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Abstract: In this study, a software sensor monitoring a viral amplification process is developed and
validated. First, a dynamic model structure is proposed, describing Vero cell growth as well as the impact
of viral infection, in accordance with the considered industrial application. A parameter identification
procedure is set up based on a nonlinear least-square optimization criterion using several data sets
provided by Sanofi Pasteur (Lyon, France). Second, an extended Kalman filter is designed considering
a specific measurement configuration including a Raman probe sensing biomass, glucose, lactate and
glutamine concentrations, and the estimation of exogenous variables such as the cell growth rate and
viral amplification parameters. The obtained results validate the possibility to consider the EKF software
sensor as a useful tool to monitor and report on viral amplification dynamics.
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1. INTRODUCTION

Describing and predicting virus amplification dynamics on host
cells is critical to understand and optimize culture-based vac-
cine production processes, which are key economic challenges
for pharmaceutical industries. In the framework of the 4.0
industry development and the increasing success of artificial
intelligence, digital twins based on dynamic models constitute
a promising tool to meet these expectations.

Several dynamic models of viral amplification are proposed in
the literature for different animal cell strains such as MDCK,
Vero or hybridoma cells (Möhler et al., 2005; Schulze-Horsel
et al., 2009; Müller et al., 2013; Ursache et al., 2015), namely
focusing on Influenza or poliovirus. In (Abbate et al., 2016), the
viral amplification process dynamics is described as a function
of the whole living biomass, either uninfected or infected, in-
stead of segregating the different populations as it is common
in the previous cited works. Considering that infected biomass
evolves faster than other variables, the model is indeed reduced
through a slow-fast assumption. This work is extended and
elaborated in Abbate et al. (2019), where the global identifiabil-
ity analysis of the proposed model is achieved using the DAISY
Toolbox (Bellu et al., 2007) as well as a local identifiability
analysis based on the Fisher Information Matrix (FIM). The
resulting mechanistic models have good predictive capability
and offer the possibility to develop advanced on-line moni-
toring tools, provided a system property called observability,
which states that unmeasured variables can be estimated by
an observer or software sensor, in finite time, if the model
meets some structural conditions involving the available probe
configuration. Application of software sensors to bioprocesses
is a widely studied topic (Dochain, 2003; Bogaerts and Vande
Wouwer, 2003; Goffaux and Vande Wouwer, 2005; Dewasme
et al., 2009; Ali et al., 2015) and recent practical applications
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have assessed the potential monitoring improvements in the
context of animal cell cultures (Amribt et al., 2014b,a; De-
wasme et al., 2015; Dewasme and Vande Wouwer, 2020). To
the best of the authors knowledge, software sensor design for
monitoring viral amplification has not been reported yet. The
main motivation of this work is therefore to assess the poten-
tial of software sensors in this specific context and to provide
insight into the monitoring improvements.

This work, included in a vaccine development project frame-
work, therefore aims at optimizing budding viral amplification
cultures in several steps going from process modeling to ad-
vanced monitoring and control. This paper reports on the first
phases of the project which are dedicated to model parameter
identification and observer design, achieved with the support
of an available, yet confidential, chemometric model delivering
on-line measurements of a state variable subset.

This work is organized as follows. Section 2 presents the
process of interest and the operating mode while a candidate
dynamic model is proposed in section 3. An original parameter
identification procedure is described in section 4 as well as
model validation. The model is used to design a software sensor
under the form of an extended Kalman filter in section 5 to
estimate state variables and critical kinetic parameters. This
software sensor is validated in section 6 under the assumption
of the presence of a Raman probe and conclusions are drawn in
section 7.

2. VIRAL AMPLIFICATION PROCESS

The current study considers a budding viral amplification pro-
cess achieved in 15 mL bioreactors, starting with cell seeding at
day 0 followed by a 2−day batch culture. At day 3, a medium
change is operated as well as cell infection with a specific mul-
tiplicity of infection representing the ratio MOI = Vir

X (which
is not divulged for the sake of confidentiality) where Vir and
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X respectively stand for the viral load and cell concentration.
At day 5 (day 2 post-infection), one last medium change is
operated. Off-line measurement samples are taken at days 0 and
3 during the first batch phase and every day following infection.
A summary of these operating conditions is shown in Table 1.

