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Introduction : Why should we modify general relativity ?

Despite consequential success . . .
Offer a geometrical explanation of gravitational process [elegant]
Allow to explain many phenomenons :

1 Mercury perihelion problem
2 Existence and shape of gravitational waves : GW150914 (2016)
3 Gravitational lensing : Event Horizon telescope (2019)

[many experimental checks]
. . . there are some unexplained phenomena within General Relativity (GR) :

Origin and value of the cosmological constant
Low intensity of gravitational interaction
Existence of singularities within space-time
Origin and composition of dark matter and dark energy
Accelerated expansion of the universe

Not all of them are related to quantum correction problems !
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Introduction : How should we modify general relativity ?

There exist numerous attempts to answer this question.

One of them is to consider that the unrated phenomena are due to
unknown degrees of freedom (that can be interpreted as new particles or
as a new component in the description of gravity).

In GR, all the degrees of freedom are encoded in the metric gµν .
But, formally, the equivalence principle does not rule out the possible
existence of other kind of fields in the model.
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Introduction : How should we modify general relativity ?

The most simple candidate for these degrees of freedom is a scalar field.

Simplest covariant object
Important element of many models :
• Cosmology
• Standard model of particle physics
• Kaluza-Klein reduction
• Effective theory
• ...

Also experimentally motivated since the Brout-Englert-Higgs boson’s
discovery (CERN 2012)
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Introduction : Why not considering the simplest case ?

Why not just using LEKG = κ (R− 2Λ)−∇µφ∇µφ− V (φ) ?
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Introduction : Why not considering the simplest case ?

No Hair Theorem (Schematically)
Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)

Hypothesis 2 : (Coupling condition)

Hypothesis 3 : (Symmetries of the scalar field)

Hypothesis 4 : (“Energetic” condition)

Then, the scalar field must be trivial : φ (xµ) = cte,∀xµ.

Note : Generically, the proof makes no use of the Einstein’s equations.
It just uses the scalar field equation defined thanks to hypothesis 2.
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Model : Curvature induced scalarization

We are interested in salar tensor theory where a complex scalar field φ is
non-minimally coupled to gravity by means of a curvature invariant I(g) :

S =
∫ [ 1

16πGR −∇µφ
∗∇µφ− V (φ) +f(φ)I(g)

]√
−gd4x.

If we assume that both V (φ) and f(φ) are functions of |φ| =
√
φ∗φ, the

model possess a global U(1) symmetry : φ→ eiαφ.

Ludovic Ducobu RTG Workshop October 2019 8 / 32



Introduction Model Equations of motion Results Conclusion

Model : Curvature induced scalarization

We are interested in salar tensor theory where a complex scalar field φ is
non-minimally coupled to gravity by means of a curvature invariant I(g) :

S =
∫ [ 1

16πGR −∇µφ
∗∇µφ− V (φ) +f(φ)I(g)

]√
−gd4x.

If we assume that both V (φ) and f(φ) are functions of |φ| =
√
φ∗φ, the

model possess a global U(1) symmetry : φ→ eiαφ.

Ludovic Ducobu RTG Workshop October 2019 8 / 32



Introduction Model Equations of motion Results Conclusion

Model : Curvature induced scalarization

We are interested in salar tensor theory where a complex scalar field φ is
non-minimally coupled to gravity by means of a curvature invariant I(g) :

S =
∫ [ 1

16πGR −∇µφ
∗∇µφ− V (φ) +f(φ)I(g)

]√
−gd4x.

If we assume that both V (φ) and f(φ) are functions of |φ| =
√
φ∗φ, the

model possess a global U(1) symmetry : φ→ eiαφ.

Ludovic Ducobu RTG Workshop October 2019 8 / 32



Introduction Model Equations of motion Results Conclusion

Model : Curvature induced scalarization

S =
∫ [ 1

16πGR−∇µφ
∗∇µφ− V (φ) + f(φ)I(g)

]√
−gd4x.

We will focus on a coupling to the Gauss-Bonnet invariant :

I(g) = LGB ≡ R2 − 4RµνRµν +RµνρσR
µνρσ.

