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The mutualism between plants and their pollinators provides globally important ecosys-
tem services, but it is likely to be disrupted by global warming that can cause mis-
matches between both halves of this interaction. In this review, we summarise the
available evidence on (i) spatial or (ii) phenological shifts of one or both of the actors of
this mutualism. While the occurrence of future spatial mismatches is predominantly theor-
etical and based on predictive models, there is growing empirical evidence of pheno-
logical mismatches occurring at the present day. Mismatches may also occur when
pollinators and their host plants are still found together. These mismatches can arise due
to (iii) morphological modifications and (iv) disruptions to host attraction and foraging
behaviours, and it is expected that these mismatches will lead to novel community
assemblages. Overall plant–pollinator interactions seem to be resilient biological net-
works, particularly because generalist species can buffer these changes due to their
plastic behaviour. However, we currently lack information on where and why spatial mis-
matches do occur and how they impact the fitness of plants and pollinators, in order to
fully assess if adaptive evolutionary changes can keep pace with global warming
predictions.

Introduction
The effects of a warming climate on species fitness and persistence are becoming more apparent, with
an increasing number of studies demonstrating its multiple impacts on biodiversity year on year [1–3].
This global change can directly affect the fitness of species across their current ranges but it can also
alter, perhaps more subtly, their ecological interactions [4]. In terrestrial ecosystems, one crucial eco-
logical interaction is the pollination of plants by animals, an interaction largely dominated by insects [5],
representing 9.5% of global food production [6]. Global warming has the potential to disrupt this
mutualism, leading to potential mismatches (i.e. a failure to achieve an efficient interaction) hence
putting plant and pollinator species at risk of extinction [7]. The number of studies demonstrating this
effect is growing, and many different methods have been described to assess it empirically ([8], reviewed
in [9]).
First, mismatches in plant–pollinator interactions can occur through reduced co-occurrence of the

interacting partners in a shared habitat; this reduction may be temporal or spatial. These kinds of mis-
matches have received growing attention [10,11], particularly those of temporal mismatches between
plants and pollinating insects [12]. These mismatches can be driven by a change in the flowering
period of the plant [13] and/or the phenology of the pollinator [14], either of which can be advanced
or delayed. The co-occurrence of plants and pollinators, essential for the interaction to occur, can also
be spatially disrupted. The geographic overlap between interacting partners may decrease or increase
under global warming [15–16] depending on the plasticity, adaptability and life-history traits of the
species in question [17].
In addition to temporal or spatial mismatches, global warming also has the potential to impact

plant–pollinator interactions that are mediated by physiological and/or morphological traits. The
mechanical fit of the interaction can be affected, as pollination success can be dependent on morpho-
logical traits such as tongue length or overall body size in order to have access to plant resources, as
well as plant morphology [18]. For example, increasing average temperatures have been shown to
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negatively affect body size in many organisms [19]. Moreover, temperature increases can impact the foraging
behaviour of the pollinator [20], the attractiveness of the plant [21], as well as the quality and quantity of plant
resources [22].
Here, we summarise the current knowledge about the effects of global warming in driving mismatches

between plants and pollinators (Figure 1, Table 1). Though other climatic variables such as precipitation
frequency, ozone (O3) concentration or carbon dioxide (CO2) concentration can also affect these interactions [23],
we restrict our review to the impact of global warming as it is the most extensively studied. Within this framework,
we first explore the way in which (i) spatial and (ii) temporal mismatches can affect plant–pollinator interactions
before assessing the impact of (iii) morphological mismatches and (iv) modification of foraging behaviours and
host attraction. Finally, we assess the likely ecological and evolutionary consequences, as well as factors that may
buffer against the potential mismatches between plants and pollinators.

Figure 1. Potential impacts of global warming on plant-pollinator interactions.

Potential impacts of global warming on the distribution, phenology and morphology of plants (right panel) and pollinators (left

panel) are shown. Besides global warming could also affect the foraging behaviour of pollinators as well as the attractiveness

of plants. All these changes might result in as many mismatches (spatial, temporal, morphological and recognition

mismatches), leading to the disruption of plant–pollinator interactions.

