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Abstract: We consider a class of generalizations of the Skyrme model to five spacetime

dimensions (d = 5), which is defined in terms of an O(5) sigma model. A special ansatz

for the Skyrme field allows angular momentum to be present and equations of motion with

a radial dependence only. Using it, we obtain: 1) everywhere regular solutions describing

localised energy lumps (Skyrmions); 2) Self-gravitating, asymptotically flat, everywhere

non-singular solitonic solutions (Skyrme stars), upon minimally coupling the model to

Einstein’s gravity; 3) both static and spinning black holes with Skyrme hair, the latter

with rotation in two orthogonal planes, with both angular momenta of equal magnitude.

In the absence of gravity we present an analytic solution that satisfies a BPS-type bound

and explore numerically some of the non-BPS solutions. In the presence of gravity, we

contrast the solutions to this model with solutions to a complex scalar field model, namely

boson stars and black holes with synchronised hair. Remarkably, even though the two

models present key differences, and in particular the Skyrme model allows static hairy

black holes, when introducing rotation, the synchronisation condition becomes mandatory,

providing further evidence for its generality in obtaining rotating hairy black holes.
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1 Introduction and motivation

The Skyrme model has more than fifty years of history, starting from Skyrme’s original

construction and its basic solution, with unit baryon number [1, 2]. It provided the very first

explicit example of solitons in a relativistic non-linear field theory in d = 3 + 1 spacetime

dimensions. Such solutions, dubbed Skyrmions, have found interesting applications, e.g.

as an effective description of low energy QCD [3, 4] and on the issue of proton decay [5].
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In its simplest version, the Skyrme model is described by a set of four scalars {φa},
a = 1, .., 4, satisfying the sigma-model constraint φaφa = 1, with a target space1 S3 ∼ SU(2)

and a Lagrangian density possessing a global O(4) symmetry. In addition to a standard

(quadratic) kinetic term and a potential, the model contains an extra (quartic) term which

is fourth order in derivatives2 allowing it to circumvent Derrick’s no-go theorem for finite

energy lump-like solutions in field theory [9]. These Skyrmions possess some topological

properties, being characterized by the homotopy class π3(SU(2)) = Z. Moreover, the energy

functional of the Skyrme model has a Bogomol’nyi-type bound, in terms of the topological

charge B associated with the homotopy, which is identified as the baryon number.

The solutions of the Skyrme model have been studied intensively over the last decades.

In addition to spherical and axially symmetric configurations, other classes of solutions have

been identified, revealing sophisticated geometrical structures with discrete symmetries

only [10–12]. Interestingly, for a topological charge B > 2, the no-isometry configurations

yield global minima of the energy. A detailed description of the flat spacetime Skyrmions

can be found in the monograph [13].

Skyrmions persist after taking their gravitational backreaction into account, within

the Skyrme model minimally coupled to Einstein’s gravity (even including a cosmological

constant, e.g. [14]). The properties of such, hereafter Skyrme stars, have been considered

in [15–20]. Moreover, and following a generic rule in gravitating solitons [21–23], these star-

like configurations are compatible with the addition of a (small) horizon at their center.

In the Skyrme model case, this construction was carried out by Luckock and Moss [24],

and provided the first physically relevant counter-example to the no-hair conjecture [25].

The construction in [24] was performed in the probe limit, i.e. a Skyrme test field on

a Schwarzschild black hole (BH) background, but subsequent work included the backre-

action [26]. This results in BHs with (primary) Skyrme hair, some of the solutions being

stable against spherical linear perturbations (a review of these aspects can be found in [27];

see also [28–32] for more recent work).

Most of the known Skyrme-model solutions are static, but spinning generalizations have

been constructed. Spinning flat spacetime Skyrmions were considered by Battye, Krusch

and Sutcliffe [33]. In contrast to the (conceptually simpler) spinning Q-ball solutions [34,

35], for spinning Skyrmions the angular momentum J is a continuous parameter that can

be arbitrarily small, so that they can rotate slowly and rotating solutions are continuously

connected to static ones. The effects of gravity on these spinning Skyrmions has been

studied by Ioannidou, Kleihaus and Kunz in [36], revealing, in particular, a number of

configurations which do not have a flat space limit. No rotating BHs with Skyrme hair,

however, have been constructed so far, presumably due to the complexity of the numerical

problem.

As we shall see, the complexity just mentioned can be considerably alleviated by con-

sidering the generalisation of the Skyrme model to higher (odd) spacetime dimensions.

1Usually the SU(2) group element U is employed, which in terms of the real field φa is given by U = φaσa,

with σa = (iσi, 1I), and U−1 = U† = φaσ̃a, with σ̃a = (−iσi, 1I), where σi are the standard Pauli matrices.
2Higher derivative terms, up to the allowed sextic kinetic term, can also be included as corrections [6, 7]

and are generally expected, see e.g. the recent work [8].
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Moreover, in recent years, the interest in field theory solutions in d 6= 4 increased sig-

nificantly. A recurrent lesson has been that well known results in d = 4 physics do not

have a simple extension to higher dimensions. For example, the BH solutions in d > 5

models of gravity are less constrained, with a variety of allowed horizon topologies [37]. In

the Skyrme case, however, the only other dimensions considered so far in the literature is

d = 3 [38–41], even though (gravitating) Skyrmions should also have d > 5 generalizations.

In this paper we shall consider a higher dimensional Skyrme model with the main goal

of testing the existence of rotating BHs with Skyrme hair, but also to understand how the

spacetime dimension affects standard results for Skyrme physics. The Skyrme system to be

addressed is a generalisation of the usual d = 4 Skyrme model, containing higher derivative

terms in addition to the standard ones. This can be done, in principle, in all (including

even) dimensions; for concreteness we restrict our attention to the d = 4 + 1 case, where

we have carried out a detailed numerical study. A technical advantage of this case is the

possibility to consider configurations with two equal angular momenta, for which there is a

symmetry enhancement. As such, the problem results in a system of ordinary differential

equations (ODEs) which are easier to study.

We shall also contrast the Skyrme model with the better known and conceptually

simpler model of a complex scalar field, for which one also finds flat spacetime field theory

solutions (Q-balls [34, 35, 42]), gravitating solitons (boson stars [43]) and hairy BHs (Kerr

BHs with scalar hair [44–46]). In particular for the latter there are no static hairy BHs. But

in agreement with the latter, rotating BHs with Skyrme hair also require a synchronisation

condition, as described below.

The paper is organized as follows. In section 2 we introduce the model together with

a codimension-1 Skyrme field ansatz. The non-gravitating and gravitating solitons of the

model — Skyrmions and Skyrme stars — are discussed in sections 3 and 4. BHs with

Skyrme hair are presented in section 5. In sections 3–5 we study both static and rotating

solutions. We give our conclusions and remarks in section 6. Numerical solutions with

a quartic term in the Skyrme action are reported in appendix A. Appendix B contains a

discussion of the Skyrme model for a general number of spacetime dimensions.

Conventions and numerical method. Throughout the paper, mid alphabet latin let-

ters i, j, . . . label spacetime coordinates, running from 1 to 5 (with x5 = t); early latin

letters, a, b, . . . label the internal indices of the scalar field multiplet. As standard, we use

Einstein’s summation convention, but to alleviate notation, no distinction is made between

covariant and contravariant internal indices.

The background of the theory is Minkowski spacetime, where the spatial R4 is written

in terms of bi-polar spherical coordinates,

ds2 = dr2 + r2(dθ2 + sin2 θdϕ2
1 + cos2 θdϕ2

2)− dt2 , (1.1)

where θ ∈ [0, π/2] is a polar angle interpolating between the two orthogonal 2-planes and

(ϕ1, ϕ2) ∈ [0, 2π] are azimuthal coordinates, one in each 2-plane. r and t denote the radial

and time coordinate, 0 6 r <∞ and −∞ < t <∞, respectively.
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For most of the solutions the numerical integration was carried out using a standard

shooting method. In this approach, we evaluate the initial conditions at r = 10−5 (or

r = rH+10−5) for global tolerance 10−14, adjusting for shooting parameters and integrating

towards r → ∞. The spinning gravitating solutions were found by using a professional

software package [47]. This solver employs a collocation method for boundary-value ODEs

and a damped Newton method of quasi-linearization. A linearized problem is solved at

each iteration step, by using a spline collocation at Gaussian points. An adaptive mesh

selection procedure is also used, such that the equations are solved on a sequence of meshes

until the successful stopping criterion is reached.