Table 1. Viral amplification procedure - the index
pi stands for post-infection.

Day Operation Sampling
d0 Biomass inoculation Yes
d1 No operation No
d2 No operation No

d3 = d0,pi Medium change and infection Yes (Pre and post)
d1,pi No operation Yes
d2,pi Medium change Yes (Pre and post)
d3,pi No operation Yes

The provided database concerns the follow-up of 4 experiments
where the following metabolite concentrations are measured,
e.g., the viable biomass (106 cells/mL), glucose (g/L), glu-
tamine (g/L), lactate (g/L), ammonium (mM), glutamate (g/L)
and infection titer concentrations (log(106 Vir/mL)).

3. DYNAMIC MODELING

The starting point of the current study is the modeling proce-
dure reported in (Abbate et al., 2019), which is based on the
following assumptions:

• The total biomass rules the substrate consumption dynam-
ics as well as by-product production rates and biomass
decay;

• The growth is dynamically driven only by the uninfected
biomass;

• The biomass decay rate is constant all along the culture;
• Viral amplification is dynamically driven by the infected

biomass;
• The infected biomass is assumed to be in quasi steady-

state with respect to other states by time-scale separa-
tion (the conversion of uninfected to infected biomass is
almost instantaneous from the slowly growing variable
reference).

These assumptions lead to an ordinary differential equation
model describing a batch process (Abbate et al., 2019):

dξ
dt

= K ϕ (1)

where ξ is the state vector, containing all metabolite concen-
trations, i.e., biomass X , glucose G, glutamine Gn, lactate L,
ammonium N, glutamate Glu and infection titer IT . K is the
pseudo-stoichiometric matrix which reads:

K =




δ(t) 0 0
0 −Yglc 0
0 −Ygln 0
0 Ylac 0
0 YNH3 0
0 Yglu 0
0 0 Yvir




(2)

where δ = t
t+tL

and tL = 1 day represents the growth latency
observed each time a medium renewal is achieved (i.e., medium

renewal can be considered, regarding the cell acclimation,
as the start of a new culture), Y (.) are the stoichiometric
coefficients and the reaction rate vector ϕ reads:

ϕ =

 µgrowth(X −Xi)
µgrowthX

Xi


(3)

where:
µgrowth =

−1
1+ exp(−S (X −Xmax))

+1 (4)

S is a parameter related to the surface of the carrier beads,
assumed to be known and set to 4 in the current study, and Xmax
is the maximum capacity concentration of biomass clustered on
the beads. The infected biomass Xi is calculated as:

Xi =
IT

IT +KVir
X (5)

where KVir stands as the half-saturation constant of the infection
rate. Equation (5) results from a slow-fast dynamic assumption
of the infection which is assumed to be much faster than the
biomass growth (see (Abbate et al., 2019)).

4. PARAMETER IDENTIFICATION

4.1 Identification procedure

A weighted nonlinear least-squares criterion minimizing the
distances between model predictions and experimental data is
chosen:

J =
nexp

∑
s=1

nsamp

∑
i=1

(ξ(i,s)−ξdata(i,s))Q−1 (ξ(i,s)−ξdata(i,s))
T

(6)

where ξdata(i,s) is the state measurement at time i (going from
1 to nsamp) in experiment s (going from 1 to nexp) and Q is the
covariance matrix weighting the cost function J.

The optimization problem can therefore be enunciated as minθJ
such that (1) holds, where θ represents the parameter vector
containing the stoichiometric and kinetic parameters but also
the ordinary differential equation initial conditions ξ(1,s).

4.2 Model validation

The validation process consists in dividing the data sets in two
sets, selecting 3 experiments described in section 2 to identify
the model parameters and achieve a direct validation (assessing
the model fitting). The remaining fourth data set is used to
cross-validate the model (assessing its predictive capacity in
new situations).

The chosen optimization procedure is implemented on the
MATLAB platform and proceeds as follows:

• The fmincon solver is called, which applies an interior-
point algorithm with constraints on the parameter values
(allowing to reduce the search space). These constraints
are however chosen quite large (10−6 to 106) but could be
tightened if required (in case of multiple local minima).
The fmincon solver is called in a loop using each new
optimization result as initial guess of the next solver call
until a specific threshold is met, stopping the loop when
no residual variation of more than 0.1% with respect to
the previous optimization result is detected;

• The latter results are considered as initial guess of a
new optimization calling the lsqnonlin solver, using a
Levenberg-Marquardt algorithm and providing the Jaco-
bian matrix of parameter sensitivities that can be used to
build the lower bound of the parameter estimation error
covariance from the inverse of the Fisher Information Ma-
trix (FIM).

