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ABSTRACT
We study the data complexity of consistent query answering (CQA)
on databases that may violate the primary key constraints. A re-
pair is a maximal consistent subset of the database. For a Boolean
query q, the problem CERTAINTY(q) takes a database as input,
and asks whether or not each repair satisfies the query q. It is
known that for any self-join-free Boolean conjunctive query q,
CERTAINTY(q) is in FO, L-complete, or coNP-complete. In partic-
ular, CERTAINTY(q) is in FO for any self-join-free Boolean path
query q. In this paper, we show that if self-joins are allowed, then
the complexity of CERTAINTY(q) for Boolean path queries q ex-
hibits a tetrachotomy between FO, NL-complete, PTIME-complete,
and coNP-complete. Moreover, it is decidable, in polynomial time
in the size of the query q, which of the four cases applies.

CCS CONCEPTS
• Information systems→Relational database query languages;
• Theory of computation → Incomplete, inconsistent, and
uncertain databases; Logic and databases.
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1 INTRODUCTION
Primary keys are probably the most common integrity constraints
in relational database systems. Although databases should ideally
satisfy their integrity constraints, data integration is today fre-
quently cited as a cause for primary key violations, for example,
when a same client is stored with different birthdays in two data
sources. A repair of such an inconsistent database instance is then
naturally defined as a maximal consistent subinstance. Two ap-
proaches are then possible. In data cleaning, the objective is to
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single out the “best” repair, which however may not be practically
possible. In consistent query answering (CQA) [2], instead of cleaning
the inconsistent database instance, we change the notion of query
answer: the consistent (or certain) answer is defined as the intersec-
tion of the query answers over all (exponentially many) repairs. In
computational complexity studies, consistent query answering is
commonly defined as the data complexity of the following decision
problem, for a fixed Boolean query q:
Problem: CERTAINTY(q)
Input: A database instance db.
Question: Does q evaluate to true on every repair of db?

For every first-order query q, the problem CERTAINTY(q) is
obviously in coNP. However, despite significant research efforts
(see Section 9), a fine-grained complexity classification is still largely
open. A prominent open conjecture is the following.

Conjecture 1.1. For each Boolean conjunctive query q, the prob-
lem CERTAINTY(q) is either in PTIME or coNP-complete.

On the other hand, for the smaller class of self-join-free Boolean
conjunctive queries, the complexity landscape is by now well un-
derstood, as summarized by the following theorem.

Theorem 1.2 ([26]). For each self-join-free Boolean conjunctive
query q,CERTAINTY(q) is in FO, L-complete, or coNP-complete, and
it is decidable which of the three cases applies.

Abandoning the restriction of self-join-freeness turns out to be a
major challenge. The difficulty of self-joins is caused by the obvious
observation that a single database fact can be used to satisfy more
than one atom of a conjunctive query, as illustrated by Example 1.3.
Self-joins happen to significantly change the complexity landscape
laid down in Theorem 1.2; this is illustrated by Example 1.4. Self-
join-freeness is a simplifying assumption that is also used outside
CQA (e.g., [3, 10, 11]).

Example 1.3. Take the self-join q1 = ∃x∃y(R(x,y) ∧ R(y, x)) and
its self-join-free counterpart q2 = ∃x∃y(R(x,y) ∧S(y, x)). Consider
the inconsistent database instance db in Figure 1. We have that
db is a “no”-instance of CERTAINTY(q2), because q2 is not satis-
fied by the repair {R(a,a), R(b,b), S(a,b), S(b,a)}. However, db is a
“yes”-instance of CERTAINTY(q1). This is because every repair that
contains R(a,a) or R(b,b) will satisfy q1, while a repair that con-
tains neither of these facts must contain R(a,b) and R(b,a), which
together also satisfy q1. □

Example 1.4. Take the self-join q1 = ∃x∃y∃z(R(x, z) ∧ R(y, z))

and its self-join-free counterpart q2 = ∃x∃y∃z(R(x, z) ∧ S(y, z)).
CERTAINTY(q2) is known to be coNP-complete, whereas it is easily
verified that CERTAINTY(q1) is in FO, by observing that a database
instance is a “yes”-instance of CERTAINTY(q1) if and only if it
satisfies ∃x∃y(R(x,y)). □
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Figure 1: An inconsistent database instance db.

This paper makes a contribution to the complexity classification
of CERTAINTY(q) for conjunctive queries, possibly with self-joins,
of the form

∃x1 · · · ∃xk+1(R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rk (xk , xk+1)),

which we call path queries. As will become apparent in our tech-
nical treatment, the classification of path queries is already very
challenging, even though it is only a first step towards Conjec-
ture 1.1, which is currently beyond reach. If all Ri s are distinct (i.e.,
if there are no self-joins), then CERTAINTY(q) is known to be in
FO for path queries q. However, when self-joins are allowed, the
complexity landscape of CERTAINTY(q) for path queries exhibits
a tetrachotomy, as stated by the following main result of our paper.

Theorem 1.5 (Tetrachotomy Theorem). For each Boolean path
query q, CERTAINTY(q) is in FO, NL-complete, PTIME-complete, or
coNP-complete, and it is decidable in polynomial time in the size of q
which of the four cases applies.

Comparing Theorem 1.2 and Theorem 1.5, it is striking that
there are path queries q for which CERTAINTY(q) is NL-complete
or PTIME-complete, whereas these complexity classes do not occur
for self-join-free queries (under standard complexity assumptions).
So even for the restricted class of path queries, allowing self-joins
immediately results in a more varied complexity landscape.

Let us provide some intuitions behind Theorem 1.5 by means of
examples. Path queries use only binary relation names. A database
instance db with binary facts can be viewed as a directed edge-
colored graph: a fact R(a,b) is a directed edge from a to b with
color R. A repair of db is obtained by choosing, for each vertex,
precisely one outgoing edge among all outgoing edges of the same
color. We will use the shorthand q = RR to denote the path query
q = ∃x∃y∃z(R(x,y) ∧ R(y, z)).

In general, path queries can be represented by words over the
alphabet of relation names. Throughout this paper, relation names
are in uppercase letters, while lowercase letters u, v , w stand for
(possibly empty) words. An important operation onwords is dubbed
rewinding: if a word has a factor of the form RvR, then rewinding
refers to the operation that replaces this factor with RvRvR. That is,
rewinding the factorRvR in the worduRvRw yields the longer word
uRvRvRw . For short, we also say that uRvRw rewinds to the word
u ·Rv ·Rv ·Rw , where we used concatenation (·) and underlining for
clarity. For example, TW ITTER rewinds to TW I ·TW I ·TTER, but
also to TW IT ·TW IT ·TER and to TW I ·T ·T ·TER.

Letq1 = RR. It is easily verified that a database instance is a “yes”-
instance of CERTAINTY(q1) if and only if it satisfies the following
first-order formula:

φ = ∃x(∃yR(x,y) ∧ ∀y(R(x,y) → ∃zR(y, z))).

Informally, every repair contains an R-path of length 2 if and only
if there exists some vertex x such that every repair contains a path
of length 2 starting in x .

Let q2 = RRX , and consider the database instance in Figure 2.
Since the only conflicting facts are R(1, 2) and R(1, 3), this database
instance has two repairs. Both repairs satisfy RRX , but unlike the
previous example, there is no vertex x such that every repair has a
path colored RRX that starts in x . Indeed, in one repair, such path
starts in 0; in the other repair it starts in 1. For reasons that will
become apparent in our theoretical development, it is significant
that both repairs have paths that start in 0 and are colored by a
word in the regular language defined by RR (R)∗ X . This is exactly
the language that contains RRX and is closed under the rewinding
operation. In general, it can be verified with some effort that a
database instance is a “yes”-instance of CERTAINTY(q2) if and only
if it contains some vertex x such that every repair has a path that
starts in x and is colored by a word in the regular language defined
by RR (R)∗ X . The latter condition can be tested in PTIME (and even
in NL).

0 1

2

3 4R

R

R

R

X

Figure 2: An example database instance db for q2 = RRX .

The situation is still different for q3 = ARRX , for which it will be
shown thatCERTAINTY(q3) is coNP-complete. Unlike our previous
example, repeated rewinding of ARRX into words of the language
ARR (R)∗ X is not helpful. For example, in the database instance
of Figure 3, every repair has a path that starts in 0 and is colored
with a word in the language defined by ARR (R)∗ X . However, the
repair that contains R(a, c) does not satisfy q3. Unlike Figure 2,
the “bifurcation” in Figure 3 can be used as a gadget for showing
coNP-completeness in Section 7.

0 a
b

c

A R
R

X

R
R X

Figure 3: An example database instance db for q3 = ARRX .

Organization. Section 2 introduces the preliminaries. In Sec-
tion 3, the statement of Theorem 3.2 gives the syntactic conditions
for deciding the complexity of CERTAINTY(q) for path queries q.
To prove this theorem, we view the rewinding operator from the
perspectives of regular expressions and automata, which are pre-
sented in Sections 4 and 5 respectively. Sections 6 and 7 present,
respectively, complexity upper bounds and lower bounds of our
classification. In Section 8, we extend our classification result to
path queries with constants. Section 9 discusses related work, and
Section 10 concludes this paper.
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2 PRELIMINARIES
We assume disjoint sets of variables and constants. A valuation
over a set U of variables is a total mapping θ from U to the set
of constants.

Atoms and key-equal facts. We consider only 2-ary relation
names, where the first position is called the primary key. If R is a
relation name, and s, t are variables or constants, then R(s, t) is an
atom. An atom without variables is a fact. Two facts are key-equal
if they use the same relation name and agree on the primary key.

Database instances, blocks, and repairs. A database schema
is a finite set of relation names. All constructs that follow are defined
relative to a fixed database schema.

A database instance is a finite set db of facts using only the rela-
tion names of the schema.We write adom(db) for the active domain
of db (i.e., the set of constants that occur in db). A block of db is a
maximal set of key-equal facts of db. Whenever a database instance
db is understood, we write R(c, ∗) for the block that contains all
facts with relation name R and primary-key value c . A database
instance db is consistent if it contains no two distinct facts that are
key-equal (i.e., if no block of db contains more than one fact). A
repair of db is an inclusion-maximal consistent subset of db.

Boolean conjunctive queries. A Boolean conjunctive query is
a finite set q = {R1(x1,y1), . . . , Rn (xn,yn )} of atoms. We denote
by vars(q) the set of variables that occur in q. The set q represents
the first-order sentence

∃u1 · · · ∃uk (R1(x1,y1) ∧ · · · ∧ Rn (xn,yn )),

where {u1, . . . ,uk } = vars(q).
We say that a Boolean conjunctive query q has a self-join if some

relation name occurs more than once in q. A conjunctive query
without self-joins is called self-join-free.

Consistent query answering. For every Boolean conjunctive
query q, the decision problem CERTAINTY(q) takes as input a data-
base instance db, and asks whether q is satisfied by every repair
of db. It is straightforward that for every Boolean conjunctive
query q, CERTAINTY(q) is in coNP.

Path queries. A path query is a Boolean conjunctive query
without constants of the following form:

q = {R1(x1, x2),R2(x2, x3), . . . ,Rk (xk , xk+1)},

where x1, x2,. . . , xk+1 are distinct variables, and R1, R2,. . . , Rk are
(not necessarily distinct) relation names. It will often be convenient
to denote this query as a word R1R2 · · ·Rk over the alphabet of
relation names. This “word” representation is obviously lossless up
to a variable renaming. Importantly, path queries may have self-
joins, i.e., a relation name may occur multiple times. Path queries
containing constants will be discussed in Section 8. The treatment
of constants is significant, because it allows moving from Boolean
to non-Boolean queries, by using that free variables behave like
constants.

3 THE COMPLEXITY CLASSIFICATION
We define syntactic conditions C1, C2, and C3 for path queries q.
Let R be any relation name in q, and let u, v , and w be (possibly
empty) words over the alphabet of relation names of q.
C1: Whenever q = uRvRw , q is a prefix of uRvRvRw .

