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Abstract: Today, Mg is foreseen as one of the most promising materials for hydrogen storage when
prepared as nano-objects. In this context, we have studied the fabrication of Mg nano-sculpted thin
films by magnetron sputtering deposition in glancing angle configuration. It is demonstrated that the
microstructure of the material is controllable by tuning important deposition parameters such as the
tilt angle or the deposition pressure which both strongly affect the shadowing effect during deposition.
As an example, the angle formed by the column and the substrate and the intercolumnar space varies
between ~20◦ to ~50◦ and ~45 to ~120 nm, respectively, when increasing the tilt angle from 60◦ to 90◦.
These observations are highlighted by modeling the growth of the material using kinetic Monte Carlo
methods which highlights the role of surface diffusion during the synthesis of the coating. This work
is a first step towards the development of an air-stable material for hydrogen storage.

Keywords: Mg columnar films; glancing angle deposition; magnetron sputtering; kinetic Monte
Carlo modeling

1. Introduction

With increased worldwide energy consumption that is associated with the global warming
problem and the depletion of fossil fuels, renewable energy sources from hydro, solar, and wind sources
are increasingly replacing the conventional fuels [1,2]. This is the driving force of a real appeal for
the development of new solutions in several domains of our society, including the transport industry.
Considering the latter, today, several strategies are considered to design the car of the future, and among
them, the hydrogen car is one of the most promising ones. Indeed, hydrogen can be produced by
various electrochemical and biological methods and has a higher chemical energy as compared with
fossil fuels [3–5]. Furthermore, once produced from any energy source, hydrogen generates electricity
during fuel cell operations, leaving water vapor as the only exhaust gas, without any other greenhouse
gases or harmful emissions [2]. Nevertheless, several issues related to the production, distribution,
and storage of hydrogen have to be fixed before using hydrogen as an economically viable fuel for
the transport industry [6]. In particular, the hydrogen storage is an important issue related to the low
volumetric density of hydrogen. Among the solutions developed to store hydrogen, the utilization of
solid-state materials is preferred because of its higher volumetric density (as compared with gaseous
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and liquid solutions) and for safety reasons. Among the solid-state materials that store hydrogen,
the hydride materials where hydrogen is chemically bounded (i.e., not only adsorbed) appear to be
good candidates [7–9].

Specifically, magnesium-based hydrides, and more specifically elemental magnesium hydride
(MgH2), are often considered as promising materials for hydrogen storage because magnesium (Mg) is
abundant, low cost, has low density, low toxicity and higher hydrogen capacity and reversibility as
compared with other hydrides [10,11]. Nevertheless, this material suffers two main drawbacks which
are a high desorption temperature and a slow hydrogen sorption kinetic [11]. In addition, Mg can
easily be oxidized by oxygen and hydrogen not easily diffused in bulk Mg.

For many years, these problems have been addressed by the community. A complete review
on the topic has recently been published by Sadhasivam et al. [12]. From these works, it appears
that the reduction of the size of the Mg compounds down to the nanoscale strongly improves the
thermodynamic properties of the material [13]. Therefore, several routes have been investigated
to reduce the size of the Mg/MgH2 (below 1 µm) particles such as mechanical ball milling in the
presence (or not) of catalyst materials leading to significant improvements in term of the sorption
kinetic of the material [14]. Nevertheless, if the sorption kinetic is improved by this approach, this is
not the case for the thermodynamic parameters [14]. In order to overcome this problem, it has been
suggested that a further reduction of the dimension (<100 nm) of the material could help. This is why
efforts have been developed in order to fabricate 1-, 2- or 3D Mg nanoparticles [6,10]. As an example,
Barawi et al. [15,16] reported on the synthesis of Mg films by e-beam evaporation on SiO2 substrates
with a thickness ranging from 45 to 900 nm and demonstrated that it plays a major role in the hydrogen
absorption kinetics.

In this context and in view of the material science challenges, plasma techniques appear as an
ideal technological platform to synthesize these materials. Indeed, these technologies are known as
“green” technologies, since they allow for good control of the material properties and their industrial
transfer has been demonstrated in many fields such as the glass industry or microelectronics [17–21].
Among these technologies, magnetron sputtering (MS) is usually used to grow dense thin films of
various materials (from metal to polymer coatings) [21–23]. Nevertheless, when used in the glancing
angle deposition (GLAD) configuration, it has been demonstrated that nanostructurated coatings for
the microstructure can be controlled. As an example, we recently reported on the growth of Ti and
TiO2 nanostructurated films by using this approach [19,20].