A multi-start strategy is also applied, generating multiple ran-
dom initial guesses of the parameters and covering the search
space to avoid falling into local minima. Model performances
are evaluated taking into account the cost function J residual
(fitting quality) and practical identifiability (parameter estimate
confidence intervals at 95% inferred from the diagonal of the
inverted FIM).

The identification results are shown in Table 2 and the direct
and cross-validations respectively appear in Figures 1 and 2.
Obviously, the fitting is satisfactory, with a mean residual of
0.055 in direct validation and 0.076 in cross-validation. The
parameter values also seem to be accurately identified since the
relative confidence intervals at 95 % are, for the majority, below
15 % excepted the yield coefficient of virus production which
is more uncertain, mainly due to the rather small number of
infectious titer data.

Table 2. Parameter identification results - Values
and relative confidence intervals (C.I.)

Parameter Value C.I. (%)
Xmax 0.843 7.988
Yglc 3.564 13.429
Ygln 0.439 12.904
Ylac 3.049 11.808
Yglu 16.290 12.359
YNH3 2.706 11.687
YVir 305.359 51.021
KVir 125.067 4.796
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Fig. 1. Direct validation of the identified model. Continuous
line: model. Bubbles: experimental data with 95 % confi-
dence intervals.

The results of this modeling and identification procedure of
the viral amplification process are therefore comparable to the
work of Abbate et al. (2019), which is comforting with regard
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Fig. 2. Cross-validation of the identified model. Continuous
line: model. Bubbles: experimental data with 95 % con-
fidence intervals.

to the development of a software sensor, as proposed in the next
section.

5. SOFTWARE SENSOR DESIGN

The definition of observability is first recalled:

Definition System (1) is observable if

∀t0,∃t1 < ∞|y(t; t0,ξ(0),u(t)) = y(t; t0,ξ′(0),u(t)) ,
∀u(t), t0 < t < t1 ⇒ ξ(0) = ξ′(0) (7)

where y = h(ξ) is the system measurable output assumed as a
nonlinear function of the states ξ. Observability of nonlinear
systems is however very difficult to analyze. A weaker but very
interesting concept is detectability.

Definition System (1) is detectable if considering a copy of
this system inducing new states ξ′, for any known output
y = h(ξ), the error ε = ξ − ξ′ tends asymptotically to zero,
therefore inducing the distinguishability of the state trajectories
(the interested reader can refer to (Moreno et al., 2014) for a
methodology based on this concept).

5.1 Measurement mapping

Observability and detectability therefore depend on the on-line
measurement mapping. Calibrated turbidimetric or capacitance
probes allow monitoring on-line the biomass concentration,
making the latter the most likely measurable candidate at the
start of the following analysis.

Considering system (1), an error system can be proposed:

dε
dt

= K
(
ϕ(ξ)−ϕ(ξ′)

)
(8)

where ξ′ is a copy of the state vector ξ.

Considering viable biomass as measurable, µgrowth is only a
function of X = X ′, εX = 0, inducing:
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• The latter results are considered as initial guess of a
new optimization calling the lsqnonlin solver, using a
Levenberg-Marquardt algorithm and providing the Jaco-
bian matrix of parameter sensitivities that can be used to
build the lower bound of the parameter estimation error
covariance from the inverse of the Fisher Information Ma-
trix (FIM).

A multi-start strategy is also applied, generating multiple ran-
dom initial guesses of the parameters and covering the search
space to avoid falling into local minima. Model performances
are evaluated taking into account the cost function J residual
(fitting quality) and practical identifiability (parameter estimate
confidence intervals at 95% inferred from the diagonal of the
inverted FIM).

The identification results are shown in Table 2 and the direct
and cross-validations respectively appear in Figures 1 and 2.
Obviously, the fitting is satisfactory, with a mean residual of
0.055 in direct validation and 0.076 in cross-validation. The
parameter values also seem to be accurately identified since the
relative confidence intervals at 95 % are, for the majority, below
15 % excepted the yield coefficient of virus production which
is more uncertain, mainly due to the rather small number of
infectious titer data.

