the magnetic
monopole [22] and the corresponding CG case [12].
Another different feature of cosmic strings with respect

to the pure magnetic (Melvin) solutions appears in the
asymptotic behavior of the function �ðrÞ:

�ðr ! 1Þ ¼ �2�2e
ð�0�p�Þr: (5.6)

This combination of the metric function is not any longer
constant for r ! 1. This is observed and confirmed by the
numerical solutions.
We first integrated the equations of conformal string

numerically in the case � ¼ 0 and obtained a family of
cosmic string solutions in the background of the vacuum
space-time characterized by the parameter �. The profiles
of the different matter functions of the string embedded in
the background of the vacuum solution with � ¼ 20 are
presented in Fig. 10 (the energy density is also supple-
mented). The profiles of the matter fields are qualitatively
very similar to those of the flat case [19] or in the gravitat-
ing case [20]. Considering several values of � leads to
similar plots.
Finally, we studied the self-gravitating cosmic strings by

integrating the field equations for � � 0 and found a
pattern qualitatively similar to the one obtained for pure
electromagnetic (Melvin) solutions. The matter fields and
metric components of a typical solution are depicted in
Fig. 11. In this case we let the Higgs field play the role of
the scalar S, so we stay with the more economic model
where the Higgs field itself is related to mass generation
already at the classical level for point particles.

FIG. 10 (color online). Flux tube solution: Profiles of the
matter functions A, A0, f, f0 and of the energy density T0

0 in

the case � ¼ 0, � ¼ 1, and � ¼ 20.
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Although the profiles of the matter functions deviate a
little from the � ¼ 0 case, the deformation of the metric
function BðrÞ and some quantities characterizing the ge-
ometry are more significant. The quantities RðrÞ, �ðrÞ are
compared in Fig. 12(a) for � ¼ 0 and � ¼ �1. The de-
rivatives B00, B000 also develop some structure close to the
symmetry axis r ¼ 0; this is illustrated in Fig. 12(b).

In this case also, the gravitating cosmic string solutions
exist only up to a maximal value of �. That is, we find
solutions for �< 1:785 (respectively, �< 1:2) for � ¼ 20
(respectively, � ¼ 16). We strongly suspect that, like in the

Melvin case, a second branch of solutions exists but it was
not attempted to construct it. The determination of the
domain of existence of the solutions in the �� � plane
was also left for further investigation.

VI. CONCLUSIONS

In this paper we have investigated cylindrically symmet-
ric solutions in conformal gravity. Examining the solutions
both by analytical and numerical methods, we were able to
construct several types of solutions which to our knowl-

(a) (b)

FIG. 11. Profiles of a stringlike solution for � ¼ 1, � ¼ 1 and � ¼ 16. (a) The matter functions A, A0, f, f0. (b) The metric
components B, L ¼ B0 and those of the physical metric fB and fB0.

(a) (b)

FIG. 12 (color online). Stringlike solution for � ¼ 1 and � ¼ 20 and � ¼ 0 (black), � ¼ 1 (red), and � ¼ �1 (blue). (a) Profiles of
RðrÞ and �ðrÞ. Note that the �ðrÞ curve for � ¼ 0 can be fit between the two curves of Fig. 1. (b) Details of derivatives of BðrÞ.
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edge were unknown so far: solitonlike regular vacuum
solutions, spaces around line sources, the CG analogs of
the Melvin solution, and conformal self-gravitating flux
tubes, i.e., the CG analogs of the cosmic strings.

The analysis was based on the Abelian Higgs model
coupled to CG which was studied first in several special
cases and finally for cosmic strings. The symmetry break-
ing mechanism which is required for flux tube solutions
has in the present case a gravitational origin, unlike the
ordinary case, since conformal symmetry does not allow
the usual negative mass term into the Lagrangian.

The Higgs model was also used as a starting point of
extending CG to be a scalar-tensor theory which allows a
consistent coupling of point particles.

CG is a rich and interesting theory which may supply
answers to some of the most annoying problems like those
of the cosmological constant, the dark matter, and the dark
energy. It is therefore natural and required to investigate
the theory in other domains and search for further impli-
cations of the theory like in the area of topological defects
which are assumed to play an important role on structure
formation at the early Universe.

As a first step we studied the vacuum solutions of CG
which are interesting on their own right and also as they
give a first indication about the asymptotic behavior of
localized self-gravitating structures. We found that the
cylindrically symmetric vacuum open solutions of CG
have an asymptotical behavior which is similar to that of
the AdS soliton. Actually there are two kinds of solutions:

one with an everywhere constant negative (‘‘AdS-like’’)
Ricci curvature (the same as the AdS soliton) and the
second, which is a new kind special to CG, has a Ricci
scalar which approaches a constant only asymptotically.
There exist also two kinds of flat or asymptotically flat
vacuum solutions which we have not studied extensively,
since they are not compatible with the symmetry breaking
mechanism which produces in this context the flux tube
solutions.
The second step was to study magnetic solutions in the

purely tensorial CG as well as in its scalar-tensor exten-
sion. We have found Melvin-like solutions that have a
finite energy per unit length. The solutions separate into
two branches and in each of them CG cannot support
magnetic fluxes with too intense magnetic fields in the
core.
The last step was centered about self-gravitating flux

tube solutions in CG. Here the system contains from the
start a scalar field which may be naturally exploited for
consistent coupling of point particles, so we did not extend
the model by an additional scalar field. We were able to
solve numerically the field equations and obtained two
important results: (i) As in the purely magnetic solutions,
there is an upper bound on the magnetic field in the core
above which no solutions exist. (ii) Unlike the purely
magnetic case, the Ricci scalar (‘‘cosmological constant’’)
influences drastically the asymptotic decay of the scalar
fields and makes it impossible to have a finite inertial mass.
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