The functions V and f are choosen as :

V (φ) = m2|φ|2 + λ4|φ|4 + λ6|φ|6,

f(φ) = γ1|φ|+ γ2|φ|2.
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Equations of motion
For the metric function :

Gµν = 8πG
(
T (φ)
µν + T (I)

µν

)
,

where
T (φ)
µν = ∇(µφ∇ν)φ

∗ − (∇αφ∗∇αφ+ V (φ)) gµν ,

and
T (I)
µν = −(gµρgνσ + gνρgµσ)εραγδεβσλτRγδλτ∇α∇βf(φ),

with εραγδ the Levi-Civita tensor.

For the scalar field :

−�φ = − ∂V
∂φ∗

+ ∂f

∂φ∗
I(g),

with � = ∇µ∇µ.
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Ansatz
For the metric function :

We will focus on a spherically symmetric space-time.
On an appropriate coordinate system (t, r, θ, ϕ), the metric read

ds2 = −N(r)σ2(r)dt2 + 1
N(r)dr2 + g(r)(dθ2 + sin2 θdϕ2),

where we fix the gauge freedom in the definition of the r coordinate by
setting

g(r) = r2.

For the scalar field :

In the same coordinate system, we choose a scalar field of the form

φ(xµ) = e−iωtφ(r),

where ω is a constant real parameter.
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Reduced equations

Within this ansatz, the field equations can be rewritten in the form

N ′ = F1(N, σ, φ, φ′; ω),
σ′ = F2(N, σ, φ, φ′; ω),
φ′′ = F3(N, σ, φ, φ′; ω),

where the functions F1, F2 and F3 are involved algebraic functions of the
fields N , σ, φ and φ′.

Note that we can reduce ourself to a real scalar field via a ω → 0 limit.
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Boundary conditions
for Black Holes

We impose an horizon at radius r = rh :
N(rh) = 0.

We further demand regularity of the solution at the horizon. This
constraint the first derivative of the scalar field φ′(rh) :

φ′(rh) = −r2
h ±
√

∆
8rh(γ1 + 2γ2φ(rh)) ,

where
∆ = r4

h − 96γ2
1 − 384(γ2

2φ(rh)2 + γ1γ2φ(rh)).

Finally, we require asymptotic flatness :
σ(r →∞) = 1, φ(r →∞) = 0.
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Boundary conditions
for Boson Stars

The regularity of the solutions at the origin impose

N(0) = 1 , φ′(0) = 0.

The assymptotic flatness is ensured by setting

σ(r →∞) = 1 , φ(r →∞) = 0.
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Hypothesis

The scalar field is real, i.e. ω = 0 in φ(xµ) = eiωtφ(r).
The potential contain no self-interaction so λ4 = 0 = λ6 in
V (φ) = m2|φ|2 + λ4|φ|4 + λ6|φ|6.
Unless explicitely stated, we will also assume the salar field to be
massless : m = 0.

The behaviour of the solutions is only due to the coupling function

f(φ) = γ1φ+ γ2φ
2.
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Shift-symmetry (γ1 6= 0, γ2 = 0)

The equation of motion for φ read

�φ = −γ1I(g).

The condition of regularity at the horizon reduces to

φ′(rh) = −r
2
h ±
√

∆
8rhγ1

, ∆ = r4
h − 96γ2

1 .

Consequently, the condition of positivity of the discriminant ∆ constraint
the accessible values of γ1 :

∆ ≥ 0⇔ γ1 ≤ r2
h

√
1/96 ≈ r2

h × 0.1021.
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Shift-symmetry (γ1 6= 0, γ2 = 0)

φ′(rh) = −r
2
h ±
√

∆
8rhγ1

, ∆ = r4
h − 96γ2

1 .

In the following, we will focus on solutions corresponding to the “+”
sign.
→ Solution corresponding to “+” sign ↔ appproach regularily

Schwarschild solution in the γ1 → 0 litmit.
→ Solution corresponding to “−” sign ↔ no regular limit for γ1 → 0.

On this branch, solutions exists for γ1 ∈
[
0, r2

h

√
1/96

]
.

Since φ′(rh) does only depend on rh and γ1, for a fixed rh, there is
only one possible solution for each value of γ1. (no excited solutions)
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Spontaneous scalarization (γ1 = 0, γ2 6= 0)

The equation of motion for φ read

�φ = −2γ2φI(g)⇔ D̂φ = γ2φ.

