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Abstract

The aim of this paper is to study theoretical risk bounds when using

the Empirical Risk Minimization principle for pattern classi�cation prob-

lems. We review some recent developments in statistical learning theory,

in particular those involving minimal loss strategies. We conclude with a

discussion of the practical implications of these results.
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1 Motivations

The �eld of machine learning has considerably developed over the last years, from
the use of support vector machines (SVM) and its derivatives to the widespread
use of deep neural networks. A better theoretical understanding of learning
algorithms is important for the understanding of current algorithms as well as for
the development of new ones. In this paper we review some recent risk bounds in
statistical learning theory, in particular those involving minimal loss strategies.

2 Formalization of the learning problem

In de�ned in [4], the problem of pattern classi�cation consists in �nding a function

f̂ among set of hypothesis H = {f : X → {0, 1}} which minimizes the probability
error

R(f) = P (Y 6= f(X)) =

∫
1y 6=f(x)dP (x, y) (1)

given a i.i.d sample (x1, y1), . . . , (xn, yn) and an (unknown) probability P (x,y).
Introducing the regression function η(x) = P (Y = 1 | X = x), the Bayes classi�er
de�ned by f∗(x) = 1η(x)≥ 1

2
achieves the minimum risk (1) over all possible

measurable functions f : X → {0, 1}, as shown in [2].

3 Risk bounds and strategies in statistical infer-

ence

The principle of empirical risk minimization (ERM) consists in replacing (1) by
the empirical risk functional

Rn(f) =
1

n

n∑
i=1

1yi 6=f(xi)

1



and then approximating the function fH by the function f̂n, where fH and f̂n
are such that: fH = argmin

f∈H
R(f) and f̂n = argmin

f∈H
Rn(f). Risk bounds on the

error made by replacing the Bayes classi�er f∗ with f̂n are reviewed in [3] .
The ERM principle implicitely re�ects a minimax loss strategy [4], with upper

bounds relatively close to the lower bounds on the minimax loss. Indeed, using
a loss function ` such that: `(f, f∗) = R(f) − R(f∗), minimax strategy consists

in �nding the estimator f̂ that minimizes the supremum (over all P ) of expected

value of `(f̂ , f∗). Two cases can be considered, as detailed in [4] for a set of
functions H with VC dimension V :
In the optimistic case (for set of probability P for which R(f∗) = 0, ∀P ): for
n > V ,

V + 1

2e(n+ 1)
≤ inf

f̂
sup
P

EP (`(f̂ , f∗)) ≤ sup
P

EP (`(f̂n, f∗)) ≤
4

n
ln

(
2en

V

)V
+

16

n
.

In the pessimistic case (for a set of probability P, ∃P such that R(f∗) 6= 0),
for n > 2V :

V

n
(1−erf(1)) ≤ inf

f̂
sup
P

EP (`(f̂ , f∗)) ≤ sup
P

EP (`(f̂n, f∗)) ≤ 4

√
V
(
ln 2n

V + 1
)
+ 24

n

(2)
Using geometric and combinatorial quantities related to the class H, it is

possible to re�ne (2) in several ways. First, as in [2], if n > 2V there exists an
absolute positive constant c such that:√

V

n
(1− erf(1)) ≤ inf

f̂
sup
P

EP (`(f̂ , f∗)) ≤ sup
P

EP (`(f̂n, f∗)) ≤ c
√
V

n

Second, as in [1], instead of taking P in some arbitrary set P, one can
introduce a parameter h ∈ [0, 1], such that P ∈ P(h) and P(h) is the set:
{P ∈ P, | 2η(x) − 1 |≥ h for allx ∈ X}. Then, if we assume that H has a
�nite VC-dimension V ≥ 2, for some absolute positive constant k, if n ≥ V , one
has

inf
f̂

sup
P∈P(h)

EP (`(f̂ , f∗)) ≥ kmin

(
V − 1

nh
,

√
V − 1

n

)
.

We will show that the latter bounds are in fact a particular case of [5] and
discuss the practical implications of these results.
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