2 The O(5) Skyrme model in d = 4 + 1 dimensions

The Skyrme model can be generalised to an arbitrary number of dimension — cf. ap-

pendix B. Restricting to d = 4 + 1 spacetime dimensions, the Skyrme model is defined

in terms of the O(5) sigma model real fields {φa}, a = 1, . . . , 5, satisfying the constraint∑
a φ

aφa = 1. It proves useful to introduce the following notation for all the allowed kinetic

terms, quadratic, quartic, sextic and octic:

φ(1) = φai ≡ ∂iφa ,
φ(2) = φabij ≡ φai φbj − φajφbi ,
φ(3) = φabcijk ≡ φabij φck + φabjkφ

c
i + φabkiφ

c
j ,

φ(4) = φabcdijkl ≡ φabcijkφdl + φabcjklφ
d
i + φabckli φ

d
j ,

in terms of which the kinetic terms are written:

F2 ≡ φai1φ
a
i2g

i1i2 ,

F4 ≡ φabi1j1φ
ab
i2j2g

i1i2gj1j2 , (2.1)

F6 ≡ φabci1j1k1φ
abc
i2j2k2g

i1i2gj1j2gk1k2 ,

F8 ≡ φabcdi1j1k1l1φ
abcd
i2j2k2l2g

i1i2gj1j2gk1k2gl1l2 .

Observe that φa,i = φaj g
ij , φab,ij = φabklg

ikgjl, etc., where gij is the metric tensor of the five

dimensional background geometry.

We shall always include in the action the quadratic term F2. Then, for most solutions

in this paper, as will be justified in section 3.2.2 by a virial identity, only the sextic term

F6 is also needed, so we will eschew the octic terms, which do not bring any qualitative

features to the solutions. We shall likewise drop the quartic term F4, though in appendix A

we verify that its inclusion does not change the general features. The sole exception to this

pattern is the BPS solution of section 2.1 which relies only on the quartic term.

The Lagrangian density of the model considered throughout is

LS =
λ1

2
F2 +

λ2

4
F4 +

λ3

36
F6 + λ0V (φa) , (2.2)

where V is the Skyrme potential whose explicit form will be discussed later and λi > 0

are coupling constants. Observe these are dimensionful constants: [λ0] = length−5, [λ1] =

– 4 –
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length−3, [λ2] = length−1 and [λ3] = length. Inclusion of the potential term is mandatory

for rotating solutions.

From the Lagrangian (2.2) it follows that the scalars φa satisfy the Euler-Lagrange

equations(
δda − φdφa

){
2λ1∇iφai + 8λ2 φ

b,k
i ∇

jφab,ijk + 9λ3 φ
bc,jk∇iφabcijk + λ0

∂V

∂φa

}
= 0 . (2.3)

2.1 A BPS bound and the topological charge

The model (2.2) with λ0 = λ1 = λ3 = 0, i.e. the action

IS =
λ2

4

∫
d5x
√
−gφabi1j1φ

ab
i2j2g

i1i2gj1j2 , (2.4)

possesses some special properties, provided the spacetime geometry is ultra-static (gtt =

−1) and the Skyrme ansatz has no time dependence. Then the resulting system lives

effectively on a four dimensional space with Euclidean signature (which, however, can be

curved), being conformal invariant.

After defining the two-form Hodge dual of φabij as

?φabij =
√
−gεaba1b1cεiji1j15φ

a1b1,i1j1φc , (2.5)

we can state the Bogomol’nyi inequality∣∣φa1a2i1i2
∓ ?φa1a2i1i2

∣∣2 > 0 , (2.6)

which implies that the mass-energy of the model is bounded from bellow

M >
λ2

4
B , (2.7)

where B is the topological charge

B =

∫
d4x
√
−g ρT , with ρT =

1

64π2
φa1a2i1i2

?φa1a2,i1i2 , (2.8)

ρT being the topological charge density. Also, the total mass-energy of d = 5 solutions is

defined as

M =
λ2

4

∫
d4x
√
−g F4 , (2.9)

while the topological current is

Bk =
1√
−g

1

64π2
εiji1j1kεaba1b1cφ

ab
ij φ

a1b1
i1j1

φc, (2.10)

(with Bt ≡ ρT ).

As we shall see in the next section, self-dual solutions saturating the above bound

exist,3 being solutions of the 1st order equations

φabij = ±?φabij . (2.11)

It is clear that the bound (2.7) holds as well for the general Lagrangian (2.2), in which

case it can never be saturated, since the contribution of the supplementary terms is always

positive.

3This contrasts with the Skyrmions on R3 where no BPS solitons exist, while they do on S3 [48].
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2.2 Coupling to gravity

The action of the d = 5 Einstein-Skyrme model reads

I =

∫
d5x
√
−g
(

R

16πG
− LS

)
, (2.12)

where LS is the Lagrangian density (2.2) for the Skyrme sector and G is Newton’s constant.

Variation of (2.12) w.r.t. the metric tensor leads to the Einstein equations

Rij −
1

2
gij = 8πG Tij , (2.13)

where the energy-momemtum tensor is

Tij = λ0T
(0)
ij + λ1T

(1)
ij + λ2T

(2)
ij + λ3T

(3)
ij , (2.14)

in terms of the contributions of the distinct terms in (2.2), which read

T
(0)
ij = −gijV (φa),

T
(1)
ij = φai φ

a
j −

1

2
gijF2,

T
(2)
ij = φabik1φ

ab
jk2g

k1k2 − 1

4
gijF4, (2.15)

T
(3)
ij =

1

6

(
φabcik1l1φ

abc
jk2l2g

k1k2gl1l2 − 1

6
gijF6

)
.

As usual, for a given ansatz, the gravity equations (2.13) are solved together with the

matter equations (2.3), subject to some physical requirements (e.g.asymptotic flatness and

finiteness of the total mass).

2.3 A codimension-1 Skyrme field ansatz

The O(5) solutions in this work are constructed within a Skyrme fields ansatz in terms of

a single function F (r):

φ1 + iφ2 = sinF (r) sin θ ei(ϕ1−ωt) ,

φ3 + iφ4 = sinF (r) cos θ ei(ϕ2−ωt) , (2.16)

φ5 = cosF (r) .

Here, w > 0 is an input parameter — the frequency of the fields. The corresponding

expression of the topological charge density is:

ρT =
1

16

d

dr
[cos(3F )− 9 cosF ] . (2.17)

For the Skyrme potential we shall take the usual ‘pion mass’-type

V = 1− φ5 = 2 sin2

[
F (r)

2

]
, (2.18)

which is a natural generalization of that used in the d = 4 model.

A remarkable feature of the ansatz (2.16), first suggested in [49], albeit for a complex

doublet rather than a Skyrme field, is that for any geometry in this work the angular

dependence is factorized in a consistent way, and the Skyrme equations (2.3) reduce to a

single ODE for the function F (r).

– 6 –
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3 Flat spacetime Skyrmions

We start by considering solutions in the probe limit, i.e. we solve the Skyrme equations

on a fixed spacetime background. Apart from being technically simpler, we shall find

that they possess already a number of basic properties of the corresponding gravitating

generalizations.

3.1 A spherical BPS Skyrmion in the quartic model

In the simplest spherically symmetric case and a flat background, the model with only a

quartic term (2.4) allows a simple analytical solution, found with the ansatz (2.16) (with

ω = 0). Then the first order eqs. (2.6) reduce to4

F ′ ± sinF

r
= 0 . (3.1)

Restricting to the plus sign,5 the solution of the above equation reads

F (r) = 2 arctan
(r0

r

)
, (3.2)

with r0 > 0 an arbitrary parameter. This is an everywhere regular configuration, with

F (r) interpolating between π (at r = 0) and zero (at r =∞). Its energy density is

ρ(r) = −T tt =
96λ2r

4
0

(r2 + r2
0)4

, (3.3)

while all other components of T ji vanish. The total mass of solution is

M =
λ2

4
. (3.4)

It would be interesting to investigate the existence of static non-selfdual solutions of the

simple model (2.4). They are expected to exist, in analogy with instanton-anti-instanton

solutions to Yang-Mills theory [51].

