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Abstract

The classical linear Assignment problem is considered with two objectives. The aim is to generate the set of
efficient solutions. An exact method is first developed based on the two-phase approach. In the second phase a
new upper bound is proposed so that larger instances can be solved exactly. The so-called MOSA (Multi-Objective
Simulated Annealing) is then recalled; its efficiency is improved by initialization with a greedy approach. Its results
are compared to those obtained with the exact method. Extensive numerical experiments have been realized to
measure the performance of the MOSA method.
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1. Introduction

Until recently, multi-objective combinatorial optimization (MOCO) did not receive much
attention in spite of its potential applications. The reason is probably due to specific dif-
ficulties of MOCO models as pointed out in a recent survey (Ulungu and Teghem, 1994)
concerning this field.

The aim of the present paper is to develop and to compare two procedures, an exact
method and a heuristic one, to generate the set of efficient solutions of a particular bi-
objective MOCO problem, the Assignment problem.

This is a basic well known combinatorial optimization problem, important for applications
and as a sub-problem of more complicated ones, like transportation problem, distribution
problem or travelling salesman problem. Moreover, its mathematical structure is very simple
and there exist efficient algorithms to solve it in the single objective case, like the Hungarian
method (Teghem, 1996).

In a bi-objective framework, the Assignment problem can be formulated as

“min” zk(X) =
n∑

i=1

n∑
j=1

ck
i j xi j k = 1, 2

n∑
j=1

xi j = 1 i = 1, . . . ,n

n∑
i=1

xi j = 1 j = 1, . . . ,n

xi j ∈ {0, 1}

(P)

whereck
i j are non negative integers andX = (x11, . . . , xnn).
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A solutionX∗ of problem(P) isefficientif there does not exist any other feasible solution
X such thatzk(X)≤ zk(X∗), k = 1, 2, with at least one strict inequality. We will denote
by E(P) the set of efficient solutions of problem(P).

In multi-objective integer linear programming, it is necessary to distinguish two kinds of
efficient solutions (cf. Ulungu and Teghem, 1994):

• the setSE(P) of supportedefficient solutions which are optimal solutions of the para-
meterized single objective problem

minzλ(X) = λ1z1(X)+ λ2z2(X)
n∑

j=1

xi j = 1 i = 1, . . . ,n

n∑
i=1

xi j = 1 j = 1, . . . ,n

xi j ∈ {0, 1}
λ1 > 0, λ2 > 0

(Pλ)

• the setNSE(P) = E(P)\SE(P) of non-supported efficient solutionswhich cannot be
found by optimization of problem(Pλ). These non-supported efficient solutions are nec-
essarily located in the triangles4Zr Zs generated in the objective space by two successive
supported efficient solutions, as represented in figure 1.

It is important to underline that such a distinction is still necessary even if the constraints
of the problem satisfy the so-called “totally unimodular” property or “integrality” property
(see Teghem, 1996); when this property is verified, the integrality constraints of the single

Figure 1. Supported efficient solutionsZ1, . . . , Zm and potential regions4Zr Zs of non supported efficient
solutions.
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Figure 2. The feasible points in the objective space for the didactic example.

objective problem can be relaxed without any deterioration of the objective function, i.e. the
optimal values of the variables are integer even if only the linear relaxation of the problem
is solved.

It is well known that the single objective Assignment problem—and thus problemPλ—
satisfies this integrality property. Nevertheless, in the multi-objective framework, there exist
non-supported efficient solutions as indicated by the following didactic example:

C(1) =


5 1 4 7

6 2 2 6

2 8 4 4

3 5 7 1

 and C(2) =


3 6 4 2

1 3 8 3

5 2 2 3

4 2 3 5

 ;

The values of the 24 feasible solutions are represented in the objective space in figure 2.
There are four supported efficient solutions, corresponding to pointsZ1, Z2, Z3 andZ4;

two non-supported efficient solutions corresponding to pointsZ5 andZ6; the eighteen other
solutions are non efficient.