Table 2. Parameter identification results - Values
and relative confidence intervals (C.I.)

Parameter Value C.I. (%)
Xmax 0.843 7.988
Yglc 3.564 13.429
Ygln 0.439 12.904
Ylac 3.049 11.808
Yglu 16.290 12.359
YNH3 2.706 11.687
YVir 305.359 51.021
KVir 125.067 4.796
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Fig. 1. Direct validation of the identified model. Continuous
line: model. Bubbles: experimental data with 95 % confi-
dence intervals.

The results of this modeling and identification procedure of
the viral amplification process are therefore comparable to the
work of Abbate et al. (2019), which is comforting with regard
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Fig. 2. Cross-validation of the identified model. Continuous
line: model. Bubbles: experimental data with 95 % con-
fidence intervals.

to the development of a software sensor, as proposed in the next
section.

5. SOFTWARE SENSOR DESIGN

The definition of observability is first recalled:

Definition System (1) is observable if

∀t0,∃t1 < ∞|y(t; t0,ξ(0),u(t)) = y(t; t0,ξ′(0),u(t)) ,
∀u(t), t0 < t < t1 ⇒ ξ(0) = ξ′(0) (7)

where y = h(ξ) is the system measurable output assumed as a
nonlinear function of the states ξ. Observability of nonlinear
systems is however very difficult to analyze. A weaker but very
interesting concept is detectability.

Definition System (1) is detectable if considering a copy of
this system inducing new states ξ′, for any known output
y = h(ξ), the error ε = ξ − ξ′ tends asymptotically to zero,
therefore inducing the distinguishability of the state trajectories
(the interested reader can refer to (Moreno et al., 2014) for a
methodology based on this concept).

5.1 Measurement mapping

Observability and detectability therefore depend on the on-line
measurement mapping. Calibrated turbidimetric or capacitance
probes allow monitoring on-line the biomass concentration,
making the latter the most likely measurable candidate at the
start of the following analysis.

Considering system (1), an error system can be proposed:

dε
dt

= K
(
ϕ(ξ)−ϕ(ξ′)

)
(8)

where ξ′ is a copy of the state vector ξ.

Considering viable biomass as measurable, µgrowth is only a
function of X = X ′, εX = 0, inducing:
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0 =
dεX

dt
= δXµgrowthKVir

IT ′ − IT
(IT +KVir)(IT ′+KVir)

(9)

and IT = IT ′, making system (1) partially detectable. More-
over, the vector

dεξ
dt is zero for all ξ species which means

that any initial error on the remaining state variables is never
increasing and system (1) presents stable error dynamics.

In this study, not only biomass but also glucose, glutamine
and lactate are measured on-line. This configuration is made
possible by chemometric modeling which allows calibrating a
Raman probe and correlating with machine learning techniques
the spectra with off-line measurements of specific state vari-
ables. In turn, this allows reconstructing their on-line evolutions
at a pace set by the Raman probe sampling.

Only ammonium and glutamate could possibly not converge
to their true trajectory. If these components do not accumulate
excessively, thus avoiding toxic levels for the cells, their moni-
toring is not essential.

It must also be noticed that detectability is a structural property
which depends on the choice of particular kinetic structures.

5.2 Extended Kalman Filter with exogenous variables

The Kalman filter (KF) is an optimal estimator minimizing the
estimation error variance. It is a popular approach for process
monitoring due to its capacity to take measurement noise into
account (under the assumption of Gaussian white noises) and
its successful application in many reported studies (Wilson
et al., 1998; Hitzmann et al., 2000; Arndt and Hitzmann, 2004;
Arndt et al., 2005; Dewasme et al., 2013; Amribt et al., 2014b).
However, since the KF is defined in a linear framework, its
application to models such as (1) requires a first-order lineariza-
tion around the estimated trajectory and the resulting estimator
is called extended Kalman filter (EKF). Moreover, since most
of the bioprocesses are usually modeled by continuous-time
ordinary differential equation systems while on-line probes de-
liver data at discrete times, continuous-discrete EKF is the most
appropriate version. Estimations are achieved in two steps: a
prediction using the available model and a correction when the
measurements are available:

Prediction between tk and tk+1:

dξ(t)
dt

= Kϕ(ξ(t), t)−Dξ(t)+Dξin; ξ(tk) = ξ(t+k ),

t+k ≤ t < t−k+1
(10a)

dC(t)
dt

= A(ξ(t))C(t)+C(t)A(ξ(t))T +Rη; C(tk) =C(t+k ),

(10b)

Correction at time tk+1:

Ω(ξ(tk+1)) =C(t−k+1)L
T LC(t−k+1)L

T +Rε(tk+1)
−1

(11a)

ξ(t+k+1) = ξ(t−k+1)+Ω(ξ(tk+1))
�
y(tk+1)−Lξ(t−k+1)


(11b)

C(t+k+1) =C(t−k+1)−Ω(ξ(tk+1))LC(t−k+1) (11c)

In these expressions, L is the measurement matrix, Ω the
correction gain, C the covariance matrix of the state estimation
errors, Rε and Rη the covariance matrices of respectively the
measurement and model errors, and t−k+1 and t+k+1 the time
instants relative to the a priori and a posteriori estimations
between which the measurement is assumed to be delivered.

When some model parameters are uncertain, the EKF also
offers the possibility to estimate these parameters under the
assumption of a slow variation which is described in an ex-
ogenous model. Since the purpose of this work is to monitor
viral amplification, it may be of interest to estimate the cell
growth rate µgrowth, and uncertain parameters such as the virus
production yield coefficient YVir as well as the kinetic constant
KVir which characterizes the quantity of infected biomass.

6. MONITORING OF VIRAL AMPLIFICATION: RESULTS

This section makes use of experimental data collected in several
experiments where the Raman probe was not in operation. In
order to test the performance of the EKF using a Raman probe,
it is therefore necessary to emulate the signal information that
will be provided by such a probe. This is achieved by generating
synthetic data between actual off-line data points using the
model identified with the same data. A fast sampling is as-
sumed, e.g., Ts = 0.1 day, which is even slower than expected in
real conditions (about half an hour). The emulated Raman probe
reproduces the evolutions of the biomass, glucose, glutamine
and lactate concentration measurements. The validation of the
EKF can therefore be considered as a worse case study, in the
sense that faster sampling will improve on the current results. In
order to reproduce realistic conditions, white Gaussian noise is
added to the model outputs, with standard deviations given by
the chemometric model (which, for the sake of confidentiality,
is not divulged), which are σX = 0.113 g/L, σG = 0.130 g/L,
σGn = 0.026 g/L and σL = 0.230 g/L respectively for biomass,
glucose, glutamine and lactate. The EKF covariance matrices
are therefore designed as follows:

Rε =




0.1132 0 0 0
0 0.1302 0 0
0 0 0.0262 0
0 0 0 0.2302


 (12)

Rη = Ina x na (13)

where I stands for the identity matrix and na = 10 is the
number of state variables of the augmented model considering
the exogenous model for the parameter evolution:

dµgrowth

dt
= 0 (14a)

dYVir

dt
= 0 (14b)

dKVir

dt
= 0 (14c)

Rη reflects the confidence in the model accuracy as compared to
the measurement noise. In the present study, more confidence
is given to the measurements as the diagonal of Rε is at least
100 times smaller than the corresponding terms in Rη. C is
initialized to consider initial estimates normally distributed
around the first data sample with a relative standard deviation
of 10 %.
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Fig. 3. Validation of the augmented EKF for the estimation of
viral amplification state variables - Bubbles: experimental
data with 95 % confidence intervals - Dashed line: model
output - Continuous line: EKF output.

Figure 3 shows the EKF application in the context of the first
experiment that was used to identify the model parameters, run
over 8 days. The estimates are qualitatively satisfactory since
there is no important deviation from the off-line data. Regarding
the medium renewal at days 3 and 5, a 10 % relative error is
applied to the expected dilution factor, which is likely to vary in
true experimental conditions. This also allows challenging the
EKF which has to restart converging to the true state trajectories
between days 3 and 5 as well as days 5 and 8.