C2: Wheneverq = uRvRw ,q is a factor ofuRvRvRw ; and whenever
q = uRv1Rv2Rw for consecutive occurrences of R, v1 = v2
or Rw is a prefix of Rv1.

C3: Whenever q = uRvRw , q is a factor of uRvRvRw .
It is instructive to think of these conditions in terms of the rewinding
operator introduced in Section 1: C1 is tantamount to saying that q
is a prefix of every word to which q rewinds; and C3 says that q is
a factor of every word to which q rewinds. These conditions can
be checked in polynomial time in the length of the word q. The
following result has an easy proof.

Proposition 3.1. Let q be a path query. If q satisfies C1, then q
satisfies C2; and if q satisfies C2, then q satisfies C3.

The main part of this paper comprises a proof of the following
theorem, which refines the statement of Theorem 1.5 by adding
syntactic conditions. The theorem is illustrated by Example 3.3.

Theorem 3.2. For every path query q, the following complexity
upper bounds obtain:

• if q satisfies C1, then CERTAINTY(q) is in FO;
• if q satisfies C2, then CERTAINTY(q) is in NL; and
• if q satisfies C3, then CERTAINTY(q) is in PTIME.

Moreover, for every path query q, the following complexity lower
bounds obtain:

• if q violates C1, then CERTAINTY(q) is NL-hard;
• if q violates C2, then CERTAINTY(q) is PTIME-hard; and
• if q violates C3, then CERTAINTY(q) is coNP-complete.

Example 3.3. The query q1 = RXRX rewinds to (and only to)
RX ·RX ·RX and R ·XR ·XR ·X , which both contain q1 as a prefix. It
is correct to conclude that CERTAINTY(q1) is in FO.

The query q2 = RXRY rewinds only to RX ·RX ·RY , which
contains q2 as a factor, but not as a prefix. Therefore, q2 satisfies
C3, but violates C1. Since q2 vacuously satisfies C2 (because no
relation name occurs three times in q2), it is correct to conclude
that CERTAINTY(q2) is NL-complete.

The query q3 = RXRYRY rewinds to RX ·RX ·RYRY , to RXRY ·
RXRY ·RY , and to RX ·RY ·RY ·RY = RXR ·YR ·YR ·Y . Since these
words contain q3 as a factor, but not always as a prefix, we have
that q3 satisfies C3 but violates C1. It can be verified that q3 violates
C2 by writing it as follows:

q3 = ε︸︷︷︸
u

RX︸︷︷︸
Rv1

RY︸︷︷︸
Rv2

RY︸︷︷︸
Rw

We haveX = v1 , v2 = Y , but Rw = RY is not a prefix of Rv1 = RX .
Thus, CERTAINTY(q3) is PTIME-complete.

Finally, the path query q4 = RXRXRYRY rewinds, among others,
to RX ·RXRY ·RXRY ·RY , which does not contain q4 as a factor. It
is correct to conclude that CERTAINTY(q4) is coNP-complete. □

4 REGEXES FOR C1, C2, AND C3
In this section, we show that the conditions C1, C2, and C3 can be
captured by regular expressions (or regexes) on path queries, which
will be used in the proof of Theorem 3.2. Since these results are
within the field of combinatorics of words, we will use the term word
rather than path query.
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Definition 4.1. We define four properties B1, B2a , B2b , B3 that
a word q can possess:
B1: For some integer k ≥ 0, there are words v ,w such that vw is

self-join-free and q is a prefix ofw (v)k .
B2a : For some integers j,k ≥ 0, there are words u, v ,w such that

uvw is self-join-free and q is a factor of (u)j w (v)k .
B2b : For some integer k ≥ 0, there are wordsu,v ,w such thatuvw

is self-join-free and q is a factor of (uv)k wv .
B3: For some integer k ≥ 0, there are words u, v ,w such that uvw

is self-join-free and q is a factor of uw (uv)k . □

We can identify each condition among C1, C2, C3, B1, B2a , B2b ,
B3 with the set of all words satisfying this condition. Note then
that B1 ⊆ B2a ∩ B3. The results in the remainder of this section
can be summarized as follows:
• C1 = B1 (Lemma 4.2)
• C2 = B2a ∪ B2b (Lemma 4.5)
• C3 = B2a ∪ B2b ∪ B3 (Lemma 4.3)

Moreover, Lemma 4.5 characterizes C3 \ C2.

Lemma 4.2. For every word q, the following are equivalent:

(1) q satisfies C1; and
(2) q satisfies B1.

Lemma 4.3. For every word q, the following are equivalent:

(1) q satisfies C3; and
(2) q satisfies B2a , B2b , or B3.

Definition 4.4 (First and last symbol). For a nonempty word u,
we write first(u) and last(u) for, respectively, the first and the last
symbol of u. □

Lemma 4.5. Let q be a word that satisfies C3. Then, the following
three statements are equivalent:

(1) q violates C2;
(2) q violates both B2a and B2b ; and
(3) there are words u, v ,w with u , ε and uvw self-join-free such

that either
(a) v , ε and last(u) ·wuvu · first(v) is a factor of q; or
(b) v = ε ,w , ε , and last(u) ·w (u)2 · first(u) is a factor of q.

The shortest word of the form (3a) in the preceding lemma is
RRSRS (let u = R, v = S , andw = ε), and the shortest word of the
form (3b) is RSRRR (let u = R, v = ε , and w = S). Note that since
each of C2, B2a , and B2b implies C3, it is correct to conclude that
the equivalence between the first two items in Lemma 4.5 does not
need the hypothesis that q must satisfy C3.

5 AUTOMATON-BASED PERSPECTIVE
In this section, we prove an important lemma, Lemma 5.9, which
will be used for proving the complexity upper bounds in Theo-
rem 3.2.

5.1 From Path Queries to Finite Automata
We can view a path query q as a word where the alphabet is the
set of relation names. We now associate each path query q with a
nondeterministic finite automaton (NFA), denoted NFA(q).

Definition 5.1 (NFA(q)). Every word q gives rise to a nondeter-
ministic finite automaton (NFA) with ε-moves, denoted NFA(q), as
follows.
States: The set of states is the set of prefixes of q. We include the

empty word ε in the prefixes of q.
Forward transitions: If u and uR are states, then there is a tran-

sition with label R from state u to state uR. These transitions
are said to be forward.

Backward transitions: IfuR andwR are states such that |u | < |w |
(and therefore uR is a prefix ofw), then there is a transition
with label ε from state wR to state uR. These transitions
are said to be backward, and capture the operation dubbed
rewinding.

Initial and accepting states: The initial state is ε and the only
accepting state is q. □

Figure 4 shows the automaton NFA(RXRRR). Informally, the
forward transitions capture the automaton that would accept the
word RXRRR, while the backward transitions capture the existence
of self-joins that allow an application of the rewind operator. We
now take an alternative route for defining the language accepted
by NFA(q), which straightforwardly results in Lemma 5.3. Then,
Lemma 5.4 gives alternative ways for expressing C1 and C3.

Definition 5.2. Let q be a path query, represented as a word over
the alphabet of relation names. We define the language L↬(q) as
the smallest set of words such that

(a) q belongs to L↬(q); and
(b) Rewinding: if uRvRw is in L↬(q) for some relation name R

and (possibly empty) words u, v and w , then uRvRvRw is
also in L↬(q). □

That is, L↬(q) is the smallest language that contains q and is
closed under rewinding.

Lemma 5.3. For every path query q, the automatonNFA(q) accepts
the language L↬(q).

Lemma 5.4. Let q be a path query. Then,

(1) q satisfies C1 if and only if q is a prefix of each p ∈ L↬(q);
(2) q satisfies C3 if and only if q is a factor of each p ∈ L↬(q).

Proof. ⇐= in (1) and (2) This direction is trivial, because
whenever q = uRvRw , we have that uRvRvRw ∈ L↬(q).

We now show the =⇒ direction in both items. To this end,
we call an application of the rule (b) in Definition 5.2 a rewind. By
construction, each word in L↬(q) can be obtained from q by using
k rewinds, for some nonnegative integer k . Let qk be a word in
L↬(q) that can be obtained from q by using k rewinds.
=⇒ in (1) We use induction on k to show that q is a prefix

of qk . For he induction basis, k = 0, we have that q is a prefix of
q0 = q. We next show the induction step k → k + 1. Let qk+1 =
uRvRvRw where qk = uRvRw is a word in L↬(q) obtained with
k rewinds. By the induction hypothesis, we can assume a word s
such that qk = q · s .
• If q is a prefix of uRvR, then qk+1 = uRvRvRw trivially
contains q as a prefix.
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Figure 4: The NFA(q) automaton for the path query q = RXRRR.

• If uRvR is a proper prefix of q, let q = uRvRt where t is
nonempty. Since q satisfies C1, Rt is a prefix of Rv . Then
qk+1 = uRvRvRw contains q = u · Rv · Rt as a prefix.

=⇒ in (2) We use induction on k to show that q is a factor
of qk . For the induction basis, k = 0, we have that q is a prefix of
q0 = q. For the induction step, k → k + 1, let qk+1 = uRvRvRw
where qk = uRvRw is a word in L↬(q) obtained with k rewinds.
By the induction hypothesis, qk = uRvRw contains q as a factor. If q
is a factor of eitheruRvR or RvRw , then qk+1 = uRvRvRw contains
q as a factor. Otherwise, we may decompose qk = u−q−RvRq+w+
where q = q−RvRq+, u = u−q− and w = q+w+. Since q satisfies
C3, the word q−RvRvRq+, which is a factor of qk+1, contains q as
a factor. □

In the technical treatment, it will be convenient to consider the
automaton obtained from NFA(q) by changing its start state, as
defined next.

Definition 5.5. Ifu is a prefix of q (and thusu is a state inNFA(q)),
then S-NFA(q,u) is the automaton obtained from NFA(q) by let-
ting the initial state be u instead of the empty word. Note that
S-NFA(q, ε) = NFA(q). It may be helpful to think of the first S in
S-NFA(q,u) as “Start at u.” □

5.2 Reification Lemma
In this subsection, we first define how an automaton executes on
a database instance. We then state an helping lemma which will
be used in the proof of Lemma 5.9, which constitutes the main
result of Section 5. To improve the readability and logical flow
of our presentation, we postpone the proof of the helping lemma
to Section 5.3.

Definition 5.6 (Automata on database instances). Let db be a data-
base instance. A path (in db) is defined as a sequence R1(c1, c2),
R2(c2, c3), . . . , Rn (cn, cn+1) of facts in db. Such a path is said to start
in c1. We call R1R2 · · ·Rn the trace of this path. A path is said to be
accepted by an automaton if its trace is accepted by the automaton.

Let q be a path query and r be a consistent database instance.
We define start(q, r) as the set containing all (and only) constants
c ∈ adom(r) such that there is a path in r that starts in c and is
accepted by NFA(q). □

Example 5.7. Consider the query q2 = RRX and the database
instance of Figure 2. Let r1 and r2 be the repairs containing, respec-
tively, R(1, 2) and R(1, 3). The only path with trace RRX in r1 starts
in 1; and the only path with trace RRX in r2 starts in 0. The regular
expression for L↬(q) is RR (R)∗ X . We have start(q, r1) = {0, 1}
and start(q, r2) = {0}. □

The following lemma tells us that, among all repairs, there is one
that is inclusion-minimal with respect to start(q, ·). In the preceding
example, the repair r2 minimizes start(q, ·).

Lemma 5.8. Let q be a path query, and db a database instance.
There exists a repair r∗ of db such that for every repair r of db,
start(q, r∗) ⊆ start(q, r).

Informally, we think of the next Lemma 5.9 as a reification lemma.
The notion of reifiable variable was coined in [34, Definition 8.5], to
refer to a variable x in a query ∃x (φ(x)) such that whenever that
query is true in every repair of a database instance, then there is
a constant c such that φ(c) is true in every repair. The following
lemma captures a very similar concept.

Lemma 5.9 (Reification Lemma for C3). Let q be a path query
that satisfies C3. Then, for every database instance db, the following
are equivalent:

(1) db is a “yes”-instance of CERTAINTY(q); and
(2) there exists a constant c (which depends on db) such that for

every repair r of db, c ∈ start(q, r).