Since a few years, a larger attention has been devoted to MOCO problems. In Ulungu
(1993), and Ulungu and Teghem (1994, 1995) the authors have proposed some exact meth-
ods to determine the whole efficient setE(P) of bicriteria combinatorial problems. They
focus on the Assignment and Knapsack problems. For the latter problem, such exact method
has been recently improved and implemented for the first time (Vis´ee et al., 1998). How-
ever, as pointed out, it is unrealistic to extend these methods to MOCO problems with more
than two criteria or with a large amount of variables.
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It makes sense, in a pragmatic spirit, to consider “approximate” methods like metaheuri-
stics—Simulated Annealing (S.A.), Tabu Search (T.S.), Genetic Algorithms (G.A.),. . .

(Pirlot, 1996)—since they provide, for the single objective problem, excellent solutions in
a reasonable time. On the other hand, their implementation is rather independent of the
problem mathematical structure.

The idea of adapting these methods in a multiobjective framework has been exploited
independently by Ulungu (1993) and Ulungu, Teghem, and Fortemps (1995) and by Serafini
(1992). The latter only examines the notion of acceptance probability, whilst in Ulungu,
Teghem, and Fortemps (1995) a complete Multi-Objective Simulated Annealing (MOSA)
algorithm has been designed. The MOSA method has been improved and extensively
tested in Ulungu et al. (1998) on the Knapsack problem by comparison with the exact
results obtained in Vis´ee et al. (1998).

Recently, the multi-objective Knapsack problem has been tackled by other research teams:
Czyzak, Hapke, and Jaszkiewicz (1994) and Czyzak and Jaszkiewicz (1998) proposed
another way to adapt S.A. to a multi-objective framework; independently, Hansen (1997),
Gandibleux, Mezdaoui, and Fr´eville (1996), and Ben Abdelaziz, Chaouachi, and Krichen
(1997) did the same with T.S., the latter combining also T.S. and G.A.

Let us note that in Ulungu, Teghem, and Ost (1998), an interactive version of MOSA has
been used to solve an industrial problem.

The aim of this paper is to measure the performance of the MOSA method on the bi-
objective Assignment problem.

In Section 2, the two-phase method is presented; the procedure improves on what is done
in Ulungu and Teghem (1995), due to a better upper bound ofzλ(X) for non supported
efficient solutions in triangle4Zr Zs. The implementation of this exact method authorizes
to solve problem tilln = 50.

The MOSA method is described in Section 3; an improvement is introduced by consid-
eringa greedy stepto define the starting point of S.A.

Extensive numerical results are given in Section 4 in order to compare the two methods
and to analyze the performance of the MOSA method.

2. The two-phase method

This procedure will exactly generate the setE(P): the two phases will determine respec-
tively SE(P) andNSE(P).

2.1. The first phase

Let S∪ S′ be the list of supported efficient solutions already generated:S contains the
extreme supported efficient solutions,S′ the non extreme ones.

S is initialized with two efficient optimal solutions respectively of objectivesz1 andz2,
obtained by the Hungarian method (in fact a variant which returns all optimal solutions:
see Remark 1 below).

Solution of S are ordered by increasing value of criterionz1; let Xr and Xs be two
consecutive solutions inS. The single criterion problemPλ is considered with valuesλ1 =
z2r − z2s > 0 andλ2 = z1s − z1r > 0, and optimized by the Hungarian method.
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Let {X(t), t = 1, . . . , T} be the set of optimal solutions obtained in this manner and
{Zt , t = 1, . . . , T} their images in the objective space. Two possible cases can arise:

• {Zr , Zs} ∩ {Zt , t = 1, . . . , T} = ∅.
SolutionsXt are new supported efficient solutions;X1 and XT (providedT > 1) are
extreme and put inS; if T > 2, X2, . . . , XT−1 are put inS′. It will be necessary at further
steps to consider the pairs(Xr , X1) and(XT , Xs).
• {Zr , Zs} ⊂ {Zt , t = 1, . . . , T}.