Therefore, in this work, we aim to study the growth of nano-sculpted Mg films by combining
magnetron sputtering and glancing angle deposition (MSGLAD) in order to better understand the
growth mechanism of this material which could ultimately be used in composite material for hydrogen
storage application. Our strategy consists of a systematic study of the influence of important deposition
parameters namely the tilt angle (α) and the working pressure (PTot) on the microstructure of the
synthesized material. These experimental results are compared to computer simulation by Kinetic
Monte Carlo (KMC) using the NASCAM code to better understand the growth mechanism of the Mg
thin films.

2. Material and Method

2.1. Experimental

All experiments were carried out in a cylindrical stainless-steel chamber (height: 60 cm, diameter:
42 cm), shown in Figure 1. The chamber was evacuated by a turbo-molecular pump (Edwards
nEXT400D 160W, Burgess Hill, UK), down to a residual pressure of 10−7 Pa. A magnetron cathode
was installed at the top of the chamber and the substrate was located at a distance of 80 mm. A 2-inch
in diameter and 0.25-inch thick Mg target (99.99% purity) was used. The target was sputtered in DC
mode using an Advanced Energy MDK 1.5 K power supply in argon atmosphere using a flow of
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12 sccm. Conductive silicon wafers (100) were used as substrates and rinsed with ultra-pure water
before deposition.
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Using the GLAD system, the substrate can be tilted with an angle α and eventually rotated by
an angle (ϕ) either step-by-step or with a continuous angular speed in order to generate diverse thin
film architectures. In this work, we have only studied the effect of the tilt angle on the architecture of
the deposited films with α = 60◦, 80◦, 82.5◦, 85◦, 87◦, and 89◦. On the other hand, we also evaluated
the influence of the working pressure (PTot) which was varied from 0.13 to 1.3 Pa. For all deposition,
the sputtering power was kept constant at 50 W and the deposition time varied between 10 and 20 min
depending on the deposition conditions in order to reach similar thicknesses for all deposited films.

The morphology of the material was characterized with a field emission gun scanning electron
microscope (FEG-SEM, Hitachi SU8020, Ri Li, Japan). In addition, from the SEM images, we extracted
the so-called aspect ratio, Γ, which is defined as the ratio between the inter-columnar space and the
column width.

The chemical composition of the films was evaluated by X-ray photoelectron spectroscopy (XPS)
on a VERSAPROBE PHI 5000 hemispherical analyzer from Physical Electronics with a base pressure of
<3 × 10−7 Pa. The X-ray photoelectron spectra were collected at the take-off angle of 45◦ with respect to
the electron energy analyzer, operating in constant analyzer energy (CAE) mode (23.50 eV). The spectra
were recorded with the monochromatic Al Kα radiation (15 kV, 25 W) with a highly focused beam
size of 100 µm. The energy resolution was 0.7 eV. Eventual surface charging was compensated for
by a built-in electron gun and an argon ion neutralizer. For the chemical depth profile, an Ar+ ion
source was operated at 1 µA and 2 kV with a raster area of 2 mm × 2 mm at an incident angle normal
to the sample surface of 54.7◦. The XPS spectra were referenced to the Mg2p peak at 49.5 eV arising
from the metallic magnesium component [24]. Atomic compositions were derived from peak areas
using photoionization cross sections calculated by Scofield, corrected for the dependence of the escape
depth on the kinetic energy of the electrons and corrected for the analyzer transmission function of
our spectrometer.

The thickness of the films, as measured by a mechanical profilometer Dektak 150 from Veeco,
was kept constant for all films, and their average thickness was about 620 ± 20 nm. As an example,
the deposition rate was 0.32 nm/s for a deposition angle of 85◦ and a sputtering pressure of 2 mTorr.