Proof. 1 =⇒ 2 Assume (1). By Lemma 5.8, there exists a re-
pair r∗ of db such that for every repair r of db, start(q, r∗) ⊆
start(q, r). Since r∗ satisfies q, there is a path R1(c1, c2), R2(c2, c3),
. . . , Rn (cn, cn+1) in r∗ such that q = R1R2 · · ·Rn . Since q is accepted
by NFA(q), we have c1 ∈ start(q, r∗). It follows that c1 ∈ start(q, r)
for every repair r of db.

2 =⇒ 1 Let r be any repair of db. By our hypothesis that (2)
holds true, there is some c ∈ start(q, r). Therefore, there is a path
in r that starts in c and is accepted by NFA(q). Let p be the trace
of this path. By Lemma 5.3, p ∈ L↬(q). Since q satisfies C3 by the
hypothesis of the current lemma, it follows by Lemma 5.4 that q is
a factor of p. Consequently, there is a path in r whose trace is q. It
follows that r satisfies q. □

5.3 Proof of Lemma 5.8
We will use the following definition.
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Definition 5.10 (States Set). This definition is relative to a path
query q. Let r be a consistent database instance, and let f be an
R-fact in r, for some relation name R. The states set of f in r, de-
noted STq (f , r), is defined as the smallest set of states satisfying
the following property, for all prefixes u of q:

if S-NFA(q,u) accepts a path in r that starts with f ,
then uR belongs to STq (f , r).

Note that if f is an R-fact, then all states in S-NFA(q, r) have R as
their last relation name. □

Example 5.11. Let q = RRX and r = {R(a,b), R(b, c), R(c,d),
X (d, e),R(d, e)}. ThenNFA(q) has states {ε,R,RR,RRX } and accepts
the regular language RR (R)∗ X . Since S-NFA(q, ε) accepts the path
R(b, c),R(c,d),X (c,d), the states set STq (R(b, c), r) contains ε ·R = R.
Since the latter path is also accepted by S-NFA(q,R), we also have
R ·R ∈ STq (R(b, c), r). Finally, note that STq (R(d, e), r) = ∅, because
there is no path that contains R(d, e) and is accepted byNFA(q). □

Lemma 5.12. Let q be a path query, and r a consistent database
instance. If STq (f , r) contains state uR, then it contains every state of
the form vR with |v | ≥ |u |.

Proof. Assume uR ∈ STq (f , r). Then f is an R-fact and there
is a path f · π in r that is accepted by S-NFA(q,u). Let vR be a
state with |v | > |u |. Thus, by construction, NFA(q) has a backward
transition with label ε from state vR to state uR.

It suffices to show that f · π is accepted by S-NFA(q,v). Starting
in statev , S-NFA(q,v) traverses f (reaching statevR) and then uses
the backward transition (with label ε) to reach the state uR. From
there on, S-NFA(q,v) behaves like S-NFA(q,u). □

From Lemma 5.12, it follows that STq (f , r) is completely deter-
mined by the shortest word in it.

Definition 5.13 (Preorder ⪯q on repairs). Let db be a database
instance. For all repairs r, s of db, we define r ⪯q s if for every f ∈ r
and д ∈ s such that f and д are key-equal, we have STq (f , r) ⊆
STq (д, s).

Clearly, ⪯q is a reflexive and transitive binary relation on the set
of repairs of db. We write r ≺q s if both r ⪯q s and for some f ∈ r
andд ∈ s such that f andд are key-equal, STq (f , r) ⊊ STq (д, s). □

Lemma 5.14. Let q be a path query. For every database instance db,
there is a repair r∗ of db such that for every repair r of db, r∗ ⪯q r.

Proof. It suffices to show that whenever r and s are repairs of
db such that r ⪯̸q s, there exists a repair r∗ of db such that r∗ ≺q r.

Let α : r→ s be the unique bijection such that for every f ∈ r,
the facts f and α(f ) are key-equal. Note that α is the identity on
facts in r ∩ s. Define

r∆ = { f ∈ r | STq (α(f ), s) ⊊ STq (f , r)};

r∗ = (r \ r∆) ∪ {α(f ) | f ∈ r∆}.

From Lemma 5.12 and r ⪯̸q s, it follows that r∆ , ∅. We show
r∗ ⪯q r. To this end, let h ∈ r∗ and uR ∈ STq (h, r∗). Thus, h is
an R-fact, and we need to show uR ∈ STq (h′, r), where h′ is the
fact in r that is key-equal to h (possibly h′ = h). There is a path
π in r∗ that starts with h and is accepted by S-NFA(q,u). If π uses
only facts in r, then the desired result obtains vacuously. Otherwise
let д be the leftmost fact in π such that д < r (possibly д = h).

Thus, д ∈ s. Let f = α−1(д). So there are (possibly empty) paths
π1, π2 such that π = π1 · д · π2. Since д ∈ r∗ \ r, it follows f ∈ r∆,
hence STq (д, s) ⊊ STq (f , r). It follows that the path π1 · f can
be right extended in a path in r that is accepted by S-NFA(q,u).
Consequently, uR ∈ STq (h′, r).

Finally, we show that r∗ ≺q r. To this end, take any f in r∆.
Since STq (α(f ), s) ⊊ STq (f , r), we can assume uR ∈ STq (f , r) such
that uR < STq (α(f ), s). Assume for the sake of contradiction that
uR ∈ STq (α(f ), r∗). Then, there exists a path π in r∗ that starts
with α(f ) and is accepted by S-NFA(q,u). Since uR < STq (α(f ), s),
the path π must use a fact in r \ s. We can assume π = π1 · h · π2
such that h is the leftmost fact in π belonging to r \ s. From h ∈ r∗

and h < s, it follows h < r∆. Since h < r∆, we have STq (h, r) ⊆
STq (α(h), s). But this entails that π1 · α(h) can be right extended to
a path in s that is accepted by S-NFA(q,u), henceuR ∈ STq (α(f ), s),
a contradiction. □

We can now give the proof of Lemma 5.8.

Proof of Lemma 5.8. Let db be a database instance. Then by
Lemma 5.14, there is a repair r∗ of db such that for every repair
r of db, r∗ ⪯q r. It suffices to show that for every repair r of db,
start(q, r∗) ⊆ start(q, r). To this end, consider any repair r and
c ∈ start(q, r∗). Let R be the first relation name of q. Since c ∈
start(q, r∗), there is d ∈ adom(r∗) such that R ∈ STq (R(c,d), r∗).
Then, there is a unique d ′ ∈ adom(r) such that R(c,d ′) ∈ r, where
it is possible that d ′ = d . From r∗ ⪯q r, it follows STq (R(c,d), r∗) ⊆
STq (R(c,d ′), r). Consequently, R ∈ STq (R(c,d ′), r), which implies
c ∈ start(q, r). This conclude the proof. □

6 COMPLEXITY UPPER BOUNDS
We now show the complexity upper bounds of Theorem 3.2.

6.1 A PTIME Algorithm for C3
We now specify a polynomial-time algorithm for CERTAINTY(q),
for path queries q that satisfy condition C3. The algorithm is based
on the automata defined in Definition 5.5, and uses the concept
defined next.

Definition 6.1 (Relation ⊢q ). Let q be a path query and db a data-
base instance. For every c ∈ adom(q) and every prefix u of q, we
write db ⊢q ⟨c,u⟩ if every repair of db has a path that starts in c
and is accepted by S-NFA(q,u). □

An algorithm that decides the relation ⊢q can be used to solve
CERTAINTY(q) for path queries satisfyingC3. Indeed, by Lemma 5.9,
for path queries satisfying C3, db is a “yes”-instance for the problem
CERTAINTY(q) if and only if there is a constant c ∈ adom(db) such
that db ⊢q ⟨c,u⟩ with u = ε .

Figure 5 shows an algorithm that computes {⟨c,u⟩ | db ⊢q ⟨c,u⟩}
as the fixed point of a binary relation N . The Initialization Step
inserts into N all pairs ⟨c,q⟩, which is correct because db ⊢q ⟨c,q⟩
holds vacuously, as q is the accepting state of S-NFA(q,q). Then,
the Iterative Rule is executed until N remains unchanged. This rule
makes sure that, whenever a pair ⟨c,vS⟩ is added, all pairs ⟨c,wS⟩
with |w | > |v | are also added. This is correct because db ⊢q ⟨c,vS⟩
and |w | > |v | implies db ⊢q ⟨c,wS⟩, as S-NFA(q,wS) has an ε-
transition from statewS to uS . Figure 6 shows an example run of
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Initialization Step: N ← {⟨c,q⟩ | c ∈ adom(db)}.
Iterative Rule: if uR is a prefix of q, and

R(c, ∗) is a nonempty block in db s.t. for every R(c,y) ∈ db, ⟨y,uR⟩ ∈ N
then

N ← N ∪ {⟨c,u⟩}︸  ︷︷  ︸
forward

∪ {⟨c,w⟩ | NFA(q) has a backward transition fromw to u}︸                                                                       ︷︷                                                                       ︸
backward

.

Figure 5: Polynomial-time algorithm for computing {⟨c,u⟩ | db ⊢q ⟨c,u⟩}, for a fixed path query q satisfying C3.

Iteration Tuples added to N

init. <0, RRX>, <1, RRX>, <2, RRX>, <3, RRX>, <4, RRX>, <5, RRX>
1 <4, RR>
2 <3, R>, <3, RR>
3 <2, R>, <2, RR>
4 <1, R>, <1, RR>
5 <0, R>, <0, RR>, <0, ε>

0 1 2 3

4 5

R R RR

R
R

R

X

Figure 6: Example run of our algorithm for q = RRX , on the database instance db shown at the right.

the algorithm in Figure 5. The next lemma states the correctness of
the algorithm.

Lemma 6.2. Let q be a path query. Let db be a database instance.
Let N be the output relation returned by the algorithm in Figure 5 on
input db. Then, for every c ∈ adom(db) and every prefix u of q,

⟨c,u⟩ ∈ N if and only if db ⊢q ⟨c,u⟩.

Proof. ⇐= Proof by contraposition. Assume ⟨c,u⟩ < N . The
proof shows the construction of a repair r of db such that r has no
path that starts in c and is accepted by S-NFA(q,u). Such a repair
shows db ⊬q ⟨c,u⟩.

We explain which fact of an arbitrary block R(a, ∗) of db will be
inserted in r. Among all prefixes of q that end with R, let u0R be
the longest prefix such that ⟨a,u0⟩ < N . If such u0R does not exist,
then an arbitrarily picked fact of the block R(a, ∗) is inserted in r.
Otherwise, the Iterative Rule in Figure 5 entails the existence of a
fact R(a,b) such that ⟨b,u0R⟩ < N . Then, R(a,b) is inserted in r.

Assume for the sake of contradiction that there is a path π in r
that starts in c and is accepted by S-NFA(q,u). Let π := R1(c0, c1),
R2(c1, c2), . . . , Rn (cn−1, cn ) where c0 = c . Since ⟨c0,u⟩ < N and
⟨cn,q⟩ ∈ N , there is a longest prefix u0 of q, where |u0 | ≥ |u |, and
i ∈ {1, . . . ,n} such that ⟨ci−1,u0⟩ < N and ⟨ci ,u0Ri ⟩ ∈ N . From
⟨ci−1,u0⟩ < N , it follows that db contains a factRi (ci−1,d) such that
⟨d,u0Ri ⟩ < N . Then Ri (ci−1, ci ) would not be chosen in a repair,
contradicting Ri (ci−1, ci ) ∈ r.
=⇒ Assume that ⟨c,u⟩ ∈ N , Let ℓ be the number of executions

of the Iterative Rule that were used to insert ⟨c,u⟩ in N . We show
db ⊢q ⟨c,u⟩ by induction on ℓ.

The basis of the induction, ℓ = 0, holds because the Initialization
Step is obviously correct. Indeed, since q is an accepting state of
S-NFA(q,q), we have db ⊢q ⟨c,q⟩. For the inductive step, ℓ → ℓ+ 1,
we distinguish two cases.