If T > 2, X2, . . . , XT−1 are new non extreme supported efficient solutions giving the
same optimal value asXr ≡ X1 andXs ≡ XT for zλ(X): they are put inS′.

The first phase is continued until all pairs(Xr , Xs) of S have been examined without
extension ofS. Finally, we obtainSE(P) = S∪ S′.

2.2. The second phase using the Hungarian method

The purpose is to examine each triangle4Zr Zs determined by two successive solutionsXr

andXs of SE(P) and to determine the possible non supported solutions whose image lies
inside this triangle. As previously, we note

zλ(X) = λ1z1(X)+ λ2z2(X)

with λ1 = z2r − z2s andλ2 = z1s − z1r andc(λ)i j = λ1c1
i j + λ2c2

i j .
We recall that the dual problem ofPλ (in fact of its linear relaxation which is equivalent

to Pλ) is

max
n∑

i=1

ui +
n∑

j=1

v j

ui + v j ≤ c(λ)i j

whereui andv j are the dual variables associated respectively to constraintsi and j of
problemPλ.

In the first phase, the objective functionzλ(X) has been optimized by the Hungarian
method giving

• z̃λ = λ1z1r + λ2z2r = λ1z1s + λ2z2s, the optimal value ofzλ(X);
• the optimal value of the reduced costc̄(λ)i j = c(λ)i j − (ui + v j )

At optimality, due to duality properties, we have (see Teghem, 1996)c̄(λ)i j ≥ 0 andx̃i j = 1

⇒ c̄(λ)i j = 0.

2.2.1. First step. We considerL = {xi j : c̄(λ)i j > 0}. To generate non supported efficient
solution in triangle4Zr Zs, each variablexi j ∈ L is candidate to be fixed to 1. Nevertheless,
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Figure 3. Optimal reduced matrix̄c(λ) of Pλ.

a variable can be eliminated if we are sure that the reoptimization of problemPλ will provide
a dominated point in the objective space. Ifxi j ∈ L is set to 1, a lower boundl i j of the
increasing of̃zλ is given by

l i j = c̄(λ)i j +min

(
c̄(λ)i r jr
;min

k 6= j
c̄(λ)i r k +min

l 6=i
c̄(λ)l j r
; c̄(λ)i s js
;min

k 6= j
c̄(λ)i sk
+min

l 6=i
c̄(λ)l j s

)
where indicesi r and jr (i s and js) are such that in solutionXr (Xs) we have

xir j = xi jr = 1 (xis j = xi js = 1)

Effectively, to reoptimize problemPλ with xi j = 1, in regard with its optimal solution
Xr (Xs), it is necessary to determine—at least—a new assignment in the linei r (i s) and a
new one in the columnjr ( js)(see figure 3).

• If these two assignments are identical, i.e.i r jr (i s js), the corresponding cost isc̄(λ)i r jr
(c̄(λ)i s js

)

• If there are different, i.e.i r k and l j r (i sk and l j s), the corresponding cost is̄c(λ)i r k +
c̄(λ)l j r

(c̄(λ)i sk
+ c̄(λ)l j s

)

But clearly, to be inside the triangle4Zr Zs, we must have (see figure 4)

z̃λ + l i j < λ1z1s + λ2z2r

Consequently, we obtain the following fathoming test:

Test 1

xi j ∈ L can be eliminated if̃zλ + l i j ≥ λ1z1s + λ2z2r or equivalently ifl i j ≥ λ1λ2

Remark 1. Even if the real increasing ofz̃λ is smaller thanλ1λ2, the corresponding optimal
solution of Pλ with xi j = 1, can be non efficient because its image is located out of the
triangle4Zr Zs in the objective space (see figure 5).
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Figure 4. Test 1.

Figure 5. Dominated point withl i j < λ1λ2.

To avoid such situation, two additional tests can be introduced to try to eliminate the
corresponding solutionxi j ∈ L; they are build in a similar manner but with a lower bound
of the increasing ofz1(Xr ) (z2(Xs) if xi j = 1. Unfortunately, these tests can only be efficient
if z1r (z2s) is close to the optimal value ofz1 (z2), because otherwise many reduced costs
of z1(Xr ) (z2(Xs)) are strictly negative.