Finally, the phase constitution of the samples was evaluated by X-ray diffraction (XRD) using a
PANalytical Empyrean diffractometer working with Cu Kα1 radiation (λ = 0.1546 nm) in the grazing
incidence configuration (Ω = 0.5◦). The X-ray source voltage was fixed at 45 kV and the current
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at 40 mA. The grain size (GS) was calculated from the XRD pattern using the following Scherrer
equation [25]:

Gs =
K λ
β cos θ

where, K is a dimensionless shape factor, λ is the X-ray wavelength, β is the diffraction line broadening
at half the maximum intensity (FWHM), and θ is the Bragg angle.

2.2. Simulation

NASCAM is an atomistic deposition simulation code based on the kinetic Monte Carlo (kMC)
method. It can be used for the modeling of different processes occurring at the surface such as the growth
of films during deposition. The atoms are deposited on the substrate at random positions at an equal
time interval which is determined by the deposition rate. Only diffusion or evaporation events can take
place between two deposition events. Energy transfer during ballistic collision events is also taken into
account. This made it suitable to simulate glancing angle deposition processes [26]. The energy and
angular distribution of incident particles were calculated by SRIM [27] and SIMTRA [28]. First, SRIM
was used to calculate the energy and the direction of particles which leave the target. The particles were
then transported in the gas phase by the SIMTRA code which took into account all the collisions between
the sputtered species and the gas molecules. The energy and the angular distribution of the species at
the substrate location were derived for each working conditions by the introduction of the experimental
parameters, which included the working pressure, the particles’ energy which was a function of the
power applied at the target, the racetrack sizes, and the target-to-substrate distance. After that, these files
were used as input data for NASCAM. Other parameters could be tuned in the input file. To compare the
simulation with the experience, we tuned the number of deposited atoms and the substrate size (XYZ).
In these conditions, the simulated and the experimental thin film had the same thickness.

The energy and the angular distribution of the species at the substrate location were derived for each
working conditions by the introduction of the experimental parameters such as the working pressure,
the power applied to the target, the racetrack size, and the target-to-substrate distance, Other parameters
could be varied in the NASCAM input file such as the number of deposited atoms (N) and the substrate
size (XYZ). In order to compare simulated and experimental thin films, both had the same thickness.
For direct comparison of the cross-sectional film morphology, “2D” (Y = 2) NASCAM simulations were
performed (N = 1000 atoms), whereas, for density and porosity evaluation, “3D” (Y = 4) simulations were
performed (N = 1.667 atoms). The deposition rate was fixed at 0.5 monolayer by second (0.301 nm/s),
which was close to the experimental value (0.32 nm/s) at a deposition angle of 85◦.

3. Results and Discussion

3.1. Characterization of A Dense Mg Film

In a first attempt, we have grown a Mg thin film in conventional geometry (α = 0◦) in order to
evaluate the deposition rate, as well as the chemical composition and the phase constitution of the
deposited material. Figure 2 shows the survey XPS spectrum recorded for this film. It reveals the
presence of Mg, O, and C lines at 49.5 eV (Mg2p), 285 eV (C1s), and 530 eV (O1s). From the quantification
of these signal, ~50 atom% of oxygen and 10 atom% of carbon are observed. These are likely related to
surface pollution that appears during the transport of the sample from the chamber to the XPS machine.
Particularly, the presence of oxygen while working in non-reactive conditions is related strong reactivity
of Mg towards O2 (∆Hf(MgO) = –601.8 kJ·mol−1) [29], which allows for the oxidation of the top surface
of the deposited film. In order to clarify the chemistry of the film and to validate that the presence
of carbon, as well as the surface oxidation of Mg, are related to surface pollution, depth profiling of
the films were performed by using an Ar+ gun in the XPS machine before recording the XPS spectra
during 2, 4, and 20 min of erosion. The results are presented in Table 1. Clearly, it appears from this
analysis that a few minutes of erosion allows removal of all the initially observed carbon contamination
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as well as reduction of the oxygen content to an ~10 atom% limit, validating the surface contamination of
the as-deposited sample. The presence of the 10 atom% of oxygen in the bulk of the material is likely
explained by the presence of very low quantity adsorbed water or oxygen in the deposition chamber
even if the base pressure is good quality (10−7 Torr). Indeed, because of the already mentioned strong
reactivity of Mg towards O2, a getter effect likely occurs and leads to the partial oxidation of the material
similar to the effect already observed for another getter material such as Ti [30].
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Figure 2. XPS survey spectra of a dense Mg film prepared for α = 0◦ and PTot = 0.26 Pa. The sputtering
power is 50 W.