Case that ⟨c,u⟩ is added to N by the forward part of the Iterative
Rule. That is, ⟨c,u⟩ is added because db has a block {R(c,d1), . . . ,
R(c,dk )} with k ≥ 1 and for every i ∈ {1, . . . ,k}, we have that
⟨di ,uR⟩ was added to N by a previous execution of the Iterative

Rule. Let r be an arbitrary repair of db. Since every repair contains
exactly one fact from each block, we can assume i ∈ {1, . . . ,k} such
that R(c,di ) ∈ r. By the induction hypothesis, db ⊢q ⟨di ,uR⟩ and
thus r has a path that starts in di and is accepted by S-NFA(q,uR).
Clearly, this path can be left extended with R(c,di ), and this left
extended path is accepted by S-NFA(q,u). Note incidentally that the
path in r may already use R(c,di ), in which case the path is cyclic.
Since r is an arbitrary repair, it is correct to conclude db ⊢q ⟨c,u⟩.

Case that ⟨c,u⟩ is added toN by the backward part of the Iterative
Rule. Then, there is a relation name S and words v,w , such that
u = vSwS , and ⟨c,u⟩ is added because ⟨c,vS⟩ was added in the same
iteration. Then, S-NFA(q,u) has an ε-transition from state u to vS .
Let r be an arbitrary repair of db. By the reasoning in the previous
case, r has a path that starts in c and is accepted by S-NFA(q,vS). We
claim that r has a path that starts in c and is accepted by S-NFA(q,u).
Indeed, S-NFA(q,u) can use the ε-transition to reach the state vS ,
and then behave like S-NFA(q,vS). This concludes the proof. □

The following corollary is now immediate.

Corollary 6.3. Let q be a path query. Let db be a database in-
stance, and c ∈ adom(db). Then, the following are equivalent:

(1) c ∈ start(q, r) for every repair r of db; and
(2) ⟨c, ϵ⟩ ∈ N , where N is the output of the algorithm in Figure 5.

Finally, we obtain the following tractability result.

Lemma 6.4. For each path query q satisfying C3, CERTAINTY(q)
is expressible in Least Fixpoint Logic, and hence is in PTIME.

Proof. For a path query q, define the following formula in
LFP [27]:

ψq (s, t) :=
[
lfpN ,x ,zφq (N , x, z)

]
(s, t), (1)

where φq (N , x, z) is given in Figure 7. Herein, α(x) denotes a first-
order query that computes the active domain. That is, for every
database instance db and constant c , db |= α(c) if and only if
c ∈ adom(db). Further, u ≤ v means that u is a prefix of v; and
u < v means that u is a proper prefix of v . Thus, u < v if and
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φq (N , x, z) :=

©«
(α(x) ∧ z = ‘q’)

∨
(∨

uR≤q
(
(z = ‘u’) ∧ ∃yR(x,y) ∧ ∀y

(
R(x,y) → N (y, ‘uR’)

) ) )
∨

(∨
ε<u<uv≤q

last(u)=last(v)
(N (x, ‘u’) ∧ z = ‘uv’)

) ª®®®®®¬
Figure 7: Definition of φq (N , x, z). The predicate α(x) states that x is in the active domain, and < is shorthand for “is a strict
prefix of”.

only if u ≤ v and u , v . The formula φq (N , x, z) is positive in
N , which is a 2-ary predicate symbol. It is understood that the
middle disjunction ranges over all nonempty prefixes uR of q (pos-
sibly u = ε). The last disjunction ranges over all pairs (u,uv) of
distinct nonempty prefixes of q that agree on their last symbol. We
used a different typesetting to distinguish the constant words q, uR,
uv from first-order variables x , z. It is easily verified that the LFP
query (1) expresses the algorithm of Figure 5. □

Since the formula (1) in the proof of Lemma 6.4 uses universal
quantification, it is not in Existential Least Fixpoint Logic, which is
equal to DATALOG¬ [27, See Theorem 10.18]. It can be shown that
there exists a path query q such that CERTAINTY(q) is in PTIME
but not expressible in stratified Datalog.

6.2 FO-Rewritability for C1
Wenow show that if a path queryq satisfiesC1, thenCERTAINTY(q)
is in FO, and a first-order rewriting for q can be effectively con-
structed.

Definition 6.5 (First-order rewriting). If q is a Boolean query such
that CERTAINTY(q) is in FO, then a (consistent) first-order rewriting
forq is a first-order sentenceψ such that for every database instance
db, the following are equivalent:

(1) db is a “yes”-instance of CERTAINTY(q); and
(2) db satisfiesψ . □

Definition 6.6. If q = {R1(x1, x2), R2(x2, x3), . . . , Rk (xk , xk+1)},
k ≥ 1, and c is a constant, then q[c] is the Boolean conjunctive
query q[c] := {R1(c, x2),R2(x2, x3), . . . ,Rk (xk , xk+1)}. □

Lemma 6.7. For every nonempty path query q and constant c ,
the problem CERTAINTY(q[c]) is in FO. Moreover, it is possible to
construct a first-order formulaψ (x), with free variable x , such that
for every constant c , the sentence ∃x (ψ (x) ∧ x = c) is a first-order
rewriting for q[c].

Proof. The proof inductively constructs a first-order rewriting
for q[c], where the induction is on the number n of atoms in q. For
the basis of the induction, n = 1, we have q[c] = R(c,y). Then,
the first-order formula ψ (x) = ∃yR(x,y) obviously satisfies the
statement of the lemma.

We next show the induction step, n → n + 1. Let R(x1, x2) be the
left-most atom of q, and assume that p := q \ {R(x1, x2)} is a path
query with n ≥ 1 atoms. By the induction hypothesis, it is possible
to construct a first-order formula φ(z), with free variable z, such
that for every constant d ,

∃z (φ(z) ∧ z = d) is a first-order rewriting for p[d ]. (2)

We now defineψ (x) as follows:

ψ (x) = ∃y
(
R(x,y)

)
∧ ∀z

(
R(x, z) → φ(z)

)
. (3)

We will show that for every constant c , ∃x (ψ (x) ∧ x = c) is a first-
order rewriting for q[c]. To this end, let db be a database instance. It
remains to be shown that db is a “yes”-instance ofCERTAINTY(q[c])
if and only if db satisfies ∃x (ψ (x) ∧ x = c).
⇐= Assume db satisfies ∃x (ψ (x) ∧ x = c). Because of the

conjunct ∃y
(
R(x,y)

)
in (3), we have that db includes a block R(c, ∗).

Let r be a repair of db. We need to show that r satisfiesq[c]. Clearly, r
containsR(c,d) for some constantd . Since db satisfies∃z (φ(z) ∧ z = d),
the induction hypothesis (2) tells us that r satisfies p[d ]. It is then
obvious that r satisfies q[c].
=⇒ Assume db is a “yes”-instance forCERTAINTY(q[c]). Then

db must obviously satisfy ∃y
(
R(c,y)

)
. Therefore, db includes a

block R(c, ∗). Let r be an arbitrary repair of db. There exists d such
that R(c,d) ∈ r. Since r satisfies q[c], it follows that r satisfies p[d ].
Since r is an arbitrary repair, the induction hypothesis (2) tells us
that db satisfies ∃z (φ(z) ∧ z = d). It is then clear that db satisfies
∃x (ψ (x) ∧ x = c). □

Lemma 6.8. For every path query q that satisfies C1, the problem
CERTAINTY(q) is in FO, and a first-order rewriting for q can be
effectively constructed.

Proof. By Lemmas 5.4 and 5.9, a database instance db is a
“yes”-instance for CERTAINTY(q) if and only if there is a con-
stant c (which depends on db) such that db is a “yes”-instance
for CERTAINTY(q[c]). By Lemma 6.7, it is possible to construct a
first-order rewriting ∃x (ψ (x) ∧ x = c) for q[c]. It is then clear that
∃x (ψ (x)) is a first-order rewriting for q. □

6.3 An NL Algorithm for C2
We show that CERTAINTY(q) is in NL if q satisfies C2. The proof
will use the syntactic characterization ofC2 established in Lemma 4.5.

Lemma 6.9. For every path query q that satisfies C2, the problem
CERTAINTY(q) is in NL.

In the remainder of this section, we develop the proof of Lemma 6.9.

Definition 6.10. Let q be a path query. We define NFAmin(q) as
the automaton that accepts w if w is accepted by NFA(q) and no
proper prefix ofw is accepted by NFA(q). □

It is well-known that such an automaton NFAmin(q) exists.

Example 6.11. Let q = RXRYR. Then, RXRYRYR is accepted by
NFA(q), but not by NFAmin(q), because the proper prefix RXRYR
is also accepted by NFA(q). □
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ci a

b1

b2

d e2

e1

Rj

Rj

Rℓ

Rℓ

Figure 8: A repair r such that ci < start(q, r) can be con-
structed by choosing Rj (a,b2) and Rℓ(d, e1). No short-cutting
should occur during the s (uv)k−1 part, because condition (6)
in the proof of Lemma 6.9 may not hold there. If the certifi-
cate ended because its length is |db| + |q | + 1, then the last
cycle must be maintained.

ci a

b

d
e1

e2

Rℓ

Rℓ

Rm−1

Figure 9: A repair r such that ci < start(q, r) can be con-
structed by choosing Rℓ(d, e2). The dashed path falsifies the
query ∃x (p(x) ∧ x = b), because it cannot be continued in the
square node.

Definition 6.12. Let q be a path query and r be a consistent data-
base instance. We define startmin(q, r) as the set containing all (and
only) constants c ∈ adom(r) such that there is a path in r that starts
in c and is accepted by NFAmin(q). □

Lemma 6.13. Let q be a path query. For every consistent database
instance r, we have that start(q, r) = startmin(q, r).

Proof. By construction, startmin(q, r) ⊆ start(q, r). Next as-
sume that c ∈ start(q, r) and let π be the path that starts in c and is
accepted by NFA(q). Let π− be the shortest prefix of π that is ac-
cepted byNFA(q). Since π− starts in c and is accepted byNFAmin(q),
it follows c ∈ startmin(q, r). □

Lemma 6.14. Let u ·v ·w be a self-join-free word over the alphabet
of relation names. Let s be a suffix of uv that is distinct from uv . For
every integer k ≥ 0, NFAmin(s (uv)k wv) accepts the language of the
regular expression s (uv)k (uv)∗wv .

Proof. Let q = s (uv)k wv . Since u · v · w is self-join-free, ap-
plying the rewinding operation, zero, one, or more times, in the
part of q that precedesw will repeat the factor uv . This gives words
of the form s (uv)ℓ wv with ℓ ≥ k . The difficult case is where we
rewind a factor of q that itself containsw as a factor. In this case, the
rewinding operation will repeat a factor of the form v2 (uv)

ℓ wv1
such that v = v1v2 and v2 , ε , which results in words of one of the
following forms (s = s1 · v2):(

s (uv)ℓ1 uv1
)
·v2 (uv)

ℓ2 wv1 ·v2 (uv)
ℓ2 wv1 ·(v2); or

(s1)·v2 (uv)
ℓ wv1 ·v2 (uv)

ℓ wv1 ·(v2).

These words have a prefix belonging to the language of the regular
expression s (uv)k (uv)∗wv . □

We can now give the proof of Lemma 6.9.

Proof of Lemma 6.9. Assume q satisfies C2. By Lemma 4.5, q
satisfies B2a or B2b . We treat the case that q satisfies B2b (the case
that q satisfies B2a is even easier). We have that q is a factor of
(uv)k wv , where k is chosen as small as possible, and uvw is self-
join-free. The proof is straightforward if k = 0; we assume k ≥ 1
from here on. To simplify notation, we will show the case where q
is a suffix of (uv)k wv ; our proof can be easily extended to the case
where q is not a suffix, at the price of some extra notation. There
is a suffix s of uv such that q = s (uv)k−1wv . By Lemmas 5.9, 6.13,
and 6.14, the following are equivalent:

(a) db is a “no”-instance of CERTAINTY(q); and
(b) for every constant ci ∈ adom(q), there is a repair r of db such

that there is no path in r that starts in ci and whose trace is
in the language of the regular expression s (uv)k−1 (uv)∗wv .