So in this first step, the lower boundl i j is determined for allxi j ∈ L; the list is ordered
by increasing values ofl i j .

Only the variables not eliminated by the test 1 are kept. ProblemPλ is reoptimized
successively for each non eliminated variable; let us note that only one iteration of the
Hungarian method is needed. After the optimization,the solution is eliminated if its image
in the objective space is located outside the triangle4Zr Zs. Otherwise, a non dominated
solution is obtained and put in a listN Srs; at this time, the second step is applied.

2.2.2. Second step.When non dominated pointsZ1, . . . , Zm ∈ NSrs are found inside the
triangle4Zr Zs, the test 1 can be improved. Effectively (see figure 6), in this test the value

λ1z1s + λ2z2r
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Figure 6. Test 2.

can be replaced by the lower value

max
i=o,...,m

(λ1z1,i+1+ λ2z2,i )

whereZo ≡ Zr andZm+1 ≡ Zs

The new value corresponds to an updated upper bound ofzλ(X) for non dominated points.
With the new test

Test 2

xi j ∈ L can be eliminated if̃zλ + l i j ≥ max
i=o,...,m

(λ1z1,i+1+ λ2z2,i )

more variables ofL can be eliminated. Each time a new non dominated point is obtained,
the list NSrs and the test 2 are updated. The procedure stops when all thexi j ∈ L have
been either eliminated or analyzed. At this moment the listNSrs contains the non supported
solutions corresponding to the triangle4Zr Zs.

Remark 2. Each time the Hungarian method is applied, either in the first phase or in the
second phase, it is necessary to obtain all optimal solutions and not only one of them.

This is not an obvious task. An enumeration procedure is needed to examine all feasible
combinations of zero reduced costs if the number of such costs is larger thann. If many
zero reduced costs exist, this enumeration procedure is time consuming.

3. The MOSA method

The MOSA method is an adaptation of the S.A. heuristic procedure to a multi-objective
framework. Its aim is to generate a good approximation̂E(P) of E(P) and the procedure is
valid for any numberK ≥ 2 of objectives. Similarly to a single objective heuristic in which
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a potentially optimal solution emerges, in the MOSA method the set̂E(P) will contain
potentially efficient solutions.

In Section 3.1 the MOSA method will be reminded (for more details see Ulungu et al.,
1998); an improvement of the method will be described in Section 3.2; the way to measure
the performance of MOSA, by comparison betweenE(P)andÊ(P), is given in Section 3.3.

3.1. The basic method

3.1.1. Preliminaries

• A wide diversified set of weights is considered: different weight vectorsλ(l ), l ∈ L are
generated whereλ(l ) = (λ(l )k , k = 1, . . . , K )withλ(l )k ≥ 0∀k and

∑K
k=1 λ

(l )
k = 1, ∀l ∈ L.

This set of weights is uniformly generated.
• A scalarizing functions(z, λ) is chosen. As specified in Ulungu et al. (1998), the effect

of this choice on the procedure is small due to the stochastic character of the method.
The weighted sum is very well known and it is the easiest scalarizing function:

s(z, λ) =
K∑

k=1

λkzk

• The three classic parameters of a S.A. procedure are initialized

T0: initial temperature (or alternatively an initial acceptance probabilityP0);
α(<1): the cooling factor;
Nstep: the length of temperature step in the cooling schedule;

and the two stopping criteria are fixed

Tstop: the final temperature;
Nstop: the maximum number of iterations without improvement

(see Pirlot (1996) for more details).
• A neighborhoodV(X) of feasible solutions in the vicinity ofX is defined. This definition

is problem dependent. It is particularly easy to defineV(X) in the case of the Assignment
problem:

if X is characterized byxi j i = 1 i = 1, . . . ,n
V(X) contains all the solutionsY verifying
yi j i = 1 i ∈ {1, . . . ,n}\{a, b}
yajb = ybja = 1
wherea, b are chosen randomly in{1, . . . ,n}.