The condition of regularity at the horizon reduces to

φ′(rh) = −r2
h ±
√

∆
16rhγ2φ(rh) , ∆ = r4

h − 384γ2
2φ(rh)2.

In this case the pattern of solutions is very different :
Solutions exists only for γ2 ∈ [γ2,c, γ2,max ], whith γ2,c > 0.
Excited solutions exists.
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Spontaneous scalarization (γ1 = 0, γ2 6= 0)
Origin of the critical values

The existence of regular solutions require 3 conditions :

∆ ≥ 0, γ2 6= 0 and φ(rh) 6= 0

→ γ2,c : Correspond to ∆→ 0.
→ γ2,max : Correspond to φ(rh)→ 0.

This pattern can be understood when examining the case of a test field :
On a fixed Schwarzschild background the equation for φ can be written as

r4

48M
d
dr

[
r2
(

1− 2M
r

) d
drφ

]
= γ2φ⇔ D̂|Sch

φ = γ2φ.

⇒ γ2 must be an eigen value of the differential operator D̂|Sch
↔ γ2,max .
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Spontaneous scalarization (γ1 = 0, γ2 6= 0)
unexcited solutions
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New results (γ1 6= 0, γ2 6= 0)
influence of a mass term
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Hypothesis

The scalar field is complex, of the form φ(xµ) = eiωtφ(r) with ω 6= 0.
Accordingly, the Lagrangian possesses a global U(1) symmetry. The
associated Noether charge will be denoted Q.
The potential is of the form V (φ) = m2|φ|2 + λ4|φ|4 + λ6|φ|6 and
should contain at least a mass term, so m > 0.
More precisely, we will concentrate our study to two cases :
• no self-interaction : m 6= 0, λ4 = 0, λ6 = 0,
• self-interaction : m 6= 0, λ4 = −2m

2

φ2
c
, λ6 = m2

φ4
c
. In this case, the

potential is V (φ) = m2φ2
(

1− φ2

φ2
c

)2

. It possesses three degenerate

minima located at φ = 0,±φc.
The linear coupling to the Gauss-Bonnet term will be set to zero, so
γ1 = 0. In other words : f(φ) = γ2 |φ|2.
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Solutions without self-interaction

0.6 0.7 0.8 0.9 1.0

6

8

10

12

14

16

ω

M

γ2=0

γ2=0.02

γ2=0.05

γ2=0.1

γ2=0.2

Ludovic Ducobu RTG Workshop October 2019 27 / 32



Introduction Model Equations of motion Results Conclusion

Solutions with self-interaction
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Classical stability

The Noether charge associated to the gobal U(1) symmetry, i.e. Q, will be
interpreted as a number of particles.
More precisely, Q will be seen as the number of bosons of mass m forming
the star (of mass M).
Within this interpretation, it is natural to perform a comparision between
M and mQ :

If M < mQ, we will say that the boson star is classicaly stable, since
the total mass of the star M is lower than the “sum of its
constituents” mQ.
If M > mQ, following the same lines, we will say that the boson star
is classicaly unstable.

In the following, we will report our results in terms of the quantity M
mQ :

M

mQ
>
< 1⇔ (un)stable.
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Conclusions & outlooks

S =
∫ [ 1

16πGR−∇µφ
∗∇µφ− V (φ) + f(φ)I(g)

]√
−gd4x.

f(φ) = γ1 |φ|+ γ2 |φ|2 , I(g) = R2 − 4RµνRµν +RµνρσR
µνρσ.

Conclusions :
We have illustrated how f(φ) can lead to very different patterns when
coupled to the Gauss-Bonnet invariant,
In the case of black holes : our results link shift-symmetric theory to
spontaneous scalarization,
In the case of boson stars : we shown how a coupling function γ2 |φ|2
could enlarge the domain and improve the stability of the solutions.

Outlooks :
Charged scalar field : ∇µφ→ Dµφ = (∂µ + ieAµ)φ,
Other types of coupling : ∇µφ∗gµν∇νφ→ ∇µφ∗ (αgµν + ηGµν)∇νφ,
Influence on matter : Tµν = (ρ+ P )uµuν + Pgµν .
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