From here on, let m := |uv | and let R0, . . . ,Rm−1 be relation
names such that

R0R1 . . .Rm−1 = uv . (4)

We will say that Ri+1 mod m is the symbol that immediately follows
Ri mod m (for 0 ≤ i ≤ m − 1). Thus, we view (4) as a cyclic list. In
particular, R0 immediately follows Rm−1.

We use the certificate definition of NL. Recall that a read-once
logspace verifier has three tapes. A read-once certificate tape, a
read-only input tape, and a logspace-bounded working tape. The
database instance db is on the read-only input tape. The certificate
will show that for all constants c1, c2, . . . , cn , listed in the order in
which they occur in db, there is a repair satisfying the previous
item (b). Note that a same constant can occur multiple times. This
will prove the lemma, since NL is closed under complement. The
sub-certificate for each ci will be a finite sequence of facts in db, of
the form:

S1(b1,b2), S2(b2,b3), S3(b3,b4), . . . (5)

such that
(1) b1 = ci ;
(2) S1 is the first symbol of s if s , ε ; otherwise S1 = R0; and
(3) for every j ≥ 2, we have that Sj immediately follows Sj−1 in

the cyclic list (4).
E.g., for uv = ABC and s = BC , the sequence S1S2S3S4S5S6S7S8
reads BCABCABC . Let p(x) be the query obtained from the path
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querywv by treating the leftmost variable, called x , as a free vari-
able. For example, ifwv = V1V2V3, then

p(x) = ∃y∃z∃t(V1(x,y) ∧V2(y, z) ∧V3(z, t)).

The expected sub-certificate must satisfy the following constraint:

for every i ≥ |s (uv)k−1 |, if the sequence (5) contains
Si (bi ,bi+1)with Si = Rm−1, then db is a “no”-instance
of the problem CERTAINTY(∃x (p(x) ∧ x = bi+1)).
Note that the latter problem is in FO.

(6)

Continuing our previous example, if uv = ABC , S = BC , and
k = 2, then |s (uv)k−1 | = 5. Then, we distinguish the C-facts S5 =
C(b5,b6), S8 = C(b8,b9), S11 = C(b11,b12),. . . , and check that for
bi ∈ {b6,b9,b12, . . . }, db is a “no”-instance of

CERTAINTY(∃x (p(x) ∧ x = bi )).

Finally, every sub-certificate of the form (5) ends when it reaches
SN+1 with N = |db| + |q |, which means that two database facts
must occur twice in the sub-certificate. A sub-certificate can be
shorter if it reaches Sℓ(bℓ,bℓ+1), but there is no Ri -fact Ri (bℓ+1, _)
(0 ≤ i ≤ m − 1) such that Ri immediately follows Sℓ in the cyclic
list (4).

We claim that the following are equivalent:
(1) a sub-certificate of the form (5) with b1 = ci exists; and
(2) there is a repair r of db such that ci < start(q, r).

The implication 2 =⇒ 1 is straightforward. We next show 1 =⇒
2. To this end, assume that a sub-certificate of the form (5) with
b1 = ci exists. We argue that such a sub-certificate can be turned
into a repair r of db such that ci < start(q, r). Notice that the sub-
certificate may be inconsistent, because it can first contain Rℓ(d, e1)
and then Rℓ(d, e2) (possibly e1 = e2), implying a cycle. A logspace
verifier cannot detect such distinct, key-equal facts. Nonetheless, r
can be made consistent by short-cutting cycles, which boils down
to establishing a shorter sub-certificate for ci < start(q, r). This
is illustrated by Figure 8. In addition to the removal of distinct,
key-equal facts, it is essential that any sequence of the form (5)
in r satisfies (6), that is, for every fact Rm−1(bi ,bi+1) referred to
in (6), it must be the case that r ̸ |= ∃x (p(x) ∧ x = bi+1). We argue
that this is possible. To this end, let v , which is a suffix of (4), be
v = RoRo+1 . . .Rm−1 (0 ≤ o ≤ m − 1) and assume that db has a
sequence s := Ro (do,do+1), Ro+1(do+1,do+2), . . . , Rj (dj ,dj+1), with
j < m − 1, such that db contains no fact Rj+1(dj+1, _). Such an
“incompletable” sequence s can be used in (5). Informally, Ri -facts
(o ≤ i ≤ j) that are needed to establish r ̸ |= ∃x (p(x) ∧ x = bi+1),
can also be used in sub-certificates. This is illustrated by Figure 9.

To conclude the proof, it is easily verified that our certificates
can be checked by a logspace verifier. The memory needs include
an index ranging over the constants c1, c2, . . . , cn that form the
database instance db, and a counter that can count up to |db| +
|q | + 1. Furthermore, the logspace verifier has to issue some queries
in FO. □

7 COMPLEXITY LOWER BOUNDS
In this section, we show the complexity lower bounds of Theo-
rem 3.2. For a path query q = {R1(x1, x2), . . . , Rk (xk , xk+1)} and

constants a,b, we define the following database instances:

ϕba [q] := {R1(a,□2),R2(□2,□3), . . . ,Rk (□k ,b)}

ϕ⊥a [q] := {R1(a,□2),R2(□2,□3), . . . ,Rk (□k ,□k+1)}

ϕb⊥[q] := {R1(□1,□2),R2(□2,□3), . . . ,Rk (□k ,b)}

where the symbols □i denoted fresh constants not occurring else-
where. Significantly, two occurrences of □i will represent different
constants.

7.1 NL-Hardness
We first show that if a path query violates C1, then CERTAINTY(q)
is NL-hard, and therefore not in FO.

Lemma 7.1. If a path query q violates C1, then CERTAINTY(q) is
NL-hard.

Proof. Assume that q does not satisfy C1. Then, there exists
a relation name R such that q = uRvRw and q is not a prefix of
uRvRvRw . It follows that Rw is not a prefix of RvRw . Since Rv , ε ,
there exists no (conjunctive query) homomorphism from q to uRw .

The problem REACHABILITY takes as input a directed graph
G(V , E) and two vertices s, t ∈ V , and asks whetherG has a directed
path from s to t . This problem is NL-complete and remains NL-
complete when the inputs are acyclic graphs. Recall that NL is
closed under complement. We present a first-order reduction from
REACHABILITY to the complement of CERTAINTY(q), for acyclic
directed graphs.

Let G = (V , E) be an acyclic directed graph and s, t ∈ V . Let
G ′ = (V ∪{s ′, t ′}, E∪{(s ′, s), (t, t ′)}), where s ′, t ′ are fresh vertices.
We construct an input instance db for CERTAINTY(q) as follows:
• for each vertex x ∈ V ∪ {s ′}, we add ϕx⊥[u];
• for each edge (x,y) ∈ E∪{(s ′, s), (t, t ′)}, we add ϕyx [Rv]; and
• for each vertex x ∈ V , we add ϕ⊥x [Rw].

This construction can be executed in FO. Figure 10 shows an exam-
ple of the above construction. Observe that the only conflicts in db
occur in R-facts outgoing from a same vertex.

s ′ s a t t ′

u u u u

Rw Rw Rw

Rv Rv Rv Rv

Figure 10: Database instance for the NL-hardness reduction
from the graph G with V = {s,a, t} and E = {(s,a), (a, t)}.

We now show that there exists a directed path from s to t inG if
and only if there exists a repair of db that does not satisfy q.
=⇒ Suppose that there is a directed path from s to t in G.

Then, G ′ has a directed path P = s, x0, x1, . . . , t, t ′. Then, consider
the repair r that chooses the first R-fact from ϕ

y
x [Rv] for each edge

(x,y) on the path P , and the first R-fact from ϕ⊥y [Rw] for each y
not on the path P . We show that r falsifies q. Assume for the sake
of contradiction that r satisfies q. Then, there exists a valuation θ
for the variables in q such that θ (q) ⊆ r. Since, as argued in the

Session: Consistency  
 
PODS ’21, June 20–25, 2021, Virtual Event, China

224



beginning of this proof, there exists no (conjunctive query) homo-
morphism from q touRw , it must be that all facts in θ (q) belong to a
path in r with trace u (Rv)k , for some k ≥ 0. Since, by construction,
no constants are repeated on such paths, there exists a (conjunctive
query) homomorphism from q to u (Rv)k , which implies that Rw
is a prefix of RvRw , a contradiction. We conclude by contradiction
that r falsifies q.
⇐= Proof by contradiction. Suppose that there is no directed

path from s to t in G . Let r be any repair of db; we will show that r
satisfies q. Indeed, there exists a maximal path P = x0, x1, . . . , xn
such that x0 = s ′, x1 = s , and ϕxi+1xi [Rv] ⊆ r. By construction, s ′
cannot reach t ′ in G ′, and thus xn , t ′. Since P is maximal, we
must have ϕ⊥xn [Rw] ⊆ r. Then ϕxn−1⊥ [u] ∪ ϕxnxn−1 [Rv] ∪ ϕ

⊥
xn [Rw]

satisfies q. □

7.2 coNP-Hardness
Next, we show the coNP-hard lower bound.

Lemma 7.2. If a path query q violates C3, then CERTAINTY(q) is
coNP-hard.

Proof. If q does not satisfy C3, then there exists a relation R
such that q = uRvRw and q is not a factor of uRvRvRw . Note that
this means that there is no homomorphism from q to uRvRvRw .
Also, u must be nonempty (otherwise, q = RvRw is trivially a suffix
of RvRvRw). Let S be the first relation of u.

The proof is a first-order reduction from SAT to the comple-
ment of CERTAINTY(q). The problem SAT asks whether a given
propositional formula in CNF has a satisfying truth assignment.

Given any formulaψ for SAT, we construct an input instance db
for CERTAINTY(q) as follows:
• for each variable z, we add ϕ⊥z [Rw] and ϕ⊥z [RvRw];
• for each clause C and positive literal z of C , we add ϕzC [u];
• for each clause C and variable z that occurs in a negative
literal of C , we add ϕzC [uRv].

This construction can be executed in FO. Figure 11 depicts an ex-
ample of the above construction. Intuitively, ϕ⊥z [Rw] corresponds
to setting the variable z to true, and ϕ⊥z [RvRw] to false. There are
two types of conflicts that occur in db. First, we have conflicting
facts of the form S(C, ∗); resolving this conflict corresponds to the
clause C choosing one of its literals. Moreover, for each variable z,
we have conflicting facts of the form R(z, ∗); resolving this conflict
corresponds to the variable z choosing a truth assignment.

We show now that ψ has a satisfying truth assignment if and
only if there exists a repair of db that does not satisfy q.
=⇒ Assume that there exists a satisfying truth assignment σ

forψ . Then for any clause C , there exists a variable zC ∈ C whose
corresponding literal is true inC under σ . Consider the repair r that:
• for each variable z, it chooses the first R-fact of ϕ⊥z [Rw] if
σ (z) is true, otherwise the first R-fact of ϕ⊥z [RvRw];
• for each clause C , it chooses the first S-fact of ϕzC [u] if zC is
positive in C , or the first S-fact of ϕzC [uRv] if zC is negative
in C .

Assume for the sake of contradiction that r satisfies q. Then we
must have a homomorphism from q to either uRw or uRvRvRw .
But the former is not possible, while the latter contradicts C3. We
conclude by contradiction that r falsifies q.

(x2 ∨ x3)

(x1 ∨ x2)

x3

x2

x1

−

+

−

+

−

+

u

uRv

u

uRv

Rw

RvRw

Rw

RvRw

Rw

RvRw

Figure 11: Database instance for the coNP-hardness reduc-
tion from the formulaψ = (x1 ∨ x2) ∧ (x2 ∨ x3).