3.1.2. Determination of PE(λ(l)), l = 1, . . . , L. For eachl ∈ L the following procedure
is applied to determine a listPE(λ(l )) of potentially efficient solutions.
a) initialization

• Draw at random an initial solutionX0.
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• Evaluatezk(X0) ∀k.
• PE(λ(l )) = {X0}; Ncount= m= 0.

b) iteration m

• Draw at random a solutionY ∈ V(Xm)

• evaluatezk(Y) and determine1zk = zk(Y)− zk(Xm) ∀k
• Calculate1s= s(z(Y), λ)− s(z(Xm), λ)

If 1s ≤ 0, we accept the new solution:

Xm+1←− Y Ncount= 0

Else we accept the new solution with a certain probabilityp = exp(−1s
Tm
):

Xm+1


p←− Y Ncount= 0

1−p←− Xm Ncount= Ncount+ 1

• If necessary, update the listPE(λ(l )) in regard with solutionY.
• m← m+ 1

− If m(mod Nstep) = 0 then Tm = αTm−1;
else Tm = Tm−1.

− If Ncount= Nstop or T < Tstop then stop;
else iterate.

3.1.3. Generation ofÊ(P). Because of the use of a scalarizing function, a given set of
weightλ(l ) induces a privileged direction on the efficient frontier. The procedure generates
only a good subset of potentially efficient solutions in that direction. Nevertheless, it is
possible to obtain solutions which are not in this direction, because of the large exploration
of the set of feasible solutions at high temperature i.e. at the beginning of the S.A. procedure
(Pirlot, 1996); these solutions are often dominated by some solutions generated with other
weight sets.

To obtain a good approximation̂E(P) to E(P) it is thus necessary to filter the set⋃|L|
l=1 PE(λ(l )) by pairwise comparisons to remove the dominated solutions. This filtering

procedure is denoted by
∧

such that

Ê(P) =
|L|∧
l=1

PE(λ(l ))

A great number of experiments is required to determine the numberL of set of weights
sufficient to give a good approximation of the whole efficient frontier.
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3.2. An improvement of the MOSA method

The MOSA method is modified by initialization of the method with a greedy approach. At
each different weight vectorsλ(l ), l ∈ L the S.A. optimizes the scalarizing functions(z, λ)
and chooses a random feasible assignment as starting point. In this new version of MOSA,
a greedy step is considered to produce the starting point. The greedy step is defined as
follow:

• Initialization

N = {1, . . . ,n}
R= ∅ indices of rows assigned

C = ∅ indices of columns assigned

it = 0

• Iterationit

C(λ)
i ∗ j ∗ = min

i∈N\R
j∈N\C

{
C(λ)

i j =
K∑

k=1

λkCk
i j , i, j = 1, . . . ,n

}

R= R∪ {i ∗};
C = C ∪ { j ∗};
it = it + 1 (a new assignment is defined);
if (it = n) stop;

else iterate.

The performance of this improvement of the MOSA method is discussed in Section 4.2.

3.3. The measures of performance of the MOSA method

To measure whether̂E(P) is a good approximation ofE(P) we can compare them for
instances of problem(P) whoseE(P) can be exactly generated by the method described
in Section 2.

A first obvious measure of the quality of̂E(P) is the proportion of efficient solutions it
contains:

M1 = |Ê(P)
⋂

E(P)|
|E(P)|

But this is a very “rough” measure because a multi-objective heuristic doesn’t necessarily
generate the whole efficient setE(P).

As the different triangles4Zr Zs (see Section 2) are existence zones for efficient solutions,
another possible measure is the proportion of solutions in̂E(P) which at least are in those
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triangles:

M2 = |T(Ê(P))||Ê(P)|

whereT(Ê(P)) is the subset ofÊ(P) whose solutions are included in the existence zones
for efficient solutions.