Table 1. Elemental composition of the as-deposited Mg thin film before and after 2 min of erosion.

At.% Mg At.% O At.% C

As prepared After erosion As prepared After erosion As prepared After erosion

44.6 89.9 48.9 10.1 10.5 0

In order to support this conclusion, Figure 3 shows the evolution of the Mg2p XPS line as a function
of the depth profiling. The estimated sputtering rate is ~20 nm/min, according to the study reported
by Milcius et al. [31]. For the as-deposited sample, it appears that the Mg line is composed of two
components corresponding to metallic Mg at 49.5 eV and Mg2+ at 50.8 eV. On the other hand, at ~60 eV,
a satellite line related to the metallic component is also observable. The presence of a strong oxidized
component is in line with the surface stoichiometry of the surface composition of the as-prepared sample.
After two minutes of sputtering, which is evaluated to correspond to 40 nm, the oxidized component
of the Mg peak completely vanishes while the satellite peak intensity strongly increases. Both these
observations clearly confirm that the deposited film is only oxidized on its top surface.
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The XRD analysis of the as-deposited dense film is presented in Figure 4. The diffractogram
reveals that the film consists of a polycrystalline material with the presence of several diffraction peaks,
(002), (102), and (102), attributable to the cubic phase of Mg (JCPDS card N◦ 04-0770) [31]. The (002)
peak dominates the spectra which is likely explained by a preferential orientation of the growth along
the c axis as already reported for other materials [13]. In these conditions, applying the Sherrer formula
to the dominating peak, a crystal size of about 25 nm has been calculated.
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3.2. Nano-Sculpted Mg Films

After having characterized the reference film, we have studied the nanostructuration of the
material by using MSGLAD by systematically studying the influence of both the tilt angle (α) and the
working pressure (PTot) on the morphology of Mg films evaluated by SEM images. In addition, in
order to clarify and understand the growth mechanisms, the experimental data was compared to the
result of the modeling of the growth by kinetic Monte Carlo method using the NASCAM software.

Figure 5 shows, as a typical example of the generated microstructure, the cross section and the
surface images of a Mg thin films deposited for α = 85◦ and PTot = 0.26. Pa. Figure 5a shows the side
view of the film which reveals that it is made of well separated faceted columns which have a width
of ~200 nm, a length of ~800 nm, and (when considering the substrate surface) a tilt angle β of ~44◦.
The estimated dimension of the voids between the column is ~10–60 nm. Figure 5b shows the surface of
the film and confirms that the columns are well separated. Similar images for all samples synthesized by
varying α and PTot are shown in the Supplementary Figure S1. Similar morphologies have been obtained
for all samples. Nevertheless, it is observed that the deposited film features (β, the column length, the
intercolumnar space, and the column width) more or less depend on these parameters. This offer many
knobs for tuning the morphology of the deposited films as a function of the foreseen application.

Figure 6 summaries the evolution of β for 60◦ < α < 89◦ (Figure 6a) and for 0.13 Pa < PTot < 1.3 Pa
(Figure 6b) evaluated from SEM images. Figure 6a reveals that β strongly depends on α in line with
previous work on Ti and TiO2 nano-sculpted films. This can be explained considering the influence of
the atomic shadowing effects during deposition in GLAD configuration [19]. In particular, at extremely
oblique incidence angles of the flux (>60◦), the shadowing mechanism is strongly enhanced and results
in a porous microstructure composed of columns inclined toward the vapor source [32]. β drastically
increases for α > 60◦ and stabilizes for α > 85◦. This evolution is explained by considering that when
the direction of vapor incidence is normal to the film surface, the diffusion during the accommodation
of the adatoms is a few atomic distances in the isotropic direction. However, under oblique incidence,
the diffusion occurs in the direction given by the projection of the vapor beam direction on the film
surface. The amount of kinetic energy (momentum) preserved in the direction parallel to the film
surface is only determined by the angle of incidence.
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the tilt angle, α (a) and of the working pressure, PTot (b) for Mg nano-sculpted films and the mean free
path. The films were deposited for a discharge power of 50 W.
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It has to be noted that since the substrate to target distance (8 cm) is not very high in our chamber,
the diameter of the target (2 inches) have to be taken into account to distinguish α and the incident
angle of the particles, since the majority of the latter comes from the racetrack region of the target.
The size of the particles source induces an angle of deviation in the α direction which increases with
the target diameter [33]. This angle of deviation has been calculated in previous work for similar
conditions and slightly increases with α due to the geometrical inclination of the substrate leading to
an asymmetric deposition. Indeed, the particles sputtered at the left side of the target have a higher
probability to reach the left side of the substrate and inversely for the right side. This increases the
deviation angle and can explain the similar morphologies for coatings synthesized for α > 85◦.