⇐= Suppose that there exists a repair r of db that falsifies q.
Consider the assignment σ :

σ (z) =

{
true if ϕ⊥z [Rw] ⊆ r
false if ϕ⊥z [RvRw] ⊆ r

We claim that σ is a satisfying truth assignment for ψ . Indeed,
for each clause C , the repair must have chosen a variable z in
C . If z appears as a positive literal in C , then ϕzC [u] ⊆ r. Since r
falsifies q, we must have ϕ⊥z [Rw] ⊆ r. Thus, σ (z) is true and C is
satisfied. If z appears in a negative literal, then ϕzC [uRv] ⊆ r. Since
r falsifies q, we must have ϕ⊥z [RvRw] ⊆ r. Thus, σ (z) is false andC
is again satisfied. □

7.3 PTIME-Hardness
Finally, we show the PTIME-hard lower bound.

Lemma 7.3. If a path query q violates C2, then CERTAINTY(p) is
PTIME-hard.

Proof. Suppose q violates C2. If q also violates C3 , then the
problem CERTAINTY(q) is PTIME-hard since it is coNP-hard by
Lemma 7.2. Otherwise, it is possible to write q = uRv1Rv2Rw , with
three consecutive occurrences of R such that v1 , v2 and Rw is not
a prefix of Rv1. Letv be the maximal path query such thatv1 = vv+1
andv2 = vv+2 . Thusv

+
1 , v

+
2 and the first relation names ofv+1 and

v+2 are different.
Our proof is a reduction from the Monotone Circuit Value Prob-

lem (MCVP) known to be PTIME-complete [13]:
Problem: MCVP
Input: A monotone Boolean circuitC on inputs x1, x2, . . . , xn and

output gate o; an assignment σ : {xi | 1 ≤ i ≤ n} → {0, 1}.
Question: What is the value of the output o under σ?
We construct an instance db for CERTAINTY(q) as follows:
• for the output gate o, we add ϕo⊥[uRv1];
• for each input variable x with σ (x) = 1, we add ϕ⊥x [Rv2Rw];
• for each gate д, we add ϕд⊥[u] and ϕ

⊥
д [Rv2Rw];

• for each AND gate д = д1 ∧ д2, we add

ϕ
д1
д [Rv1] ∪ ϕ

д2
д [Rv1].

Here, д1 and д2 can be gates or input variables; and
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• for each OR gate д = д1 ∨ д2, we add

ϕc1д [Rv] ∪ ϕ
д1
c1 [v

+
1 ] ∪ ϕc2c1 [v

+
2 ]

∪ ϕc2⊥ [u] ∪ ϕ
д2
c2 [Rv1] ∪ ϕ⊥c2 [Rw]

where c1, c2 are fresh constants.
This construction can be executed in FO. An example of the gadget
constructions is shown in Figure 12. We next show that the output
gate o is evaluated to 1 under σ if and only if each repair of db
satisfies q.

д

д2

д1

u

Rv1

Rv1
Rv2Rw

(a) AND gate

д

д1

д2

c1

c2

u

Rv2Rw

v+1
Rv

v+2
u Rw

Rv1

(b) OR gate

Figure 12: Gadgets for the PTIME-hardness reduction.

=⇒ Suppose the output gate o is evaluated to 1 under σ .
Consider any repair r. We construct a sequence of gates starting
from o, with the invariant that every gate д evaluates to 1, and there
is a path of the form uRv1 in r that ends in д. The output gate o
evaluates to 1, and also we have that ϕo⊥[uRv1] ⊆ r by construction.
Suppose that we are at gate д. If there is a Rv2Rw path in r that
starts inд, the sequence ends and the query q is satisfied. Otherwise,
we distinguish two cases:

(1) д = д1 ∧ д2. Then, we choose the gate with ϕ
дi
д [Rv1] ⊆ r.

Since both gates evaluate to 1 and ϕд⊥[u] ⊆ r, the invariant
holds for the chosen gate.

(2) д = д1 ∨ д2. If д1 evaluates to 1, we choose д1. Observe that
ϕ
д
⊥[u] ∪ ϕ

c1
д [Rv] ∪ ϕ

д1
c1 [v

+
1 ] creates the desired uRv1 path.

Otherwise д2 evaluates to 1. If ϕ⊥c2 [Rw] ⊆ r, then there is
a path with trace uRv1 ending in д, and a path with trace
Rv2Rw starting in д, and therefore r satisfies q. If ϕ⊥c2 [Rw] ⊈
r, we choose д2 and the invariant holds.

If the query is not satisfied at any point in the sequence, we will
reach an input variable x evaluated at 1. But then there is an outgo-
ing Rv2Rw path from x , which means that q must be satisfied.
⇐= Proof by contraposition. Assume that o is evaluated to 0

under σ . We construct a repair r as follows, for each gate д:
• ifд is evaluated to 1, we choose the firstR-fact inϕ⊥д [Rv2Rw];
• if д = д1 ∧ д2 and д is evaluated to 0, let дi be the gate or
input variable evaluated to 0. We then choose ϕдiд [Rv1];
• if д = д1 ∨д2 and д is evaluated to 0, we choose ϕc1д [Rv]; and
• if д = д1 ∨ д2, we choose ϕ

д2
c2 [Rv1].

For a path query p, we write head(p) for the variable at the key-
position of the first atom, and rear(p) for the variable at the non-key
position of the last atom.

Assume for the sake of contradiction that r satisfies q. Then,
there exists some valuation θ such that θ (uRv1Rv2Rw) ⊆ r. Then
the gate д∗ := θ (head(Rv1)) is evaluated to 0 by construction. Let
д1 := θ (rear(Rv1)). By construction, for д∗ = д1∧д2 or д∗ = д1∨д2,
we must have ϕд1д [Rv1] ⊆ r and д1 is a gate or an input variable also
evaluated to 0. By our construction of r, there is no path with trace
Rv2Rw outgoing from д1. However, θ (Rv2Rw) ⊆ r, this can only
happen when д1 is an OR gate, and one of the following occurs:
• Case that |Rw | ≤ |Rv1 |, and the trace of θ (Rv2Rw) is a prefix
of Rvv+2 Rv1. Then Rw is a prefix of Rv1, a contradiction.
• Case that |Rw | > |Rv1 |, and Rvv+2 Rv1 is a prefix of the trace
of θ (Rv2Rw). Consequently, Rv1 is a prefix of Rw . Then,
for every k ≥ 1, L↬(q) contains uRv1 (Rv2)k Rw . It is now
easily verified that for large enough values of k , uRv1Rv2w
is not a factor of uRv1 (Rv2)k Rw . By Lemmas 5.4 and 7.2,
CERTAINTY(q) is coNP-hard. □

8 PATH QUERIES WITH CONSTANTS
We now extend our complexity classification of CERTAINTY(q) to
path queries in which constants can occur.

Definition 8.1 (Generalized path queries). A generalized path query
is a Boolean conjunctive query of the following form:

q = {R1(s1, s2),R2(s2, s3), . . . ,Rk (sk , sk+1)}, (7)

where s1, s2,. . . , sk+1 are constants or variables, all distinct, and R1,
R2,. . . , Rk are (not necessarily distinct) relation names. Significantly,
every constant can occur at most twice: at a non-primary-key posi-
tion and the next primary-key-position.

The characteristic prefix of q, denoted by char(q), is the longest
prefix

{R1(s1, s2),R2(s2, s3), . . . ,Rℓ(sℓ, sℓ+1)}, 0 ≤ ℓ ≤ k

such that no constant occurs among s1, s2, . . . , sℓ (but sℓ+1 can be a
constant). Clearly, if q is constant-free, then char(q) = q. □

Example 8.2. If q = {R(x,y), S(y, 0), T (0, 1), R(1,w)}, where 0
and 1 are constants, then char(q) = {R(x,y), S(y, 0)}. □

The following lemma implies that if a generalized path query q
starts with a constant, then CERTAINTY(q) is in FO. This explains
why the complexity classification in the remainder of this section
will only depend on char(q).

Lemma 8.3. For any generalized path query q, CERTAINTY(p) is
in FO, where p := q \ char(q).

We now introduce some definitions and notations used in our
complexity classification. The following definition introduces a con-
venient syntactic shorthand for characteristic prefixes previously
defined in Definition 8.1.

Definition 8.4. Let q = {R1(x1, x2), R2(x2, x3), . . . , Rk (xk , xk+1)}
be a path query. We write [[q, c]] for the generalized path query ob-
tained from q by replacing xk+1 with the constant c . The constant-
free path query q will be denoted by [[q,⊤]], where ⊤ is a distin-
guished special symbol. □
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Definition 8.5 (Prefix homomorphism). Let

q = {R1(s1, s2),R2(s2, s3), . . . ,Rk (sk , sk+1)}

p = {S1(t1, t2), S2(t2, t3), . . . ,Rℓ(sℓ, sℓ+1)}

be generalized path queries. A homomorphism from q to p is a
substitution θ for the variables in q, extended to be the identity on
constants, such that for every i ∈ {1, . . . ,k}, Ri (θ (si ), θ (si+1)) ∈ p.
Such a homomorphism is a prefix homomorphism if θ (s1) = t1. □

Example 8.6. Let q = {R(x,y), R(y, 1), S(1, z)}, and p = {R(x,y),
R(y, z), R(y, 1)}. Then char(q) = {R(x,y),R(y, 1)} = [[RR, 1]] and
p = [[RRR, 1]]. There is a homomorphism from char(q) to p, but
there is no prefix homomorphism from char(q) to p. □

The following conditions generalizeC1,C2, andC3 from constant-
free path queries to generalized path queries. Let γ be either a
constant or the distinguished symbol ⊤.
D1: Whenever char(q) = [[uRvRw,γ ]], there is a prefix homomor-

phism from char(q) to [[uRvRvRw,γ ]].
D2: Whenever char(q) = [[uRvRw,γ ]], there is a homomorphism

from char(q) to [[uRvRvRw,γ ]]; and whenever char(q) =
[[uRv1Rv2Rw,γ ]] for consecutive occurrences of R, v1 = v2
or there is a prefix homomorphism from [[Rw,γ ]] to [[Rv1,γ ]].

D3: Whenever char(q) = [[uRvRw,γ ]], there is a homomorphism
from char(q) to [[uRvRvRw,γ ]].

It is easily verified that ifγ = ⊤, thenD1,D2, andD3 are equivalent
to, respectively, C1, C2, and C3. Likewise, the following theorem
degenerates to Theorem 3.2 for path queries without constants.

Theorem 8.7. For every generalized path query q, the following
complexity upper bounds obtain:
• if q satisfies D1, then CERTAINTY(q) is in FO;
• if q satisfies D2, then CERTAINTY(q) is in NL; and
• if q satisfies D3, then CERTAINTY(q) is in PTIME.

The following complexity lower bounds obtain:
• if q violates D1, then CERTAINTY(q) is NL-hard;
• if q violates D2, then CERTAINTY(q) is PTIME-hard; and
• if q violates D3, then CERTAINTY(q) is coNP-complete.

Finally, the proof of Theorem 8.7 reveals that for generalized
path queries q containing at least one constant, the complexity of
CERTAINTY(q) exhibits a trichotomy (instead of a tetrachotomy
as in Theorem 8.7).

Theorem 8.8. For any generalized path query q containing at
least one constant, the problem CERTAINTY(q) is either in FO, NL-
complete, or coNP-complete.

9 RELATEDWORK
Inconsistencies in databases have been studied in different con-
texts [6, 15, 16]. Consistent query answering (CQA) was initiated
by the seminal work by Arenas, Bertossi, and Chomicki [2]. After
twenty years, their contribution was acknowledged in a Gems of
PODS session [4]. An overview of complexity classification results
in CQA appeared recently in the Database Principles column of
SIGMOD Record [35].

The term CERTAINTY(q) was coined in [33] to refer to CQA for
Boolean queries q on databases that violate primary keys, one per

relation, which are fixed by q’s schema. The complexity classifica-
tion of CERTAINTY(q) for the class of self-join-free Boolean con-
junctive queries started with the work by Fuxman and Miller [12],
and was further pursued in [18, 20–22, 24, 26], which eventually
revealed that the complexity of CERTAINTY(q) for self-join-free
conjunctive queries displays a trichotomy between FO, L-complete,
and coNP-complete. A few extensions beyond this trichotomy re-
sult are known. The complexity of CERTAINTY(q) for self-join-free
Boolean conjunctive queries with negated atomswas studied in [23].
For self-join-free Boolean conjunctive queries with respect to mul-
tiple keys, it remains decidable whether or not CERTAINTY(q) is
in FO [25].