3.2 The general model

3.2.1 The effective action and densities

The simple quartic model (2.4) is too restrictive. Indeed, the self-duality eqs. (2.11) cannot

be satisfied for gtt 6= −1 or ω 6= 0. The situation in this restrictive case is the same as what

occurs in the Einstein-Yang-Mills system [52], where the solutions of the usual Yang-Mills

(YM) model F (2)2 do not survive when considering their backreaction on the spacetime

geometry. This is because the scaling requirement is violated. In that case, this defect was

remedied by adding the higher-order YM term F (4)2 and regular gravitating YM solutions

were constructed for d = 6, 7 spacetime dimension [53]. Subsequently, the case d = 5 was

considered as well [54], where also BH solutions were constructed.

4It is interesting to note that the solution (3.2) is related to the radially symmetric BPST instanton [50]

described by the form factor w(r), via w(r) = cosF .
5The minus sign solution reads F (r) = π − 2 arctan(r0/r) and possesses similar properties.

– 7 –
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For the Skyrme system, the F4 density scales as L−4, while the usual gravity scales as

L−2. Thus, as in the YM case, it is necessary to add higher-order terms. In the general

case with all λi 6= 0 and a Skyrme ansatz given by (2.16), one can show that the equation

for F (r) can also be derived from the effective action

S =

∫ ∞
0

drLeff , with Leff = r3

[
λ0(1− cosF ) +

λ1

2
F̄2 +

λ2

4
F̄4 +

λ3

36
F̄6

]
, (3.5)

where

F̄2 = F ′2 +

(
3

r2
− ω2

)
sin2 F ,

F̄4 =

[(
3

r2
− ω2

)
F ′2 +

(
3

r2
− 2ω2

)
sin2 F

r2

]
4 sin2 F , (3.6)

F̄6 =

[(
3

r2
− 2ω2

)
F ′2 +

(
1

r2
− ω2

)
sin2 F

r2

]
36 sin4 F

r2
.

Despite the fact that this describes an effective one-dimensional system, the configurations

with ω 6= 0 are not spherically symmetric6 and carry an angular momentum density, j,

j ≡
T tϕ1

sin2 θ
=

T tϕ2

cos2 θ
= ω sin2 F

[
λ1 + 2λ2

(
F ′2 +

2 sin2 F

r2

)
+ 2λ3

sin2 F

r2

(
2F ′2 +

sin2 F

r2

)]
.

(3.7)

Their energy density, ρ, is, however, spherically symmetric, with

ρ = −T tt = λ0(1− cosF ) +
1

2
λ1

[
F ′2 +

(
3

r2
+ ω2

)
sin2 F

]
+

1

4
λ2

[(
3

r2
− ω2

)
F ′2 +

(
3

r2
+ 2ω2

)
sin2 F

r2

]
4 sin2 F (3.8)

+
1

36
λ3

[(
3

r2
+ 2ω2

)
F ′2 +

(
1

r2
+ ω2

)
sin2 F

]
36 sin4 F

r2
.

As usual in the probe limit, the total mass, M , and angular momenta, J , of a soliton

are defined as

M = −
∫
d4x
√
−gT tt = 2π2

∫ ∞
0

dr r3ρ, J1 = J2 = J =

∫
d4x
√
−gT tϕ1,2

= π2

∫ ∞
0

dr r3j.

(3.9)

Following d = 5 BH physics conventions, we define also the reduced angular momentum of

a spinning configuration as

j̄ ≡ 27π

8

J2

M3
. (3.10)

3.2.2 A virial identity and scaling

The form (3.5) of the reduced allows the derivation of an useful Derrick-type virial relation.

Let us assume the existence of a globally regular solution F (r), with suitable boundary

6This contrasts with the complex scalar fields model in [49], which possesses spherically symmetric Q-ball

solutions supported by the harmonic time dependence of the fields.
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conditions at the origin and at infinity. Then each member of the 1-parameter family

Fλ(r) ≡ F (λr) assumes the same boundary values at r = 0 and r = ∞ and the action

Sλ ≡ S(Fλ) must have a critical point at λ = 1, i.e. [dSλ/dλ]λ=1 = 0. This results in the

following virial identity satisfied by the finite energy solutions of the field equations∫ ∞
0

dr r3

[
λ1

(
F ′2 +

3 sin2 F

r2

)
+ 4λ0(1− cosF )

]
= (3.11)∫ ∞

0
dr r3

{
2λ3

sin4 F

r4

(
3F ′2 +

sin2 F

r2

)
+ 2ω2 sin2 F

[
λ1 + 2λ2

(
F ′2 + ω2 sin2 F

r2

)]}
.

The positivity of all terms in the previous relation shows that the existence of d = 5

Skyrmions can be attributed to a balance between: the attractive interaction provided by

the usual kinetic term in the Skyrme action together with the potential (left hand side

terms); and a repulsive interaction provided by the sextic term, plus the centrifugal force

in the rotating case (right hand side terms). Also, one can see that, as anticipated above,

the contribution of the quadratic term occurs with an overall w2-factor only, and is not

mandatory for the existence of solutions.

The Skyrme Lagrangian (2.2) contains four input parameters λi. However, the constant

multiplying the quadratic term can be taken as an overall factor for the Skyrme action.

Also, the equation for F is invariant under the transformation r → τr, λ0/λ1 → τ2λ0/λ1,

λ2/λ1 → λ2/(τ
2λ1), λ3/λ1 → λ3/(τ

4λ1) together with w → w/τ , which can be used to fix

the value of one of the constants λ0, λ2 or λ3. Then following the d = 4 case, we define

a characteristic length L and mass MS of the Skyrmion system as given by the constants

multiplying the quadratic and potential terms, with

L ≡
√
λ1

λ0
, MS ≡

λ2
1

λ0
, (3.12)

the numerical results being obtained in units set by L and MS . However, to avoid cluttering

the output with a complicated dependence of L,MS we shall ignore these factors in the

displayed numerical results.

The problem still contains two free constants which multiply the quartic and sextic

terms in the Skyrme action. Moreover, in the presence of gravity, one extra parameter

occurs. Therefore, the determination of the domain of existence of the solutions would be

a lengthy task. In this work, in order to simplify the picture, we have chosen to solve a

model without the quartic term and with a unit value for the parameter multiplying the

sextic term. Thus, all reported numerical results below are found for the following choice

of the coupling constants

λ0 = λ1 = λ3 = 1, λ2 = 0 . (3.13)

To provide evidence that this choice does not restrict the generality of our results, we

present, in appendix A, solutions including the presence of a quartic term in the action,

λ2 6= 0, which indeed does not appear to affect the qualitative properties of the solutions.
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3.2.3 The solutions

The function F (r) satisfies a non-enlightening second order differential equation which we

shall not display here (its ω = 0 limit can be read off by setting N(r) = σ(r) = 1 in (4.8)).

This equation does not seem to possess exact solutions and it is solved numerically with

the boundary conditions7 F (0) = π and F (∞) = 0, which follow from finite energy and

regularity requirements.

The asymptotics of F (r) can be systematically constructed in both regions, near the

origin and for large r. The corresponding expression for small r is

F (r) = π + f1r + f3r
3 +O(r5), with f3 = −f1

λ0 + λ1(2f2
1 + ω2) + 6f4

1 (λ2 − λ3ω
2)

12[λ1 + 6f2
1 (λ2 + f2

1λ3)]
,

(3.14)

in terms of a single undetermined parameter f1 < 0. One notice that the energy density

at r = 0 is nonzero, with

ρ(0) = 2(λ0 + f2
1λ1 + 3f4

1λ2 + 2f4
1λ3) , (3.15)

while the angular momentum density j, given by (3.7), vanishes as O(r2).

An approximate solution valid for large r can be written in terms of the modified Bessel

function of the second kind, K,

F (r) ∼ c

r
K

[
2, r

√
λ0

λ1
− ω2

]
∼ c
√
π

2

e
−r

√
λ0
λ1
−ω2

r3/2
+ . . . , (3.16)

(with c a constant), which shows the existence of an upper bound on the scalar field

frequency, ω ≤
√
λ0/λ1 = 1/L, the solutions becoming delocalized for larger values of ω.

Therefore, similar to other examples of spinning scalar solitons (e.g. [34, 35]), the presence

of a potential term in the action, λ0 6= 0, is a pre-requisite for the existence of finite mass

solutions. Note, however, that we have found numerical evidence for the existence of static

solitons with V = 0, which decay as 1/r3 at infinity.