On Figure 6a and Supplementary Figures S1 and S2, the corresponding kMC simulations obtained
by using the NASCAM (NAnoSCAle Modeling) code and the procedure described in the experimental
part. As input parameters, we have utilized the defined experimental parameters (50 W, 0.26 Pa).
A number of 5 × 105 atoms was chosen to obtain a film thickness similar to the one corresponding to
the experimental conditions according to the size of the simulation box (X= 1000 and Y = 2 Mg atom
unit). The ballistic deposition simulation of Mg atoms was used to understand the growth mechanisms
of these films. The morphology of both simulated and experimental thin films were compared and the
effect of the deposition parameters was analyzed. From the good agreement between the calculated
and experimental data, it appears that the simulation employed in this work is perfectly adapted to
our deposition.

Considering that our films are deposited without intentional heating, we can roughly estimate
that the deposition temperature is about ~323 K. This corresponds to a T*, the generalized temperature
of the Anders’s Structure Zone Diagram (ASZM) [17], of ~0.25 since the melting temperature of Mg is
923 K. For this T* condition and considering, in our process conditions, that the normalized energy
was < 1 [34], the ASZM depicts the synthesized films as a zone I film corresponding to Ts/Tm < 0.3,
for which surface diffusion is limited, and therefore does not allow for the filling of the void regions
that form in the microstructure because of the geometrical shadowing effect occurring during the
GLAD experiments. In these conditions, the film growth proceeds by the formation of an underdense,
fine nanofibrous microstructure that develops into a columnar morphology. In the conditions, where
geometric restrictions govern the formation of the microstructure, a strong anisotropic deposition
is observed. Furthermore, it has to be noted that, for the “zone I” conditions, the columnar tilt
angle (β = 44 ± 1.0◦ in our case) is in line with the Tait’s rule derived from geometric analysis of the
inter-column shadowing geometry [34].

Figure 6b shows the evolution of β as a function of PTot. In this work, PTot was varied from 0.13 to
1.3 Pa where 0.13 Pa corresponds to the minimum value necessary to maintain the magnetron discharge.
The sputtering power and α were fixed at 50 W and 85◦, respectively. β rapidly decreases as PTot

increases, from β = 51 ± 1.0◦ for 0.13 Pa to β = 5 ± 0.5◦ for 1.3 Pa. The modification of the columnar tilt
angle can be attributed to a decrease of the collimation of the incident particle flux due to the increase
of collision probability as PTot increases. Indeed, this probability mainly depends on the mean free
path of the sputtered Mg atoms (λMg) which is inversely proportional to PTot following this equation:

λ =
κBT

√
2πd2PTot

where, κB is the Boltzmann constant (1.380 × 10−23 J/K), T is the temperature in K, PTot is the total
pressure in Pascal, and d is the diameter of the gas particles in meters. From this relation, λMg (atomic
diameter = 1.72 Å) ranges from 24 to 2.4 cm between 0.13 and 1.33 Pa, respectively. Considering the
target/substrate distance (8 cm) that is used, an increase of PTot induces a large amount of collisions
between particles for the 1.3 Pa conditions resulting in a less porous film. Figure 6b shows that the
morphology of the simulated thin films is again in line with the experimental ones. In addition,
the calculated mean free path for Ti atoms as a function of the pressure is also presented. It appears that
the mean free path becomes smaller than the target-to-substrate distance for a pressure value around
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0.7 Pa (λMg = 4.5 cm). Below this pressure, very few collisions occur through the vapor phase, whereas,
a higher pressure leads to numerous collisions between particles. The analysis of the predicted film
morphology at different pressures also allows determination of the range of pressure where a ballistic
deposition process occurs which, in our case, is between 0.13 and 0.26 Pa, and its mean free path ranges
from 24 cm to 12 cm.