Nevertheless, a solution belonging tôE(P)\T(Ê(P)) is not necessarily a bad approx-
imation of an efficient solution. So, it is interesting to define a global distance between
Ê(P) andE(P) (see Czyzak and Jaszkiweicz, 1998 and Ulungu et al., 1998). If

d(X,Y) =
K∑

k=1

wk|zk(X)− zk(Y)|

wherewk is a weight to take into account the variation range of criterionzk and

d(Ê,Y) = min
X∈Ê(P)

d(X,Y)

the distance betweenY ∈ E(P) and the closest solution in̂E(P).
We can consider

• an average distance between̂E(P) andE(P)

D1(Ê, E) = 1

|E(P)|
∑

Y∈E(P)

d(Ê,Y)

• a worst case distance between̂E(P) andE(P)

D2(Ê, E) = max
Y∈E(P)

d(Ê,Y)

• a measure of the uniformity of quality of̂E(P)

D2(Ê, E)

D1(Ê, E)

These three measures of quality of̂E(P) will be used in the following section to evaluate
the performance of the MOSA method for the bi-objective Assignment problem.
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Table 1. Results of the two phase method.

n E(P) SE(P) NSE(P) cputime

5 8 3 5 5

10 16 6 10 10

15 39 12 27 14

20 54 13 41 61

25 71 25 46 102

30 88 26 62 183

35 82 27 55 384

40 126 52 74 1203

45 113 41 72 3120

50 156 57 99 3622

4. Experimental results

4.1. The two phase method

We have generated 10 problems of dimension varying fromn = 5 till n = 50 by steps
of 5. For the instances considered here, the inputs (two square matrices of sizen× n) are
randomly chosen in [0, 30].

All the tests have been made on a DEC 3000 ALPHA station and the results are reported
in Table 1. The cputime is measured in seconds.

The table gives the number of supported and non supported efficient solutions for each
dimensionn. The increasing of the number of supported solutions and of the number of non
supported solutions are approximatively the same. We note that this fact is different for the
bi-objective knapsack problem in which the number of non supported solutions increases
faster compared with the number of supported efficient solutions (see Vis´ee et al., 1998).
We also observe that the cputime used by the method increases exponentially with the size
of the problem.

4.2. The MOSA method

The parameters of the MOSA method have been fixed to the following valuesP0 = 0.5,
α= 0.975, Nstep= 10.000, Tstop= 1e − 04, Nstep= 20.000, andL = 25. The numerical
results are reported in Table 2 (for the MOSA method) and in Table 3 (for the improved
MOSA method).

From these numerical results, we can observe that:

• as expected, we obtain good values forM1 for problems with small dimensions, butM1

decreases rapidly to zero for larger problems(n ≥ 20).
• the second version of the MOSA method is only a improvement for not too small problems
(n ≥ 20).
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Table 2. Results of the MOSA method.

n |E(P)| |Ê(P)| M1 M2 D1 D2 D2/D1 cputime

5 8 8 100 100 0.0 0.0 – 5

10 16 14 81.2 92.8 0.016 0.117 6.90 80

15 39 29 10.2 41.3 0.046 0.184 3.91 94

20 54 36 0.0 36.1 0.042 0.137 3.20 54

25 71 47 0.0 8.5 0.060 0.112 1.85 74

30 88 39 0.0 10.2 0.086 0.270 3.13 171

35 82 57 0.0 1.7 0.089 0.178 1.98 184

40 126 65 0.0 0.0 0.080 0.143 1.79 144

45 113 69 0.0 0.0 0.093 0.153 1.64 298

50 156 106 0.0 0.0 0.115 0.194 1.68 290

Table 3. Results of the improved MOSA method.