Table 1. Case studies about the impact of global warming on pollinators, plants and on their interactions. Reference
numbers detailed in the bibliography section

Mismatch Impact on pollinators Impact on plants
Impact on the
interaction

Spatial [31–33] [33,34] /

Temporal [15,25–27] [26,49], reviewed in [13] [25,27,28]

Morphological [19,55] [47,48,49,52] [57]

Attraction and foraging behaviour Reviewed in [77] [65,67,69,70–72,78–83,86–88] [48,88,94,95]
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Wrong time, wrong place: phenological and spatial
mismatches
Global warming can have a strong impact on the activity pattern and life cycle development of organisms [9].
Many phenological shifts have already been reported at the species level for the insect emergence (e.g. [24,25])
or blooming time of flowering plants (e.g. [13]). Most of the studies showed a simultaneous advance in the
phenology of pollinators and plants over the studied period in parallel with increasing average temperatures,
but alternative patterns (i.e. simultaneous delays or opposite shifts) have also been described [25,26].
Mismatches between the emergence of bee species and the blooming of their main resources have been specific-
ally recorded [26]. However, as far as we know, there is no study on the direct impact of these mismatches on
pollinator individual fitness or population trends. In contrast, plants that flower earlier can miss part of the
activity window of their main pollinators [27] and show a decrease in seed production [28]. Moreover, as these
phenological shifts tend to be species specific for each species of the pollinator network, ecological communities
are also disturbed. Duchenne et al. [25] recently demonstrated that non-random phenological shifts of
European pollinators reduce the redundancy and the functional complementarity of their assemblages. Such a
decrease in redundancy might alter the robustness of plant–pollinator networks to ongoing pollinators’ extinc-
tions [10]. Additionally, the decrease in functional complementarity can decrease the provision of pollination
services [29] with fewer visits to a lower diversity of plants [30], probably resulting in a negative feedback for
pollinators. These modifications in species community phenology can, therefore, potentially impact the per-
formance of one of the most important ecosystem services for agriculture [26].
If a plant species and the insects that pollinate it occupy slightly different climatic niches, a warming climate

has the potential to cause a spatial mismatch between the two if their distributions diverge. There are multiple
examples of range shifts in pollinators that are probably driven by climate change (e.g. [31]), with the changes in
bumblebees (Bombus spp.) particularly well documented. Bumblebees are cold-adapted species, and have shifted
to more northern latitudes and to higher altitudes over the last 100 years [32,33]. Likewise, many plant species
are also predicted to undergo similar changes [34]. However, there are few studies that have considered spatial
changes in plant and pollinator communities at the same time or have observed this phenomenon in the field.
The situation is complicated further because pollination systems tend towards generalisation, with pollinators

visiting multiple plant species and plant species being visited by multiple pollinator species [35]. Examples of
individual plant species pollinated almost entirely by a single insect species that is, in turn, almost completely
dependent on it for its own survival are the exception, rather than the rule (e.g. [36]). A simulation model
incorporating different scenarios of species co-extinction and capacities for partner switches showed that pro-
jected plant extinctions under climate change are more likely to trigger animal co-extinctions than vice versa,
with specialist pollinators being the most sensitive [37]. This contrasts with, for example, herbivory in butter-
flies (Lepidoptera) in which the majority of species are much more tightly bound to specific host plants [38]. A
spatial divergence between the two is, therefore, more straightforward to model because a reduced area of
overlap has clear negative fitness implications for the butterfly that cannot reproduce without its host plant
[17,39]. Because pollinators may be generalised and therefore able to use different host plants across their
range, and plants may also be variably dependent on pollination itself across their range [40], diverging spatial
ranges will not necessarily have any fitness impacts on either group.
Examples of potential spatial mismatch come from models that predict the spatial distribution of plants and their