If it is very difficult to measure the porosity of thin films (χ) experimentally because of the low
quantity of material. Therefore, it has been simulated using the PoreSTAT software [35] which uses the
NASCAM files to perform a full 3D analysis of the porous structure of the material, or a 2D study on
the different slices of material belonging to the XZ or YZ planes (X and Y are horizontal axes defining
the substrate, whereas, Z corresponds to the vertical axe, defining the film height) [36]. Figure 7 shows
the evolution of χ as a function of α for PTot = 0.26 Pa and of PTot for α = 85◦. It appears that χ increases
with α from 54% until 60% for α = 85◦ and then stabilizes for higher values. On the other hand, χ
increases from 51% until 66% when reducing PTot from 1.33 to 0.13 Pa. These evolutions are obviously
correlated with the evolution of the nanosculpted films feature with the α and PTot parameters. More
precisely, it appears from Figure 8 that the evolution of χ is linearly correlated with the evolution of the
aspect ratio, Γ, which is convenient since tuning the key parameters of the process such as α or PTot,
we get a fine control on the porosity of the films which is indirectly correlated with the surface area of
the material. This linear correlation can be understood by considering the meaning of Γ which is the
ratio of the inter columnar space on the width of columns. On the basis of this definition, it is obvious
that an increase of Γ will lead to an increase of the material porosity since there is more space between
the columns because the intercolumnar space increases or the column width reduces (or both).

The chemical and structural characterization of the nano-sculpted films have again been performed
by XPS and XRD measurements. As expected the XPS data reveals the presence of strong oxygen and
carbon signals explained by the surface contamination which is likely even stronger for these porous
films. Unfortunately, in this case, because of the nanostructured features of the material, it is not easy
to depth profile the thin film. To the contrary, XRD measurements are still possible in good conditions
and are reported in Figure 2 for a nano-sculpted sample synthesized for α = 85◦ and PTot = 0.26 Pa
(sputtering power of 50 W).Coatings 2019, 9, x FOR PEER REVIEW 10 of 13 
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From the data we determine that the crystalline constitution of the material is only slightly affected
by the utilization of the GLAD geometry. Indeed, all diffraction peaks observed for the dense Mg
coatings are again present with the same relative intensity. The only minor difference is related to the
presence of MgO lines that appear in addition to the already identified Mg lines. This suggests that the
quantity of oxygen in the bulk of the material is likely higher in the nano-sculpted films allowing for
the presence of MgO grains. This can be understood when considering the magnified surface area
which is subjected to oxidation during the growth as compared with the situation occurring for dense
film deposition.

4. Conclusions and Perspectives

Through the present work, we provide a fairly clear description and understanding of a magnetron
sputtering in grazing angle geometry method allowing for the deposition of Mg nanocolumnar thin
films for potential hydrogen storage. The effect of the deposited angle and sputtering pressure on
the Mg nanocolumnar structure has been specifically investigated. The good agreement between
experimental observations and model predictions indicates that the simulations realistically reproduces
the competitive growth mechanism involved in GLAD experiments. On the basis of this study,
we conclude that the fundamental mechanisms responsible for the growth of nano-sculpted Mg film
in a MSGLAD are based on (i) the self-shadowing mechanisms at the surface and (ii) the collisional
processes of the sputtered particles in the gas phase. In addition, it appears, under our experimental
conditions, that the self-diffusion of deposited Mg atoms is strongly reduced and that the microstructure
of our films belong to the zone I of the ASZM. In addition, we learn that when growing Mg porous
films and because of the strong reactivity of Mg towards oxygen, surface and even bulk oxidation
easily occurs. If not controlled, probably, the porous film would not be suitable for hydrogen storage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/9/6/361/s1,
Figure S1: SEM cross-section view and of Mg films deposited for PTot = 0.26 Pa and varying α from 60◦ to 89◦.
The green images correspond to the structures calculated by using Mkc modeling, Figure S2: SEM cross-section
view and of Mg films deposited for α = 85◦ and varying PTot from 0.13 to 1.3 Pa. The green images correspond to
the structures calculated by using Mkc modeling.
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