n |E(P)| |Ê(P)| M1 M2 D1 D2 D2/D1 cputime

5 8 7 87.5 100 0.018 0.148 0.8 5

10 16 12 56.2 91.6 0.041 0.151 3.64 75

15 39 28 25.6 67.8 0.028 0.169 5.92 97

20 54 38 3.7 36.8 0.044 0.143 3.19 63

25 71 40 0.0 12.5 0.048 0.142 2.96 106

30 88 42 3.4 42.8 0.052 0.280 5.48 226

35 82 47 0.0 17.0 0.035 0.205 5.79 186

40 126 69 0.0 0.0 0.051 0.126 2.46 139

45 113 61 0.0 4.9 0.039 0.152 3.83 306

50 156 96 0.0 0.0 0.044 0.142 3.22 246

• the number of solutions in|Ê(P)| is not a good indicator of the performance of a method
because these solutions are generally not efficient. For instance forn = 45, the MOSA
method generates 69 solutions and the improved MOSA method only 61; but these latest
solutions form a better approximation ofE(P) as indicated by the measuresM2 andD1.
• the indexM2 indicates that the approximation is certainly not bad for problems with

medium dimensions because a relatively large number of generated solutions is in the
potential zones of efficient solutions.

The area of these zones are decreasing with the number of variables; for large scale
problems, a large number of supported efficient solutions are very close and thus, these
areas are really small so thatM2 normally becomes small and decreases to zero.
• the numerical experiments show that the values ofD1 (average distance),D2 (worst

distance) andD2/D1 (uniformity) are good and quite stable with the size of problemn.
• the same set of parameters has been used to test all the problems. The number of weights

L = 25 and the length of the temperature stepNstep= 10.000, are not the best choice
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for the small problems and this explains the higher cputimes for the MOSA method for
the small problems compared to the cputimes of the exact method.

For larger problems(n ≥ 25), the cputime for MOSA method becomes attractive with
respect to the cputime of the exact method. Better approximations of the efficient set
could be obtained in these cases, by increasing the parametersL, Nstep, andNstop.
• the behaviour of the improved MOSA method is especially noticeable for large scale

problems(n ≥ 25). The improved method gives smaller values forD1, but not always
smaller values forD2. Moreover whenD2 is improved, the improvement is proportion-
nally smaller forD2 that for D1. This explains that the ratioD2/D1 is higher for the
improved MOSA method, which induces a non relative uniformity of the approximation.

In the case of small problems, the starting points are to close the efficient frontier
and in this situation, some non supported efficient solutions become more difficult to
reach.
• To show the generality of the MOSA method (which can be applied to many other MOCO

problems) we don’t use any information furnished by the exact method. Nevertheless,
when an exact method is available to at least generate easilySE(P) or the extreme
solutions ofSE(P) (like for the bi-objective assignment problem) it is possible to initialize
the MOSA method with this set of solutions. Of course then, the performances will be
improved and in particular the measureM1 will be strictly positive.

5. Conclusions

In this paper, we present an exact method and the so-called MOSA method (Multi-Objective
Simulated Annealing) for the resolution of the linear Assignment problem with two
objectives.

Our method differs of the Czyzak’s method (Czyzak and Jaszkiewicz, 1998) in which the
weightsλ change at each iteration of the S.A. prodedure. Even if such procedure provides
a large diversification, in our opinion there is a risk to not be close enough of the efficient
frontier due to a lack of intensification. Nevertheless, it will be interesting to compare both
approaches.

The MOSA method remains valid for a larger number of objectives and for large scale
problems. In this paper, we focus on bi-objective problems, because we are in that case
able to determine the exact efficient set and to compare it to approximation set provided by
the MOSA method. Two different measures are designed to evaluate the proximity and the
uniformity of approximation set with respect to the exact efficient set. Numerical tests are
presented and discussed, showing that MOSA method provides a good approximation of
the efficient set and that the results are stable with respect to the size of the problem.

In comparison with the bi-objective Knapsack problem (see Vis´ee et al., 1998), the bi-
objective linear Assignment problem generates a smaller number of efficient solutions for
a same number of variables of the problem.

More research is planned in this field and in particular it will be of interest to ex-
tend and diversify the set of test problems, to study some other neighbourhood structures
and to experiment the MOSA method on linear Assignment problem with more than two
objectives.
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