Solutions interpolating between (3.14) and (3.16) are easily constructed — figure 1. In

our approach, the control “shooting” parameter is f1 which enters the near origin expan-

sion (3.14) — see figure 1, inset of right panel. For a given frequency ω, a single nodeless

solution is found for a special value of f1. The profiles of the energy density and of the

angular momentum density of typical solutions are shown in figure 1, including the static

one, which has ω = 0. In figure 2 we display the total mass and angular momentum of

the spinning Skyrmions as a function of their frequency. One can see that both quantities

increase monotonically with ω, with a smooth ω → 1 limit which maximizes the values of

mass and angular momentum. Also, at least for the considered values of the coupling con-

stants, the Skyrmions are never fast spinning objects, with a reduced angular momentum

j̄ always much smaller than one.

7Solutions with F (r) interpolating between kπ (with k > 1) at r = 0 and F (∞) = 0 do also exist.

However, they are more massive and likely to be unstable.
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Figure 2. The total mass, M , and total angular momentum, J , of static (ω = 0) and spinning

Skyrmions on a flat spacetime background are shown as a function of their frequency ω.

4 Skyrme stars

4.1 Spherical stars

The above solutions possess gravitating generalizations, which are found by solving the

Skyrme equation (2.3) together with the Einstein equations (2.13). A suitable metric for

spherically symmetric configurations reads

ds2 =
dr2

N(r)
+r2(dθ2+sin2 θdϕ2

1+cos2 θdϕ2
2)−N(r)σ2(r)dt2 , where N(r) ≡ 1−m(r)

r2
,

(4.1)

the function m(r) being related to the local mass-energy density up to some overall factor.

For static, spherically symmetric solutions, the scalar ansatz is still given by (2.16) with

w = 0.
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The equations of the model can also be derived from the reduced Lagrangian:

L =
1

16πG
Lg − Ls , where Lg = 6σr

(
1−N − 1

2
rN ′

)
= 3σm′ , (4.2)

and

Ls = σr3

[
λ0(1− cosF ) +

λ1

2

(
NF ′2 +

3

r2
sin2 F

)
(4.3)

+3λ2
sin2 F

r2

(
NF ′2 +

sin2 F

r2

)
+ λ3

sin4 F

r4

(
3NF ′2 +

sin2 F

r2

)]
.

This form of the system allows us to derive, following [55, 56] a generalization of the flat
spacetime virial identity (3.11). Following the same reasoning as in section 3.2.2, we find
that the finite energy solutions satisfy the integral relation∫ ∞

0

drσr3
[
λ1

(
NF ′2+

3 sin2 F

r2

)
+

2m

r2
F ′2
(
λ1
2

+3λ2
sin2 F

r2

+3λ3
3 sin2 F

r4
+4λ0(1−cosF )

)]
= 2λ3

∫ ∞

0

drσ
sin2 F

r

(
3NF ′2+

sin2 F

r2

)
,

(4.4)

which clearly shows that nontrivial gravitating solutions with finite mass cannot exists in

a model without the sextic term. Indeed, in that case the right hand side would vanish

and all terms in the integrand of the left hand side of (4.4) would either vanish or be

strictly positive, making the equality impossible for a non-trivial configuration. Observe

that turning on gravity adds an extra attractive term, in addition to those provided by the

quadratic and potential terms.

By using the same dimensionless radial coordinate and rescaling as in the non-

gravitating case (together with m→ m/L2), one finds that the gravitating system possess

one extra dimensionless coupling constant

α2 = 4πGλ
3/2
1 /λ

1/2
0 . (4.5)

Then the Einstein equations used in the numerics reduce to (recall that we set λ0 =

λ1 = 1 and λ2 = 0, λ3 = 1)

m′ =
4

3
α2r3

[
1

2

(
NF ′2 +

3 sin2 F

r2

)
+ 3λ2

sin2 F

r2

(
NF ′2 +

sin2 F

r2

)
(4.6)

+λ3
sin4 F

r4

(
3NF ′2 +

sin2 F

r2

)
+ 1− cosF

]
,

σ′ =
4

3
α2rσ

(
1

2
+ 3λ2

sin2 F

r2
+ 3λ3

sin4 F

r4

)
F ′2 , (4.7)

together with an extra constrain equation. The function F (r) satisfies the 2nd order

equation

F ′′ =
sinF

N
(

1 + 6λ2
sin2 F
r2

+ 6λ3
sin4 F
r4

) (1 +
1

r2 sin2 F
P1 −

3λ2

r4
P2 −

3λ3 sin2 F

2r6
P3

)
(4.8)
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Figure 3. Left panel: the profile functions of a typical spherically symmetric Skyrme star. Right

panel: the total mass M , the control parameter f1 and the value of the metric function σ at the

origin are shown as a function of coupling constant, α, for spherically symmetric Skyrme stars.

where

P1 =
3

2
sin(2F )− rF ′

[
rN ′ +N

(
3 +

rσ′

σ

)]
,

P2 = cos(3F ) + cosF (2Nr2F ′2 − 1) + 2rF ′ sinF

[
rN ′ +N

(
1 +

rσ′

σ

)]
, (4.9)

P3 = cos(3F ) + cosF (8Nr2F ′2 − 1) + 4rF ′ sinF

[
rN ′ +N

(
−1 +

rσ′

σ

)]
.

These equations are solved by imposing the boundary conditions8

N(0) = 1, σ(0) = σ0 > 0, F (0) = π , (4.10)

at the origin (r = 0), while at infinity, the solutions satisfy

N → 1, σ → 1, F → 0 . (4.11)

The properties of the spherically symmetric Skyrme stars can be summarized as follows.

For all studied cases, m(r), σ(r), and F (r) are monotonic functions of r,9 the profile of a

typical solution being presented in figure 3 (left panel). For small values of α there is a

fundamental branch of solutions that reduces to the flat space Skyrmion as α→ 0. When

α increases, the mass parameter M decreases, as well as the value σ(0). The solutions exist

up to a maximal value αmax of the parameter α. At the same time, the absolute value of the

“shooting” parameter f1 increases with α. We found that a secondary branch of solutions

emerges at αmax, extending backwards in α — figure 3 (right panel). Along this second

branch, both σ(0) and f1 decrease as α decreases, while the value of the physical mass

8An approximate form of the solutions compatible with these conditions can easily be constructed. For

example, the small−r expansion contains two essential parameters, F (0) and σ(0).
9Excited solutions with nodes in the profile of F , which would therefore be a non-monotonic function,

are likely to exist as well.
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M/α2 strongly increases. Some understanding of the limiting behaviour can be obtained

by noticing that the α → 0 limit can be approached in two different ways, as G → 0 (flat

space, first branch) or as λ1 → 0 (second branch). Then we conjecture that the limiting

solution on the upper branch corresponds to a gravitating model without the F2-term in

the Skyrme Lagrangian.

4.2 Spinning stars

d = 5 rotating spacetimes generically possess two independent angular momenta. Here,

however, we focus on configurations with equal-magnitude angular momenta which are

compatible with the symmetries of the matter energy-momentum tensor we have chosen.

A suitable metric ansatz reads (note the existence of a residual gauge freedom which will

be fixed later):

ds2 =
dr2

f(r)
+ g(r)dθ2 + h(r) sin2 θ [dϕ1 −W (r)dt]2 + h(r) cos2 θ [dϕ2 −W (r)dt]2 (4.12)

+[g(r)− h(r)] sin2 θ cos2 θ(dϕ1 − dϕ2)2 − b(r)dt2 .

For such solutions the isometry group is enhanced from Rt×U(1)2 to Rt×U(2), where Rt
denotes the time translation. This symmetry enhancement allows factorizing the angular

dependence and thus leads to ordinary differential equations.

The angular momentum and energy densities are given by

j =
T tϕ1

sin2 θ
=

T tϕ2

cos2 θ

=
(ω −W )

b(r)
sin2 F

{
λ1 + 2λ2fF

′2 +
2 sin2 F

g2

[
λ3 sin2 F + 2g(λ2 + λ3F

′2)
]}

,

ρ = −T tt = λ0(1− cosF ) +
1

2
λ1

[
fF ′2 +

(
2

g
+

1

h
+
ω2 −W 2

b

)
sin2 F

]
+λ2 sin2 F

{[(
2

g
+

1

h

)
f +

f

b

(
ω2−W 2

)]
F ′2 +

(
1

2g
+

1

h
+
ω2 −W 2

b

)
2 sin2 F

g

}
+λ3

sin4 F

g

[(
1

2g
+

1

h
+
ω2 −W 2

b

)
2fF ′2 +

(
1

h
+
ω2 −W 2

b

)
sin2 F

g

]
.