Little is known about CERTAINTY(q) beyond self-join-free con-
junctive queries. Fontaine [9] showed that if we strengthen Conjec-
ture 1.1 from conjunctive queries to unions of conjunctive queries,
then it implies Bulatov’s dichotomy theorem for conservative CSP [5].
This relationship between CQA and CSP was further explored
in [28]. In [1], the authors show the FO boundary forCERTAINTY(q)
for constant-free Boolean conjunctive queries q using a single bi-
nary relation name with a singleton primary key.

The counting variant of the problem CERTAINTY(q), denoted
♯CERTAINTY(q), asks to count the number of repairs that sat-
isfy some Boolean query q. For self-join-free Boolean conjunctive
queries, ♯CERTAINTY(q) exhibits a dichotomy between FP and
♯PTIME-complete [31]. It is known that this dichotomy also holds
if self-joins are allowed under the restriction that primary keys are
singletons [32].

In practice, systems supporting CQA have often used efficient
solvers for Disjunctive Logic Programming, Answer Set Program-
ming (ASP) or Binary Integer Programming (BIP), regardless of
whether the CQA problem admits a first-order rewriting [7, 8, 14,
17, 19, 29, 30].

10 CONCLUSION
We established a complexity classification in consistent query an-
swering relative to primary keys, for path queries that can have
self-joins: for every path query q, the problem CERTAINTY(q) is
in FO, NL-complete, PTIME-complete, or coNP-complete, and it
is decidable in polynomial time in the size of q which of the four
cases applies. If CERTAINTY(q) is in FO or in PTIME, rewritings
of q can be effectively constructed in, respectively, first-order logic
and Least Fixpoint Logic .

For binary relation names and singleton primary keys, an in-
triguing open problem is to generalize the form of the queries,
from paths to directed rooted trees, DAGs, or general digraphs. The
ultimate open problem is Conjecture 1.1, which conjectures that
for every Boolean conjunctive query q, CERTAINTY(q) is either in
PTIME or coNP-complete.
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A PROOFS FOR SECTION 4
A.1 Preliminary Results
We define (q)k = ε if k = 0. The following lemma concerns words
having a proper suffix that is also a prefix.

Lemma A.1. Ifw is a prefix of the word uw with u , ε , thenw is
a prefix of (u) |w | . Symmetrically, if u is a suffix uw withw , ε , then
u is a suffix of (w) |u | .

Proof. Assume w is a prefix of uw with u , ε . The desired
result is obvious if |w | ≤ |u |, in which case w is a prefix of u. In
the remainder of the proof, assume |w | > |u |. The desired result
becomes clear from the following construction:

u

w

w1

u2 u3

The wordw1 is the occurrence ofw that is a prefix of uw . The word
u2 is the length-|u | prefix ofw . Obviously, u2 = u. The word u2u3
is the length-2|u | prefix ofw . Obviously, u3 = u2. And so on. It is
now clear thatw is a prefix of (u) |w | . Note that this construction
requires u , ε . This concludes the proof. □

Definition A.2 (Episode). An episode of q is a factor of q of the
form RuR such that R does not occur in u. Let q = ℓRuRr where
RuR is an episode. We say that this episode is right-repeating (within
q) if r is a prefix of (uR) |r | . Symmetrically, we say that this episode
is left-repeating if ℓ is a suffix of (Ru) |ℓ | . □

For example, let q = AMAA

e1︷  ︸︸  ︷
MAAM A

e2︷  ︸︸  ︷
MAAM AAMAB. Then the

episode called e1 is left-repeating, while the episode e2 is neither
left-repeating nor right-repeating.

Definition A.3 (Offset). Let u and w be words. We say that u
has offset n in w if there exists words p, s such that |p | = n and
w = pus . □

Lemma A.4 (Repeating lemma). Let q be a word that satisfies C3.
Then, every episode of q is either left-repeating or right-repeating (or
both).

Proof. LetRuR be an episode inq = ℓRuRr . By the hypothesis of
the lemma, q is a factor of p := ℓ ·Ru ·Ru ·Rr . Since |q | − |p | = |u | + 1,
the offset of q in p is ≤ |u | + 1. Since R does not occur in u, it must
be that q is either a prefix or a suffix of p. We distinguish two cases:
Case that q is a suffix of p. Then, it is easily verified that ℓ is a

suffix of ℓRu. By Lemma A.1, ℓ is a suffix of (Ru) |ℓ | , which
means that RuR is left-repeating within q.

Case that q is a prefix of p. We have that r is a prefix of uRr . By
Lemma A.1, r is a prefix of (uR) |r | , which means that RuR is
right-repeating.
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This concludes the proof. □

Definition A.5. If q is a word over an alphabet Σ, then symbols(q)
is the set that contains all (and only) the symbols that occur in q.

Lemma A.6 (Self-join-free episodes). Let q be a word that sat-
isfies C3. Let LℓL be the right-most occurrence of an episode that is
left-repeating in q. Then, Lℓ is self-join-free.

Proof. Consider for the sake of contradiction that Lℓ is not self-
join-free. Since L < symbols(ℓ), it must be that ℓ has a factorMmM
such thatMm is self-join-free. By Lemma A.4, MmM must be left-
repeating or right-repeating, which requires L ∈ symbols(Mm), a
contradiction. □

A.2 Proof of Lemma 4.2
Proof of Lemma 4.2. The implication 2 =⇒ 1 is obvious. To

show 1 =⇒ 2, assume that q satisfies C1. The desired result is
obvious if q is self-join-free. Assume from here on that q is not
self-join-free. Then, we can write q = ℓRmRr , such that ℓRm is self-
join-free. That is, the second occurrence of R is the left-most symbol
that occurs a second time in q. By C1, q is a prefix of ℓRmRmRr . It
follows that Rr is a prefix of RmRr . By Lemma A.1, Rr is a prefix
of (Rm) |r |+1. It follows that there is a k such that q is a prefix
of ℓ (Rm)k . □

A.3 Proof of Lemma 4.3
Proof of Lemma 4.3. The proof of 2 =⇒ 1 is straightforward.

We show next the direction 1 =⇒ 2. To this end, assume that q
satisfies C3. The desired result is obvious if q is self-join-free (let
j = k = 0 in B2a ). Assume that q has a factor LℓL ·m · RrR where
LℓL and RrR are episodes such that symbols(LℓL), symbols(RrR),
and symbols(m) are pairwise disjoint. Then, by Lemma A.4, LℓL
must be left-repeating, and RrR right-repeating. By Lemma A.6, Lℓ
and rR are self-join-free. Then q is of the form B2a . By letting j = 0
or k = 0, we obtain the situation where the number of episodes
that are factors of q is zero or one.

The only difficult case is where two episodes overlap. Assume
that q has an episode that is left-repeating (the case of a right-
repeating episode is symmetrical). Assume that this left-repeating

episode is e1 := LℓRoL in q := · · ·

e1︷︸︸︷
LℓRoL rR︸︷︷︸

e2

· · · , where it can

be assumed that e1 is the right-most episode that is left-repeating.
Then, ℓ , ε , r implies first(ℓ) , first(r ) (or else e1 would not be
right-most, a contradiction). By a similar reasoning, ℓ = ε implies
r , ε . Therefore, it is correct to conclude ℓ , r . It can also be
assumed without loss of generality that r shares no symbols with e1,
by choosing R as the first symbol after e1 that also occurs in e1. Now
assume e2 is right-repeating, over a length > |oL|. Then q contains

a factor

e1︷︸︸︷
LℓRoL rR︸︷︷︸

e2

· oL. Then, q rewinds to a word p with factor:

e1︷︸︸︷
LℓRoL rR︸︷︷︸

e2

· o

e1︷ ︸︸ ︷
L|ℓRoL rR︸︷︷︸

e2

· oL,

where the vertical bar | is added to indicate a distinguished position.
It can now be verified that q is not a factor of p, because of the
alternation of e1 and e2 which does not occur in q. This contradicts
the hypothesis of the lemma. In particular, the words that start
at position | are r and ℓ in, respectively, q and p. We conclude by
contradiction that e2 cannot be right-repeating over a length > |oL|.
Thus, following the right-most occurrence of e1, the word q can
contain fresh word r , followed by RoL, which is a suffix of e1. This
is exactly the form B2b .

A remaining, and simpler, case is where two episodes overlap

by a single symbol R = L, giving q := · · ·

e1︷︸︸︷
LℓL rL︸︷︷︸

e2

· · · , where e1

is the right-most episode that is left-repeating, and L is the first
symbol after e1 that also occurs in e1. Therefore, L does not occur
in ℓ · r , and ℓ , r . Indeed, if ℓ = ε = r , then e1 is not right-most;
and if ℓ , ε , r , then first(ℓ) , first(r ), or else e1 would not be
right-most, a contradiction. The word q rewinds to a word p with

factor

e1︷︸︸︷
LℓL r

e1︷︸︸︷
LℓL rL,︸︷︷︸

e2
︸︷︷︸
e2

and |p | − |q | = |ℓ | + |r | + 2. It is easily

verified that e2 cannot be right-repeating for > 0 symbols. For
instance, consider the case where r , ε and e2 is right-repeating

for 1 symbol, meaning that q has suffix

e1︷︸︸︷
LℓL rL · first(r ),︸︷︷︸

e2

and p

has suffix

e1︷︸︸︷
LℓL r

e1︷︸︸︷
LℓL rL · first(r ).︸︷︷︸

e2
︸︷︷︸
e2

If we left-align these suffixes,

then there is a mismatch between first(r ) and the leftmost symbol
of Lℓ. The other possibility is to right-align these suffixes, but then
e1 cannot be genuinely left-repeating within q. □

A.4 Proof of Lemma 4.5
Proof of Lemma 4.5. Assume that q satisfies C3. By Lemma 4.3,

q satisfies B2a , B2b , or B3.
1 =⇒ 2 By contraposition. Assume that (2) does not hold. Then,

either q satisfiesB2a or q satisfiesB2b . Assume that q = aRb1Rb2Rc
for three consecutive occurrences of R such that b1 , b2. It suffices
to show that Rc is a prefix of Rb1. It is easily verified that b1 , b2
cannot happen if q satisfies B2a . Therefore, q satisfies B2b . The
word in (uv)k wv in B2b indeed allows for suffix vu ·vw ·v where
the first and second occurrence of v are followed, respectively, by u
andw . Then, in q, we have thatw is followed by a prefix of v , and
therefore C2 is satisfied.

2 =⇒ 3 The hypothesis is that q satisfies B3, but falsifies both
B2a and B2b . We can assume k ≥ 0 and self-join-free word uvw
such that q is a factor of uw (uv)k , but q falsifies B2a and B2b . It
must be that u , ε and the offset of q in uw (uv)k is < |u |, for
otherwise q is a factor of w (uv)k and therefore satisfies B2a , a
contradiction. Also, one of v or w must not be the empty word,
or else q is a factor of u (u)k , and therefore satisfies B2a (and also
satisfies B2b ). We now consider the length of q. The word uwuvu
is a factor of (wu)2vu, and thus satisfies B2b . If v = ∅, then the
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word uwuu is a factor of (wu)2 u, and thus satisfies B2b . It is now
correct to conclude that one of the following must occur:
• v , ∅ and last(u) ·wuvu · first(v) is a factor of q; or
• v = ∅,w , ∅ and last(u) ·w (u)2 · first(u) is a factor of q.
3 =⇒ 1 Assume (3). Consider first the case v , ε . Let u = ûR

and v = Sv̂ . We have R , S , since uv is self-join-free. By item (3a),
q has a factor R ·wûRSv̂ûR · S , with three consecutive occurrences
of R. It is easily verified thatwû , Sv̂û, and that RS is not a prefix
of Rwû. Therefore q falsifies C2.