pollinators separately under climate change scenarios, and then measure the extent to which these diverge (e.g. [41]).
However, because these are predictions about the future, these models have necessarily not yet been verified. Where
empirical observational studies have been conducted at a small spatial scale, though bumblebee pollinators moved to
a higher altitudinal elevation over a 50-year period at a faster rate than flowering plants, the magnitude of this change
was not great enough that they ceased to come into contact with the same suite of plant species [33]. Although, to
date, climate-induced spatial mismatches between plants and pollinators have not been observed [9,11], marginal
changes of a lower magnitude could occur which would reduce, but not eliminate, spatial co-occurrence. Studies that
compare bee and plant interactions in the same region using a historic dataset and comparing it to the present day
offer the opportunity to detect lost interactions and to attribute these to a lack of spatial or temporal co-occurrence.
One such study [42] found that, of the lost interactions that were not caused by the extirpation of pollinator species,
41% were caused by a lack of spatial co-occurrence and 53% by a lack of temporal co-occurrence. However, because
the environment in which this study was carried out has been highly fragmented between the two time periods it is
unclear to what extent these changes can be attributed to climatic factors.
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Right time, right place but…
Morphological mismatches
The response of insect body size to global warming is generally consistent: It has largely been observed that it
decreases at higher ambient temperatures, probably because of higher metabolic rate and accelerated develop-
ment (i.e. following the temperature-size rule [19,43,44]). This decrease can subsequently impact the thermo-
regulatory activity of pollinators. For example, it has been shown that larger bees are better able to
thermoregulate than smaller ones [45], even if hair colour and thickness also impact this ability [46]. The
responses of flower size and plant height to global warming seem to be far less consistent and very species-
specific. At higher temperatures than the optimum level for a species (which can additionally be different for
vegetative or reproductive parts [47]), a decrease in flower diameter [48] or in plant height [49] can be
observed, but there is no consensus that global warming will systematically affect plant morphology or resource
accessibility [50,51] as the converse pattern has also been observed [52].
Floral morphology is partly linked to the natural selection exerted by pollinator morphology and vice versa

[35,53]. If the degree of morphological matching is high, it potentially implies a strong reciprocal selection
because any change to this matching could result in fitness impacts for either or both partners [53]. However,
if the level of matching is low, it potentially implies a low reciprocal selection because of the high variability of
the phenotypes involved in the interaction [53]. Nonetheless, in many plant–pollinator interactions, morpho-
logical matching requires precision and a consistent mechanistic fit between the two actors to ensure the
contact between the sexual parts of the flower (i.e. pollen and stigma) and the body of the pollinator and there-
fore efficient pollination [54]. Floral morphology is thus linked to the pollinator taxa that they attract, notably
because of the relationship between the length of nectar spurs, corolla tubes and the proboscis of the pollinator
(e.g. [54,55]). The relationship between proboscis length and corolla depth has been investigated in various
groups like euglossine and solitary bees [54] and butterflies [18]. In most of these studies, species with longer
proboscises visit a wider range of flowers, and all of the studies highlighted a positive relationship between pro-
boscis length and the depth at which nectar is produced.
As an example of a potential morphological mismatch, two bumblebee species have evolved shorter tongue

lengths over the last 40 years while their associated flowers have not become shallower [57]. This tongue size
matching is particularly crucial as it has been showed recently to be a strong driver of foraging efficiency in
multi-species assemblages [58]. The overall size matching will also determine the efficiency of pollen transfer:
smaller pollinators (with on average shorter tongues) can have lower pollination efficiency (e.g. [59] but see [60])
through reduced pollen delivery, therefore, having a lower single-visit pollen deposition rate and seed set while
large- or middle-sized species are, most of the time, more likely to have greater contact with anthers and stigma
and therefore have a greater pollination efficiency [61]. Most of the studies have focused on pollen deposition and
the pattern is largely constant. However, with regards to pollen removal from anthers, results are less consistent
and some of them indicate that pollen removal efficiency is independent from body size [62]. Indeed, many other
morphological features from both partners are driving pollination efficiency, notably hair characteristics (e.g. size
and density) [58,59] which can also be impacted by temperatures during development [60]. Overall, morpho-
logical mismatches between plants and pollinators are most likely to occur within plant species displaying specia-
lised flower morphologies as their morphological fit with pollinators is most restricted [51].