The complete ansatz, (4.12) and (2.16), can be proven to be consistent, and, as a

result, the Einstein-Skyrme equations reduce to a set of five ODEs (in the numerics, we fix

the metric gauge by taking g(r) = r2).

We seek asymptotically flat solutions, subject to the following boundary conditions as

r → ∞: f = b = g(r)/r2 = 1 and F = W = 0. The total (ADM) mass M and angular

momenta J1 = J2 = J , are read off from the asymptotic behaviour of the metric functions,

gtt = −1 +
8GM

3πr2
+ . . . , gϕ1t = −4GJ

πr2
sin2 θ + . . . , gϕ2t = −4GJ

πr2
cos2 θ + . . . . (4.13)

The behaviour of the metric functions at the origin is f = 1, b = b0 > 0, g(0) = 0, together

with W = W0 > 0, while F = π, as in the probe limit.
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Figure 4. The profile functions of a typical spinning Skyrme star.

In figure 4, we display the profiles of the a typical spinning Skyrme star. The cor-

responding distribution for energy and angular momentum densities look similar to those

shown in figure 1 for the probe limit. The mass/angular momentum of solutions vs. fre-

quency are given as a limiting curve in figure 11, for a particular value of α. Note that

similar to the probe limit, both quantities monotonically increase with ω. Also, in the limit

ω → 1, the solutions are still localized, without any special features, while they disappear

for ω > 1.

Finally we emphasise that all solitons in this work, gravitating or otherwise, possess

unit topological charge, as expected.

5 BHs with Skyrme hair

BH generalizations are generically found for any regular solitonic-like gravitating configu-

ration, at least for small values of the horizon radius rH . In this section we shall show this

trend remains true for the Einstein-Skyrme model discussed herein, as confirmed by our

numerical results.

5.1 Spherically BHs

5.1.1 The probe limit — Skyrmions on a Schwarzschild BH background

Similarly to the d = 4 case, it is useful to consider first the probe limit and solve the Skyrme

equations on a d = 5 Schwarzschild-Tangherlini BH background [57]. The corresponding

line element is given by (4.1) with N(r) = 1− r2
H/r

2 and σ(r) = 1, where rH > 0 the event

horizon radius. The approximate form of the solution close to the horizon reads

F (r) = f0 + f1(r − rH) +O(r − rH)2, (5.1)

in terms of the “shooting” parameter f0, with

f1 =
sin(f0)

[
λ0r

6
H + 3 cos(f0)

(
r4
Hλ1 + 2λ3 sin4 f0

)]
2rH(r4

Hλ1 + 6λ3 sin2 f0)
. (5.2)
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radius rH , for Skyrme probe solutions on a Schwarzschild BH background.

The mass of the solutions is still computed from (3.9), with the corresponding curved

spacetime expressions and r = rH as a lower bound in the integral (the same holds for a

MP background).

The results of the numerical integration are shown in figure 5 (note that the typical

profile of the function F (r) is similar to that exhibited in the gravitating case, cf. figure 6).

One can see that the solutions exist up to a maximal horizon radius rH of the Schwarzschild

background, with a double branch structure for a range of rH . The solutions of the funda-

mental branch (with label 1 in figure 5) terminate in the flat spacetime solitons as rH → 0,

with F (rH)→ π in that limit. Along this branch, the mass of the solutions decreases with

increasing rH . The second branch (with label 2 in figure 5) starts at r
(max)
H and contin-

ues again to rH → 0, in which limit however, the mass of the solution M diverges, while

F (rH)→ π/2.

We remark that the Skyrme solutions on a spacetime geometry with an event horizon

possess a non-integer topological charge,

B =

(
1 + 2 cos2

[
1

2
F (rH)

])
sin4

[
1

2
F (rH)

]
, (5.3)

belonging to the interval 1/2 < B ≤ 1. In fact, the above expression holds for all BH

solutions in this work, including the rotating ones.

5.1.2 Including backreaction

The inclusion of gravity effects is straightforward. The BH solutions are constructed within

the same ansatz used for solitons. They satisfy the following set of boundary conditions at

the horizon (which is located at r = rH , with 0 < rH 6 r <∞)

N(rH) = 0 , σ(rH) = σH > 0 , F (rH) = f0 . (5.4)
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The far field behaviour is similar to that in the solitonic case. We note that these BHs

possess a Hawking temperature TH and a horizon area AH , which read

TH =
1

4π
N ′(rH)σ(rH) , AH = 2π2r3

H . (5.5)

The profile of a typical BH solution is shown in figure 6. The behaviour of the solutions

as a function of rH is presented in figure 7, for several values of the coupling constant α.

The properties of the spherically symmetric BHs can be summarized as follows. Starting

from any regular solution, i.e. a Skyrme star, with a given α and increasing the event

horizon radius, one finds a first branch of solutions which extends to a maximal value

r
(max)
H . This maximal value decreases with increasing α. This branch is the backreacting

counterpart of the corresponding one in the probe limit. The Hawking temperature and the

value of F (rH) decrease along this branch, while the mass parameter increases; however,

the variations of the mass and of σ(rH) are relatively small.

Extending backwards in rH , we find a second branch of solutions. This second branch

extends up to a critical value of horizon radius r
(cr)
H where an essential singularity seems to
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occur. An understanding of the limiting solutions requires a reformulation of the problem

with a different coordinate system [58] which is beyond the scope of this work. Here we

note that the value of σ(rH) on this branch decreases drastically and appears to vanish

as rH → r
(cr)
H . As a result, the Ricci scalar evaluated at the horizon strongly increases in

that limit. However, the mass remains finite, while the Hawking temperature goes to zero.

The profile of the F -function does not exhibit any special features in the limit, starting

always at some value F (rH) > π/2. This special behaviour on the second branch can

partially be understood as a manifestation of the divergent behaviour we have noticed in

the probe limit.

We also mention that for the region of the parameter space where two different solutions

exist with the same mass, the event horizon area (i.e. the entropy) is always maximized

by the fundamental branch of the BH, see figure 7 (left panel). Thus we expect the upper

branch solutions to be always unstable.

5.2 Spinning BHs

5.2.1 The probe limit — Skyrmions on a Myers-Perry BH background

The static hairy BHs we have just described possess rotating generalizations. However,

before considering solutions of the full Einstein-Skyrme system, it is again useful to consider

first the probe limit and to solve the matter field equations on a spinning BH background.

The corresponding BH is a d = 5 Myers-Perry (MP) solution [59] with two equal-magnitude

angular momenta. Such a BH can be expressed as a particular case of the ansatz (4.12),

by taking

f(r) = 1−
(
rH
r

)2
1− r2

HΩ2
H

+
r2
HΩ2

H

1− r2
HΩ2

H

(rH
r

)4
, h(r) = r2

[
1 +

(rH
r

)4 r2
HΩ2

H

1− r2
HΩ2

H

]
,

b(r) = 1−
(
rH
r

)2
1−

[
1− ( rHr )4

]
r2
HΩ2

H

, g(r) = r2 , W (r) =
ΩH

(
rH
r

)4
1−

[
1−

(
rH
r

)4]
r2
HΩ2

H

,

and it is parameterised in terms of the event horizon radius rH and the horizon angular

velocity ΩH , which are the control parameters in our numerical approach. For complete-

ness, we include the expression of quantities which enter the thermodynamics of a MP BH

(with G = 1):

M (MP ) =
3πr2

H

8(1− Ω2
Hr

2
H)

, J
(MP )
1 = J

(MP )
2 = J (MP ) =

πΩHr
4
H

4(1− Ω2
Hr

2
H)

, (5.6)

T
(MP )
H =

1

2πrH

1− 2Ω2
Hr

2
H√

1− Ω2
Hr

2
H

, A
(MP )
H =

2π2r3
H√

1− Ω2
Hr

2
H

.