0 1 2 3 4 5 6 7 8

Time [d]

0

0.5

1

g
ro

w
th

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Time [d]

250

300

350

Y
V

ir

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Time [d]

80

100

120

140

160

180

K
V

ir
Fig. 4. Validation of the augmented EKF for the estimation

of viral amplification key rate/parameters - Dashed line:
model output/parameter value - Continuous line: EKF
output.

More interestingly, Figure 4 shows that the selected rate and
parameters are well estimated by the augmented EKF since
the latter keeps track of the cell growth rate µgrowth before and
after infection despite the discontinuous variations of the model
prediction, due to the medium renewals, and provides, even

if noisy, good estimates of the viral amplification parameters.
The convergence to the values of YVir and KVir starts at day
4 (post infection) and requires several days to approach the
parameter nominal values. The application of the EKF to a
second experimental dataset confirms these observations as
shown in figures 5 and 6.

These different dynamic behaviors either related to the initial
state variables or to the augmented ones should be taken into
account in future experimental investigations which could con-
sider the augmented EKF as a key software tool to trigger viral
amplification.
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Fig. 5. Validation of the augmented EKF for the estimation of
viral amplification state variables - Bubbles: experimental
data with 95 % confidence intervals - Dashed line: model
output - Continuous line: EKF output.
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Fig. 6. Validation of the augmented EKF for the estimation
of viral amplification key rate/parameters - Dashed line:
model output/parameter value - Continuous line: EKF
output.

7. CONCLUSION

In this paper, monitoring of a viral amplification process is
developed based on a dynamic model whose parameters are
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Fig. 3. Validation of the augmented EKF for the estimation of
viral amplification state variables - Bubbles: experimental
data with 95 % confidence intervals - Dashed line: model
output - Continuous line: EKF output.

Figure 3 shows the EKF application in the context of the first
experiment that was used to identify the model parameters, run
over 8 days. The estimates are qualitatively satisfactory since
there is no important deviation from the off-line data. Regarding
the medium renewal at days 3 and 5, a 10 % relative error is
applied to the expected dilution factor, which is likely to vary in
true experimental conditions. This also allows challenging the
EKF which has to restart converging to the true state trajectories
between days 3 and 5 as well as days 5 and 8.
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Fig. 4. Validation of the augmented EKF for the estimation
of viral amplification key rate/parameters - Dashed line:
model output/parameter value - Continuous line: EKF
output.

More interestingly, Figure 4 shows that the selected rate and
parameters are well estimated by the augmented EKF since
the latter keeps track of the cell growth rate µgrowth before and
after infection despite the discontinuous variations of the model
prediction, due to the medium renewals, and provides, even

if noisy, good estimates of the viral amplification parameters.
The convergence to the values of YVir and KVir starts at day
4 (post infection) and requires several days to approach the
parameter nominal values. The application of the EKF to a
second experimental dataset confirms these observations as
shown in figures 5 and 6.

These different dynamic behaviors either related to the initial
state variables or to the augmented ones should be taken into
account in future experimental investigations which could con-
sider the augmented EKF as a key software tool to trigger viral
amplification.
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Fig. 5. Validation of the augmented EKF for the estimation of
viral amplification state variables - Bubbles: experimental
data with 95 % confidence intervals - Dashed line: model
output - Continuous line: EKF output.
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Fig. 6. Validation of the augmented EKF for the estimation
of viral amplification key rate/parameters - Dashed line:
model output/parameter value - Continuous line: EKF
output.

7. CONCLUSION

In this paper, monitoring of a viral amplification process is
developed based on a dynamic model whose parameters are
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identified using a multi-step procedure and industrial data sets.
The software sensor is an extended Kalman filter (EKF) com-
bined to a chemometric model of a Raman probe delivering on-
line biomass, glucose, glutamine and lactate concentration mea-
surements. The EKF blends the information from the dynamic
model and the chemometric model in order to reconstruct the
trajectories of the unmeasured state variables, i.e., the infection
titer (viral load) as well as a few key kinetic parameters. The
results offer promising prospects, despite partial detectability
of the system (ammonium and glutamate are not guaranteed to
converge to the actual values), and future research entails the
implementation of the EKF with the actual Raman probe to
monitor the cell growth rate and the parameters related to the
infected biomass and the infection yield.
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Guillaume Jeanne and Céline Barraud. Methodology and writ-
ing review-editing: Alain Vande Wouwer. Lydia Saint Cristau,
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