Disruption to host attraction and foraging behaviours
Like most phytophagous insects, pollinators are known to rely on olfactory cues (specific volatile organic com-
pounds [VOCs] in a specific ratio) to recognise host plants at a distance [63,64]. A modification in the compos-
ition or the perception of the VOCs can, therefore, lead to the breakdown of the recognition process. It has
been shown that changes in ambient temperature can affect volatile emissions from flowers, altering the quality
of the signal [65]. Warming not only increases rate and abundance of floral VOC emissions, but also changed
the ratios among compounds that constituted the floral scents. This response of floral emissions to temperature
differed among species and among different compounds within species [65]. Such species-specific modification
of the volatile blend emitted may impair plant–pollinators interactions if pollinators become confused with a
more fragrant atmosphere, or are no longer attracted to their host-plant floral cues. Moreover, visual stimuli
displayed by plants also appear to play a major role in host selection [66]. Several studies have already shown
that the stress of high temperatures affects both vegetative and floral morphological traits, and higher tempera-
tures can reduce plant height [67], cause flower deformity (i.e. floral organ malformation; [68]), lead to lighter
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flower colours [69], reduce the number of flowers as well as flower size [70], advance the timing of the anthesis [71]
and limit the production of floral resources [72].
Regarding the direct effect on pollinators, we only can speculate that higher temperatures might denature key

proteins in olfaction (i.e. odorant-binding proteins and olfactory receptors [73]). It is already known that pro-
teotoxic stressors (e.g. heat stress) can cause proteins to misfold and denature, resulting in a loss of biological
function [74,75]. However, such heat denaturation of proteins involved in olfaction remains unlikely since they
are particularly stable to thermal denaturation [76]. Exposure of pollinators to high temperatures may neverthe-
less induce serious damages such as denaturation of non-antennal proteins, disturbance of the nervous and
endocrine systems, damage to DNA but also the alteration of the liquid-crystalline fluidity of the membrane,
which could disrupt the whole organism and lead to death ([77], reviewed in [78]).
Elevated temperatures can also alter resource nutritional quality for pollinators as pollen appears to be par-

ticularly sensitive to heat (e.g. [79]). High temperatures can lead to a decrease in pollen viability, which is asso-
ciated with changes in several metabolites [80]. For instance, heat stress can decrease the concentration of
soluble carbohydrates [81] and proline [69] as well as alter the phospholipid content of pollen [82]. Moreover,
plants may produce a repertoire of secondary metabolites in response to temperature rises [83]. Such increases
in secondary metabolites as well as the accumulation of reactive oxygen species are likely to occur in pollen
and may be detrimental to pollinators [84]. All these changes in pollen composition might decrease its suitabil-
ity to pollinators, reducing their performance and health status [85,86]. Finally, these changes in pollen devel-
opment and viability could also affect plant fitness as they could disrupt plant fertilisation and lead to a
reduction in fruit and seed sets [87,88].
In addition, nectar chemical composition (i.e. sugar concentration) can also be affected by an increase in

temperature, but to a lesser extent than pollen composition and nectar volume [79,89]. However, these modifi-
cations in nectar sugar concentration can compromise pollinator attractiveness and flower visitation rate [89],
as bumblebees are able to discriminate between small differences in nectar concentration and prefer sugar con-
centrations higher than 40% [90]. In the same way, pollen quality can drive host selection and flower visitation
[91,92]. Effects of global warming on pollen and nectar quality are, therefore, expected to affect pollinators as
well as plant reproductive fitness.
Another cue that pollinators, especially bees, can use to recognise flowers is floral temperature. By using

thermal detectors in their antennae and tarsi, bees can detect differences in overall flower temperature [93].
Previous studies have shown that bees prefer to collect warm nectar from flowers at low ambient temperatures [94].
However, this preference for warmer flowers may be context-dependent as shown by Australian stingless bees
(Trigona carbonaria) that preferred warmer nectars at lower air temperatures (from 23 to 30°C), but changed their
behaviour and selected ambient temperature nectar over warmer nectar when the air temperature reached 34°C [95].
While some plant species appear to modulate their temperature in a way consistent with bee preferences, other
appear to lack a cooling mechanism, suggesting that they may be less attractive to bee pollinators under higher
temperatures [96]. Regarding all these effects on sensory cues used by pollinators for host attraction, global
warming is probably already disrupting the interactions between plants and pollinators since all these modifica-
tions might alter the attractiveness of flowers to pollinators and impact their foraging behaviour [89]. On the
other hand, global warming may also alter foraging behaviour from the pollinator point of view. Learning
abilities (i.e. association between floral traits and rewards [97]) of some pollinators such as bumblebees could
be affected, therefore, impacting discrimination between sensory cues. This could impede the plasticity of
pollinator behaviour (i.e. modification of their foraging behaviour as a response of altered floral traits) and
threaten the plant–pollinator interactions.