Here it is important to note the existence of a maximal size of the horizon radius rH for

a given value of horizon angular velocity ΩH . This corresponds to a zero temperature BH

with r
(max)
H = 1/(

√
2ΩH). There, the reduced angular momentum (3.10) approaches its

maximal value j̄MP = 1.
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Figure 8. The profile of a typical Skyrme test field solution on a given MP background is shown

together with the corresponding energy and angular momentum densities.

At infinity, the decay of the field is still given by (3.16), such that F → 0. Remarkably,

the assumption of existence of a power series expansion of F (r) as r → rH implies that,

similar to other hairy rotating BH solutions [44, 66, 67], the synchronization condition

ω = ΩH (5.7)

necessarily holds. This condition is also implied by the regularity of energy and angular
momentum densities as r → rH . Then the function F (r) possess an approximate solution
near the horizon (with λ2 = 0), which, up to order O(r − rH) reads:

F (r) = f0+
(1−r2Hω2)

[
−2λ0 sin f0+λ1r

4
H(r2Hω

2−1) sin(2f0)+12λ3(r2Hω
2−1) cos f0 sin f50

]
4rH(2r2Hω

2 − 1)[r2Hλ1 + 2λ3(3−2r2Hω
2) sin4 f0]

(r−rH) ,

(5.8)

all higher order coefficients being determined by F (rH) > 0.

The profiles of a typical solution on a given MP background are shown in figure 8.

The dependence of the properties of the solutions on the horizon size, as given by A
(MP )
H

and reduced angular momentum j(MP ), is shown in figure 9. The basic picture found in

the static case is still valid here, with the existence of two branches of solutions for a given

BH background. The fundamental branch emerges from the flat spacetime solitons, while

the mass and angular momentum of the solutions appear to diverge as the flat spacetime

limit (rH → 0) is approached, along the second branch.

We remark that no Skyrme solutions exist on a fast rotating MP background, i.e.

with j(MP ) close to unity. Also, one can see that the mass branches of spinning solutions

exhibit a ‘loop’, when considered as a function of horizon properties (or reduced angular

momentum) of the MP background.

5.2.2 Including backreaction

The configurations described in the last subsection survive when taking into account their

backreaction on the spacetime geometry. The spinning BHs are constructed within the

same ansatz as for the spinning solitons discussed in section 3.2.2 (in particular we set

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
7

 200

 400

 600

 0  0.3  0.6  0.9

M

AH
(MP)

ω=0.1
ω=0.5

ω=0.95

J
AH

(MP)

ω=0.1

ω=0.5

ω=0.95

 0

 50

 100

 0  0.3  0.6  0.9

 200

 400

 600

 800

 0  0.1  0.2  0.3  0.4

M

-
j(MP)

-

ω=0.1
ω=0.5

ω=0.95

J

j(MP)

ω=0.1

ω=0.5

ω=0.95

 0

 50

 100

 0  0.1  0.2  0.3  0.4

Figure 9. The mass and angular momentum of Skyrme test field solutions on a MP background

are shown as a function of horizon area and of the reduced MP angular momentum.

again g(r) = r2). However, they possess an horizon which is a squashed S3 sphere. The

horizon resides at the constant value of the radial coordinate r = rH > 0, and it is

characterized by f(rH) = b(rH) = 0. Restricting to nonextremal solutions, the following

expansion of the metric functions holds near the event horizon:

f(r) = f1(r−rH) + f2(r−rH)2 +O(r−rH)3, h(r) = hH + h2(r−rH) +O(r−rH)2,

(5.9)

b(r) = b1(r−rH) + b2(r−rH)2 +O(r−rH)3, W (r) = ΩH + ω1(r−rH) +O(r−rH)2,

while F (r) = f0+f1(r−rH)+. . . . For a given event horizon radius, the essential parameters

characterizing the event horizon are f1, b1, hH , ΩH and ω1 (with f1 > 0, b1 > 0), which

fix all higher order coefficients in (5.9). The construction of the approximate near-horizon

solution shows that, as expected, the synchronization condition (5.7) still holds in the

backreacting case.

As for a general MP BH, the (constant) horizon angular velocity ΩH is defined in terms

of the Killing vector χ = ∂/∂t + Ω1∂/∂ϕ1 + Ω2∂/∂ϕ2 which is null at the horizon. For the

solutions within the ansatz (4.12), the horizon angular velocities are equal, Ω1 = Ω2 = ΩH .

The Hawking temperature TH and the area AH of these BHs are fixed by the near horizon

data in (5.9), with

TH =

√
b1f1

4π
, AH = 2π2

√
hHr

2
H , (5.10)

while their mass and angular momentum are read from the far field expansion (4.13). As

usual, the temperature, horizon area and the global charges M,J are related through the

Smarr mass formula

2

3
M =

1

4
THAH + 2ΩH

(
J − J(S)

)
+

2

3
M(S) , (5.11)

where M(S) and J(S) are the mass and angular momentum stored in the Skyrme field

outside the horizon,

M(S) = −3

2

∫
σ

√
−gdrdθdϕ1dϕ1

(
T tt −

1

3
T ii

)
, J(S) =

∫
σ

√
−gdrdθdϕ1dϕ1T

t
ϕi . (5.12)
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Figure 10. Left panel: the profile functions of a typical spinning BH with Skyrme hair. Right

panel: the (horizon area-temperature) diagram is shown for two sets of solutions.

In our approach, the input parameters are the coupling constant α, the event hori-

zon radius rH and the horizon angular velocity ΩH (or equivalently, the field frequency

ω). Physical quantities characterizing the solutions are then extracted from the numerical

solutions.

The profiles of a typical spinning BH with Skyrme hair are shown in figure 10 (left

panel). Some basic properties of the solutions are similar to those found in the probe limit.

For example, the scalar field is always spatially localized within the vicinity of the horizon,

the distribution of mass and angular momenta densities being similar to that in figure 8.

The emerging global picture can be summarized as follows. For all values of the

parameters α, rH that we have considered, the static BHs are continuously deformed while

increasing gradually the parameter ω. Similarly to the solitonic case, the solutions stop to

exist for ω > 1. Moreover, all BHs studied so far have a reduced angular momentum (3.10)

much smaller than one.

When taking instead a fixed value of ω and varying the horizon parameter rH , our

results show that, for any 0 6 ω 6 1, a double branch structure of solutions exists,

characterized by two particular values of the horizon radius rH . The first (or main) branch

exists for 0 6 rH 6 r
(max)
H , emerging from the corresponding (gravitating) Skyrme soliton

in the limit rH → 0. The second branch exist for r
(c)
H 6 rH 6 r

(max)
H approaching a critical

configuration as rH → r
(c)
H . This critical solution possesses finite global charges, a nonzero

horizon area while its Hawking temperature vanishes. However, it inherits the pathologies

of the static limit, e.g. the Ricci scalar appears to be unbounded on the horizon. The

dependence of the horizon area AH nf the (inverse of the) temperature TH is shown in

figure 10 (right panel), where we compare the results for static solutions with those for

BHs close to the maximal value of ω. One notices that the horizon size remains finite as

the critical solution is approached.

In figure 11 we exhibit the domain of existence of hairy BHs, in a M(ω) (and J(ω))

diagram for α = 0.01, the only value of the coupling constant we have investigated in a

systematic way. This domain, in the M -ω diagram, has an almost rectangular shape, and

is delimited by four curves: the set of static BHs (ω = 0), the set of Skyrme stars, the set

of maximal mass solutions, and finally the set of maximally rotating BHs with ω = 1.
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Figure 11. The domain of existence of the spinning BHs with Skyrme hair is shown in a mass-

frequency diagram (left panel) and as an angular momentum-frequency diagram (right panel).

6 Conclusions

In this work we have considered an extension of the Skyrme model to five spacetime di-

mensions and investigated the basic properties of its codimension-1 solutions.

Concerning the model, two salient properties of gravitating Skyrme systems in d = 3+

1, can be used to motivate its study. The first is that the solutions feature BHs hair and the

second is that in the gravity decoupling limit the solutions are topologically stable. In 3+1

dimensions, gravitating Skyrmions share the first property with gravitating Yang-Mills [60],

which support hair but in the flat spacetime limit disappear. The second property they

share with that gravitating Yang-Mills-Higgs [61–63] system which supports topologically

stable monopoles. The latter persisit in the gravity decoupling limit, whence one notes the

closer similarity of gravitating Skyrmions with monopoles in 3 + 1 dimensions.