Conclusions and perspectives
Mismatches in the interactions between plants and pollinators will lead to the emergence of new biological net-
works and communities (e.g. [98]). Though some communities will experience the loss of existing interactions,
other communities could gain novel interactions [98,99]. Some communities could be more severely impacted.
For example, stresses such as more frequent and intense heatwaves could predominantly impact summer-
flowering communities through decreasing nectar production (particularly in Mediterranean regions where the
temperatures are already very high) because the optimal temperature of nectar production is more likely to be
exceeded. On the other hand, spring-flowering communities could be more severely impacted by phenological
mismatches with their host plants that to date have been more frequently observed during the spring [100,101].
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A certain level of variation in matches and mismatches is thought to be common in networks subject to
co-evolutionary dynamics [53]. Based on ‘the most effective pollinator’ principle [102], floral traits should
evolve to attract and match with the most abundant and effective pollinators. We may expect, therefore, when
plant–pollinator interactions are predominantly generalist in nature, pollinators will show plasticity and be able
to adapt to changes. In contrast, specialised pollinators will show limited plasticity in their response and there-
fore be less resilient to climate warming ([103] but see [23]). Indeed, generalist species are mostly less affected
or even favoured by changing communities while species with narrower niches tend to be at higher risk of
extinction [16]. Under changing conditions, this core of generalist species could partly sustain the plant–pollin-
ator network, buffering the effects of climate change. Plant–pollinator networks are expected to be more stable
and resilient to changes than host–parasitoid networks because of their nested and dynamic structures which
act as a buffer against perturbations or cascading effects of species loss [10,11]. However, as such networks may
be disrupted at both spatial and temporal scales and synergistic effects of additional detrimental factors (e.g.
agricultural changes, pesticides, resource availability [104]), there is the potential for the resilience of the plant–
pollinator network to be substantially weakened [51]. Whereas pollinators can offset local limitation of floral
resources or nesting sites through their flight ability, plant populations are more threatened at the local scale by
the reduction in the abundance of effective pollinators and soil nutrients limitation [11]. However, even if
plants are sessile, simulation models incorporating different scenarios of species extinction and abilities to
switch from host plant or associated pollinators showed that under climate change, the impact of host plant
extinction could have a higher chance of causing the co-extinction of their pollinators than the converse scen-
ario, thus the more likely extinctions cascades would come from plants to pollinators [37].
As the pace of climate change is fast compared with the historical baseline, if species are to persist then

species adaptation has to be equally fast, and the phenomenon of rapid evolution is known to be a crucial eco-
logical process for species persistence [1]. The asynchrony resulting from spatial and/or temporal mismatches
will be subject to selection and the ability of plants and pollinators to adapt remain unclear. To address this
current knowledge gap, we need ambitious strategies for monitoring plants and their pollinators, not only to
detect shifts in their temporal and spatial distribution (Table 1), but also in their phenotypic distribution [105].
So far only a limited pollinator diversity has been studied in these contexts; in detail, evidence for phenological
mismatches as a result of microevolutionary responses has already been observed [106], thus a critical challenge
is now to assess if the pace of adaptive evolutionary changes will be fast enough the track climate warming and
prevent species extinctions [107]. Moreover, host shifts due to climate warming could also be observed, which
could buffer the detrimental effects of changing conditions for pollinators [108]. Nevertheless, the last decade
has seen much progress in the description and understanding of global warming and its impact on complex
plant–pollinator networks even if responses in the field have been documented far less than responses under
laboratory conditions. These advances should help us to mitigate the effects of global changes to sustain pollin-
ator communities and pollination services.

Summary
• Global warming is a major threat for biodiversity, impacting both species and their interac-

tions. A fundamental interaction in terrestrial ecosystems is the mutualism between pollinators
and their host plants.

• Global warming can induce spatial and temporal mismatches when species fail to co-occur.
While spatial mismatches are still poorly observed, there is growing evidence that temporal
mismatches can reshape interactions within pollination networks.

• Mismatches can also occur between species that still co-occur. These can be due to morpho-
logical modifications, disruption to host attraction and foraging behaviours, as well as shifts in
the quality of floral resources.

• Our understanding of the effects of global warming on this mutualism has advanced substan-
tially and the resilience of plant–pollinator networks to changing conditions seems to be high.
However, we still require field-realistic results based on ambitious datasets to assess to which
extent the mismatches do occur.
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