In spacetime dimensions higher than d = 3+1, the situation is rather more complicated

because of the restriction set by the Derrick scaling [9] requirement for the finiteness of the

energy, as can be seen from the nonexistence of finite energy gravitating solutions of the

usual quadratic Yang-Mills system in 4 + 1 dimensions [52]. In the Yang-Mills (YM) case,

higher order YM densities, e.g. extended YM terms (eYM) like F (2p)2 must be included

to satisfy this requirement.10 In d = 6 and 7, this was done in [53] by adding11 the

F (4)2 eYM term to the usual F (2)2. Subsequently the solutions for the same model as

in [53] were constructed in [54] for d = 5, which displayed some peculiar features that we

have encountered in the d = 5 Skyrme case at hand. Not surprisingly the same holds for

gravitating Skyrme systems in dimensions greater than 4+1, namely including higher order

kinetic (Skyrme) terms, as we have done in this paper. But unlike in the YM case, where

the gravity decoupling solutions are topologically stable in even spacetime dimensions only,

in the Skyrme case they are stable in all dimensions, like in the monopole case.

10As found in [64, 65], the inclusion of a F (4)2 term in the Yang-Mills action (which is optional in this

case) leads to a variety of new features also for d = 4, e.g. the existence of stable hairy non-Abelian BHs.
11In these dimensions, it is possible to add the F (6)2 eYM term too but that was eschewed. More

interestingly in d = 6, there exist topologically stable eYM instantons so that those solutions persists in

the gravity decoupling limit. This feature persists in all even d = 2n > 4.
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Concerning the explicit solutions described in this paper, we have considered both flat

spacetime (Skyrmions) configurations and self-gravitating solutions (Skyrme stars and BHs

with Skyrme hair). Overall, we have unveiled a rich and involved space of solutions.

In the spherically symmetric case, the pattern of the d = 4 solutions is recovered, with

a branch of gravitating Skyrmions emerging from the flat space/Schwarzschild background

solutions. A secondary branch of solutions is also found, which, however, possesses a

different limiting behaviour than in the d = 4 case.

On the critical behaviour of spherically symmetric solutions as a function of α or rH ,

we remark that some features resemble the case of a higher dimensional gravitating non-

abelian system with higher derivatives terms in addition to the usual F (2)2 one [54]. The

clarification of the critical behaviour therein has required a reformulation of the problem

with techniques bases on a fixed point analysis of nonlinear ODEs [58]. We expect that a

similar approach would help to clarify the critical behaviour of the gravitating solutions in

this work.

The spinning hairy BH we have reported in this paper are the first example of a

spinning BH with Skyrme hair, since the corresponding d = 3 + 1 solutions have not yet

been constructed. One salient feature of these rotating BHs with Skyrme hair is that

they possess a static limit. Whereas this is expected, since static BHs with Skyrme hair

are known in d = 3 + 1 spacetime dimensions, it contrasts in a qualitative way with the

behaviour of other BHs with scalar hair, namely Kerr BHs with scalar hair [44–46] or MP

BHs with scalar hair [66, 67]. It is therefore of some interest to expand on the comparison

between these two models, since they are both examples of BHs with scalar hair:

• Skyrmions on Minkowski spacetime are topological solitons, in view of their asymptotic

boundary conditions. Q-balls [42], on the other hand, which arise in models of self-

interacting complex scalars fields, but with standard kinetic terms, are perhaps the

simplest example of a non-topological soliton. For the latter, the complex nature

of the scalar field is crucial to satisfy Derrick’s theorem, allowing for an underlying

harmonic time dependence of the scalar field but that vanishes at the level of all

physical quantities, thus yielding static or stationary lumps of energy.

• Flat spacetime spinning Skyrmions have a static limit; thus they carry an arbitrarily

small angular momentum (for given topological charge). Spinning Q-balls, on the

other hand, have their angular momentum quantised in terms of their charge [34, 35],

which in this case is a Noether charge, due to a U(1) global symmetry. Thus, they

have a minimum angular momentum, for given Noether charge, and the spinning

solutions are not continuously connected to the static ones.

• When minimally coupled to Einstein’s gravity, self-gravitating Skyrmions become

Skyrme stars. But the structure of the model to obtain these solutions remains

the same, namely the key higher order kinetic term is still mandatory. When mini-

mally coupled to Einstein’s gravity, back reacting Q-balls become boson stars. But

gravity can replace part of the key structure of the flat spacetime model: one can

get rid of the self-interactions potential and keep only a mass term [68, 69], as the
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non-linearities of Einstein’s gravity are sufficient to counter balance the dispersive

nature of the scalar field and create equilibrium boson stars.

• Likewise, Skyrmions, Skyrme stars can rotate slowly and connect to the static limit,

whereas rotating boson stars form an infinite discrete set of families disconnected

from static boson stars [35, 70], for any model, with or without self-interactions, in

any spacetime dimension.

• Static Skyrme stars admit placing a BH horizon at their centre, yielding static BHs with

Skyrme hair, both in d = 4 [24, 26] and d = 5 (and likely in other dimensions).

Static boson stars do not admit placing a BH horizon at their centre, as shown by

the no-hair theorem in [71].

In spite of all these differences, the spinning BHs with Skyrme hair that we have found

in this paper rely on precisely the same condition that the Kerr BHs with scalar hair or MP

BHs with scalar hair, the latter being the hairy BH generalisation of spinning boson stars

in d = 4 and d = 5. This condition is the synchronisation of the phase angular velocity

of the Skyrme field and the angular velocity of the horizon, eq. (5.7). This is yet another

example for the universality of this condition in obtaining spinning hairy BH solutions.

Finally, let us remark that possible avenues for future research include: i) the investi-

gation of stability of the considered configurations (based on the analogy with the d = 4

case, we expect some of the gravitating solutions to be stable); ii) the construction of less

symmetric Skyrmions; the simplest case would be the (higher winding number) axially

symmetric solutions and configurations with J1 6= J2. Solutions with discrete symmetry

only are also likely to exist in this model; iii) the construction of d > 5 generalizations: in

appendix B we present a general framework in this direction.
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A Solutions with a quartic term

The reported numerical results have λ2 = 0. To test their generality, we have also studied

how the inclusion of a quartic term affects the properties of the solutions, in a number

of cases.

Starting with the solutions in flat spacetime background, we display in figure 12 the

mass M as a function of λ2 for Skyrmions with several values of the frequency ω (note

that all solutions displayed in this appendix are for λ0 = λ1 = λ3 = 1). As expected,

one can see that the presence of quartic term in the Skyrme action increases the mass of

the solutions, and for ω 6= 0, the same trend applies for the angular momentum. Observe
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Figure 13. The mass M (left panel) and the parameter σ(0) (right panel) are shown as a function

of the coupling constant α, for Skyrme stars in our model with different values of λ2.

that the M(λ2)-function is almost linear for small frequencies. It is also interesting to

mention that the ω = 0 Skyrmions with large enough values of λ2 are well approximated

by the self-dual solution (3.2), the contribution of the quartic term dominating the system

in this case.

Turning now to gravitating solutions, we display in figure 13 families of spherically

symmetric Skyrme stars with several values of λ2. One can see that the picture found

in section 4.1 appears to be generic, with the occurrence of two branches of solutions in

terms of α. Also, one notices the existence of a maximal value of α, which decreases with

increasing λ2, while the limiting behaviour on the second branch is similar to that found

for solutions without a quartic term.

Finally, the same conclusion is reached in the presence of an horizon, cf. figure 14,

where we show the (rH ,M) and (rH , σ(rH)) diagrams for spherically symmetric BHs with

Skyrme hair with a fixed value of α and three values of λ2.

To summarize, the presence of a quartic term in the Skyrme action does not seem to

lead to new qualitative features, at least for the range of parameters considered.
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Figure 14. The mass M (left panel) and the parameter σ(rH) (right panel) are shown for spherical
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B O(D + 1) Skyrme models on a RD-Euclidean space

The Skyrme model [1, 2] in 3+1 (i.e., D = 3) dimensions12 is a nonlinear chiral field theory

which supports topologically stable solitons in the static limit. These solitons, which are

called Skyrmions, describe baryons and nuclei. In its original formulation [1, 2], the model

is described by an SU(2) valued field U . The Skyrmions are stabilised by a topological

charge which is characterised by the homotopy class π3(SU(2)) = Z.

Alternatively, the chiral matrix U can be parametrised as U = φaσa (a = 1, . . . , 4)

and its inverse as U−1 = U † = φaσ̃a, where σa and σ̃a are the chiral representations of the

algebra of SU(2). The scalar φa is subject to the constraint φaφa = 1, such that it takes

its values on S3, the latter being parametrised by the angles parametrising the element U

of the group SU(2). The homotopy class in terms of φa is now π3(S3) = Z. This is the

parametrisation that will be adopted here.

The parametrisation of the Skyrme scalar in terms of the chiral field U is peculiar to

D = 3. Indeed in D = 2 the famous Belavin-Polyakov vortices [72] of the O(3) sigma

model on R2 are parametrised by the S2 valued scalar13 subject to φaφa = 1 (a = 1, 2, 3),

pertaining to the homotopy class π2(S2) = Z.

In all dimensions D > 4, these low dimensional accidents are absent so Skyrme models

are defined as the O(D + 1) sigma models on RD, described by the Skyrme scalar φa,

a = 1, 2, . . . , D + 1 subject to the constraint φaφa = 1.

|φa|2 = 1 , a = 1, 2, . . . , D + 1 , (B.1)

pertaining to the homotopy class πD(SD) = Z.

12In this section, we shall take d = D + 1, i.e. D denotes the number of space dimensions.
13Indeed in this low dimensional case too, there is an alternative parametrisation of the “Skyrme scalar”,

namely in terms of the CP1 field zα (α = 1, 2) subject to z†z = 1, by virtue of the equivalence of the O(3)

and CP1 sigma models via φa = z†σaz.
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In any given dimension D, the energy density functional H(D) can be endowed with a

“potential” term, e.g. the “pion mass” type potential

V = 1− φD+1 , (B.2)

and D possible “kinetic” terms H(p,D), which are defined as follows.

Employing the shorthand notation for the 1-form

φ(1) = φai
def
= ∂iφ

a , i = 1, 2, . . . D ; a = 1, 2, . . . , D + 1 , (B.3)

one defines the p-form

φ(p) = φ
a1a2...ap
i1i2...ip

def
= φa1[i1

φa2i2 . . . φ
ap
ip] , (B.4)

which is the p-fold product of φ(1) = φai , totally anitisymmetrised in the indices

i1, i2, . . . , ip.

In this notation, the kinetic terms H(p,D) are concisely defined as

H(p,D) = |φ(p)|2 (B.5)

such that only the square of any ‘velocity’ field φai occurs in Hp,(D).

In this notation, the most general energy density functional in any dimension D is

H(D) =

p=D∑
p=1

λpH(p,D) + λ0V , (B.6)

and the topological charge density (up to normalisation) is

%(D) ' εi1i2...iDε
a1a2...aD+1φa1i1 φ

a2
i2
. . . φaDiD φ

aD+1 (B.7)

= εi1i2...iDε
a1a2...aD+1∂i1φ

a1∂i2φ
a2 . . . ∂iDφ

aDφaD+1 .

It is well known that (B.7) is essentially total divergence and hence qualifies as a topo-

logical charge density. To see this, subject the quantity

%̃ = %(D) + λ
(
1− |φa|2

)
to variations w.r.t. the scalar field φa, taking account of the Lagrange multiplier λ.

The result is 0 = 0, as expected from a density which is total divergence. Alterna-

tively, one can employ a parametrisation of φa that is compliant with the constraint

(B.1), e.g. when employing a particular Ansatz. In that case %(D) itself would take an

explicitly total divergence form [73].

To express the Bogomol’nyi inequalities of this system, we define the Hodge dual of

the (D − p)-form φ(D − p), which is the p-form as

?φ(p)
def
= ?φ

a1...ap
i1...ip

=
1

p!(D − p)!
εi1...ipip+1...iDε

a1...apap+1...aDaD+1 φ
ap+1...aD
ip+1...iD

φaD+1 . (B.8)

For any given D, one can now state the D inequalities in terms of (B.4) and (B.8), each

labelled by p, as ∣∣∣φ(p)∓ κ(D−2p) ?φ(p)
∣∣∣2 > 0 , p = 1, 2, . . . D , (B.9)
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in which κ is a constant with dimension L−1 compensating for the difference between the

dimensions of φ(p) and ?φ(p), which are different in the general case D 6= 2p.

It is clear from the definitions (B.4) and (B.8) that the cross-terms in the inequalities

(B.9), for each p, is proportional to the topological charge density (B.7). It follows that

the p inequalities (B.9) lead to the required lower bound on the energy

H(D) > %(D) =⇒
∫
RD
H(D) >

∫
RD

%(D) , (B.10)

provided of course that the potential (B.2) is by definition positive definite.

The best known examples of such topologically stable Skyrmions are the Belavin-

Polyakov (self-dual) vortices [72] on R2, and the familiar Skyrmions [2] on R3. In the

D = 2 case the most general system (B.6) is that with all coefficients λ0, λ1, λ2 present and

in the D = 3 case the most general one is that with all coefficients λ0, λ1, λ2, λ3 present.

Of course, which terms must be retained in each case is governed by the requirement of

Derrick scaling.

Of the D inequalities (B.9) only one can be solved with power decaying solutions at

r →∞ on RD, namely the one for which D = 2p when the dimensional constant κ does not

appear. Furthermore in this case the model (B.6) must consist exclusively of the p = D/2

term in the sum, i.e. λp = 0 for p 6= (D/2), otherwise the system will be overdetermined.

Such a model has solutions that saturate the topological lower bound (B.10). In all other

cases, when λp 6= 0 for p 6= (D/2), the solutions cannot saturate the lower bound (B.10),

which includes Skyrmions in all odd Euclidean14 dimensions RD.

In particular in the important case of R3, there exist no solutions to first-order (anti-

)self-duality equations saturating the lower bound. Exact solutions to the second-order

equations can be constructed only numerically and not in closed form. However, approxi-

mate solutions on R3 in closed form are known. For example the rational map ansatz [77],

and the Atiyah-Manton [78, 79] construction where the holonomy of the Yang-Mills in-

stantons on R4 gives a good approximation for the Skyrmion on R3. This last approach

is extended to give an approximate construction for the Skyrmion on R7 by exploiting the

holonomy of the Yang-Mills instantons on R8 in [80], which possible be extended to higher

dimensions modulo 4.

The first-order (anti-)self-duality equations for the p-Skyrme system H(p,D) = |φ(p)|2

on R2p

φ(p) = ± ?φ(p) (B.11)

can be solved in closed for subject to no symmetries only in the case D = 2. In that

case [72] the equations (B.11) reduce to the Cauchy-Riemann equations. In all higher

dimensions D = 2p > 2, only solutions of the system subject to radial symmetry are

known, and the form factors F (r) for all (p,D = 2p) are given by the same function (3.2).

14The (anti-)self-duality equations resulting from (B.9) on SD for odd D, namely

φ(p)∓ κ(D−2p) ?φ(p) = 0

can be solved, since in that case the dimensional constant κ is absorbed by the radius of the sphere. See

e.g. [74–76].
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It is interesting to remark here that this situation hold also in the case of the p hierarchy

of BPST instantons [81, 82] on R4p.

It is interesting to push the analogy between the self-duality equations of the p-Yang-

Mills systems on R4p and the p-Skyrme systems on R2p. In both cases the spherically

symmetric solutions are described by the same radial function in all dimensions. In both

cases, these equations become more overdetermined with increasing dimension. In the case

of the p-YM equations, axially symmetric solutions (where spherical symmetry was imposed

in the R4p−1 subspace of R4p) were found [83], but imposing less stringent symmetry

rendered the self-duality equations overdetermined [84]. It turns out that a similar situation

holds for the first-order p-Skyrme equations. In this case the only solutions in D = 2p ≥
4 known are the radially symmetric ones, with the axially symmetric equations (when

spherical symmetry is imposed in the R2p−1 subspace of R2p) turn out to be overdetermined

(see appendix of ref [84]).

As a final remark, one notes that the first-order self-duality equations of the p-Yang-

Mills system coincide with the first-order self-duality equations of the p-Skyrme equation

(3.1) with the replacement w(r) = cosF (r). But instanton and instanton-antiinstanton

solutions in R4 are known in the case of p = 1 Yang-Mills [51]. This raises the question

whether Skyrmion-anti-Skyrmion solutions may also exist for the p-Skyrme model on R2p?

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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