Consider next the case v = ε (whence w , ε). Let u = ûR. By
item (3b), q has a factor R ·wûRûR · first(u), with three consecutive
occurrences of R. Since wû , û and first(u) , first(w), it follows
that q falsifies C2. □

B PROOFS FOR SECTION 8
B.1 Proof of Lemma 8.3
Lemma 8.3 is an immediate corollary of Lemma B.3, which states
that whenever a generalized path query starts with a constant, then
CERTAINTY(q) is in FO. Its proof needs two helping lemmas.

Lemma B.1. Let q = q1 ∪ q2 ∪ · · · ∪ qk be a Boolean conjunctive
query such that for all 1 ≤ i < j ≤ k , vars(qi ) ∩ vars(qj ) = ∅. Then,
the following are equivalent for every database instance db:

(1) db is a “yes”-instance for CERTAINTY(q); and
(2) for each 1 ≤ i ≤ k , db is a “yes”-instance for CERTAINTY(qi ).

Proof. We give the proof for k = 2. The generalization to
larger k is straightforward.

1 =⇒ 2 Assume that (1) holds true. Then each repair r of db
satisfies q, and therefore satisfies both q1 and q2. Therefore, db is a
“yes”-instance for both CERTAINTY(q1) and CERTAINTY(q2).

2 =⇒ 1 Assume that (2) holds true. Let r be any repair of db.
Then there are valuations µ from vars(q1) to adom(db), and θ from
vars(q2) to adom(db) such that µ(q1) ⊆ r and θ (q2) ⊆ r. Since
vars(q1)∩vars(q2) = ∅ by construction, we can define a valuation σ
as follows, for every variable z ∈ vars(q1) ∪ vars(q2):

σ (z) =

{
µ(z) if z ∈ vars(q1)
θ (z) if z ∈ vars(q2)

From σ (q) = σ (q1) ∪ σ (q2) = µ(q1) ∪ θ (q2) ⊆ r, it follows that r
satisfies q. Therefore, db is a “yes”-instance for CERTAINTY(q). □

Lemma B.2. Let q be a generalized path query with

q = {R1(s1, s2),R2(s2, s3), . . . ,Rk (sk , c)},

where c is a constant, and each si is either a constant or a variable
for all i ∈ {1, . . . ,k}. Let

p = {R1(s1, s2),R2(s2, s3), . . . ,Rk (sk , sk+1),N (sk+1, sk+2)},

where sk+1, sk+2 are fresh variables to q and N is a fresh relation
to q. Then there exists a first-order reduction from CERTAINTY(q) to
CERTAINTY(p).

Proof. Let db be an instance for CERTAINTY(q) and consider
the instance db ∪ {N (c,d)} for CERTAINTY(p) where d is a fresh
constant to adom(db).

We show that db is a “yes”-instance for CERTAINTY(q) if and
only if db ∪ {N (c,d)} is a “yes”- instance for CERTAINTY(p).

=⇒ Assume db is a “yes”-instance for CERTAINTY(q). Let r
be any repair of db∪{N (c,d)}, and thus r\{N (c,d)} is a repair for db.
Then there exists a valuation µ with µ(q) ⊆ r \ {N (c,d)}. Consider
the valuation µ+ from vars(q) ∪ {sk+1, sk+2} to adom(db) ∪ {c,d}
that agrees with µ on vars(q) and maps additionally µ+(sk+1) = c
and µ+(sk+2) = d . We thus have µ+(p) ⊆ r. It is correct to conclude
that db ∪ {N (c,d)} is a “yes”-instance for CERTAINTY(p).
⇐= Assume that db ∪ {N (c,d)} is a “yes”-instance for the

problemCERTAINTY(p). Let r be any repair of db. Then r∪{N (c,d)}
is a repair of db∪ {N (c,d)}, and thus there exists some valuation θ
with θ (p) ⊆ r ∪ {N (c,d)}. Since db contains only one N -fact, we
have θ (sk+1) = c . It follows that θ (q) ⊆ r, as desired. □

Lemma B.3. Let q be a generalized path query with

q = {R1(s1, s2),R2(s2, s3), . . . ,Rk (sk , sk+1)}

where s1 is a constant, and each si is either a constant or a variable
for all i ∈ {2, . . . ,k + 1}. Then the problem CERTAINTY(q) is in FO.

Proof. Let the 1 = j1 < j2 < · · · < jℓ ≤ k + 1 be all the indexes
j such that sj is a constant for some ℓ ≥ 1. Let jℓ+1 = k + 1. Then
for each i ∈ {1, 2, . . . , ℓ}, the query

qi =
⋃

ji ≤j<ji+1

{Rj (sj , sj+1)}

is a generalized path query where each sji is a constant.
We claim that CERTAINTY(qi ) is in FO for each 1 ≤ i ≤ ℓ.

Indeed, if sji+1 is a variable, then the claim follows by Lemma 6.7;
if sji+1 is a constant, then the claim follows by Lemma B.2 and
Lemma 6.7.

Since by construction, q = q1 ∪ q2 ∪ · · · ∪ qℓ , we conclude that
CERTAINTY(q) is in FO by Lemma B.1. □

The proof of Lemma 8.3 is now simple.

Proof of Lemma 8.3. Ifq contains no constants, the lemma holds
trivially. Otherwise, CERTAINTY(p) is in FO by Lemma B.3. □

B.2 Elimination of Constants
In this section, we show how constants can be eliminated from
generalized path queries. The extended query of a generalized path
query is defined next.

Definition B.4 (Extended query). Letq be a generalized path query.
The extended query of q, denoted by ext(q), is defined as follows:
• if q does not contain any constant, then ext(q) := q;
• otherwise, char(q) = {R1(x1, x2), R2(x2, x3), . . . , Rℓ(xℓ, c)}
for some constant c . In this case, we define

ext(q) := {R1(x1, x2), . . . ,Rℓ(xℓ, xℓ+1),N (xℓ+1, xℓ+2)},

where xℓ+1 and xℓ+2 are fresh variables and N is a fresh
relation name not occurring in q. □

By definition, ext(q) does not contain any constant.

Example B.5. Let q = R(x,y), S(y, 0),T (0, 1),R(1,w) where 0
and 1 are constants. We have ext(q) = R(x,y), S(y, z),N (z,u). □

We show two lemmas which, taken together, show that the prob-
lem CERTAINTY(q) is first-order reducible to CERTAINTY(ext(q)),
for every generalized path query q.
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Lemma B.6. For every generalized path query q, there is a first-
order reduction from CERTAINTY(q) to CERTAINTY(char(q)).

Proof. Let p := q \ char(q). Since vars(char(q)) ∩ vars(p) = ∅,
Lemmas B.1 and B.3 imply that the following are equivalent for
every database instance db:

(1) db is a “yes”-instance for CERTAINTY(q); and
(2) db is a “yes”-instance for CERTAINTY(char(q)) and a “yes”-

instance for CERTAINTY(p).
To conclude the proof, it suffices to observe that CERTAINTY(p) is
in FO by Lemma B.3. □

Lemma B.7. For every generalized path query q, there is a first-
order reduction from CERTAINTY(char(q)) to CERTAINTY(ext(q)).

Proof. Let q be a generalized path query. If q contains no con-
stants, the lemma trivially obtains because char(q) = ext(q) = q. If
q contains at least one constant, then there exists a first-order
reduction from CERTAINTY(char(q)) to CERTAINTY(ext(q)) by
Lemma B.2. □

B.3 Complexity Upper Bounds in Theorem 8.7
Lemma B.8. Let q be a generalized path query that contains at

least one constant. If q satisfies D3, then q satisfies D2 and ext(q)
satisfies C2.

Proof. Assume thatq satisfiesD3. Let char(q) = [[p, c]] for some
constant c . We have ext(q) = p ·N where N is a fresh relation name
not occurring in p.

We first argue that ext(q) is a factor of every word to which ext(q)
rewinds. To this end, let ext(q) = uRvRwN where p = uRvRw .
Since q satisfies D3, there exists a homomorphism from char(q) =
[[uRvRw, c]] to [[uRvRvRw, c]], implying that uRvRw is a suffix of
uRvRvRw . It follows thatuRvRwN is a suffix ofuRvRvRwN . Hence
ext(q) satisfies C3.

The remaining test for C2 is where ext(q) = uRv1Rv2RwN for
consecutive occurrences of R. We need to show that either v1 = v2
or RwN is a prefix of Rv1 (or both). We have p = uRv1Rv2Rw .
Since q satisfies D3, there exists a homomorphism from char(q) =
[[uRv1Rv2Rw, c]] to [[uRv1Rv2Rv2Rw, c]]. Since c is a constant, the
homomorphism must map Rv1 to Rv2, implying that v1 = v2. It is
correct to conclude that q satisfies D2 and ext(q) satisfies C2. □

Lemma B.9. For every generalized path query q,
• if q satisfies D1, then ext(q) satisfies C1;
• if q satisfies D2, then ext(q) satisfies C2; and
• if q satisfies D3, then ext(q) satisfies C3.

Proof. The lemma holds trivially if q contains no constant. As-
sume from here on that q contains at least one constant.

Assume that q satisfies D1. Then char(q) must be self-join-free.
In this case, ext(q) is self-join-free, and thus ext(q) satisfies C1.

For the two remaining items, assume that q satisfies D2 or D3.
SinceD2 logically impliesD3, q satisfiesD3. By Lemma B.8, ext(q)
satisfies C2. Since C2 logically implies C3, q satisfies C3. □

We can now prove the upper bounds in Theorem 8.7.

Proof of upper bounds in Theorem 8.7. Since first-order re-
ductions compose, by Lemmas B.6 and B.7, there is a first-order

reduction from the problemCERTAINTY(q) toCERTAINTY(ext(q)).
The upper bound results then follow by Lemma B.9. □

B.4 Complexity Lower Bounds in Theorem 8.7
The complexity lower bounds in Theorem 8.7 can be proved by
slight modifications of the proofs in Sections 7.1 and 7.2. We explain
these modifications below for a generalized path query q containing
at least one constant. Note incidentally that the proof in Section 7.3
needs no revisiting, because, by Lemma B.8, a violation of D2
implies a violation of D3.

In the proof of Lemma 7.1, let char(q) = [[uRvRw, c]] where c is
a constant and there is no prefix homomorphism from char(q) to
[[uRvRvRw, c]]. Let p = q \ char(q). Note that the path query uRv
does not contain any constant. We revise the reduction description
in Lemma 7.1 to be
• for each vertex x ∈ V ∪ {s ′}, we add ϕx⊥[u];
• for each edge (x,y) ∈ E ∪ {(s ′, s), (t, t ′)}, we add ϕyx [Rv];
• for each vertex x ∈ V , we add ϕcx [Rw]; and
• add a canonical copy of p (which starts in the constant c).

An example is shown in Figure 13. Since the constant c occurs at
most twice in q by Definition 8.1, the query q can only be satis-
fied by a repair including each of ϕx⊥[u], ϕ

y
x [Rv], ϕcy [Rw], and the

canonical copy of p.NL-hardness can now be proved as in the proof
of Lemma 7.1.

s ′ s a t t ′

c

u u u u

Rw
Rw

Rw
p

Rv Rv Rv Rv

Figure 13: Database instance for the revised NL-hardness
reduction from the graph G with V = {s,a, t} and E =
{(s,a), (a, t)}.

(x2 ∨ x3)

(x1 ∨ x2)

x3

x2

x1

c

u

uRv

u

uRv

p

+

Rw−

RvRw

+ Rw

− RvRw

+

Rw

−

RvRw

Figure 14: Database instance for the revised coNP-hardness
reduction from the formulaψ = (x1 ∨ x2) ∧ (x2 ∨ x3).

In the proof of Lemma 7.2, let char(q) = [[uRvRw, c]] where
c is a constant and there is no homomorphism from char(q) to
[[uRvRvRw, c]]. Let p = q \ char(q). Note that both path queries
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uRv and u do not contain any constant. We revise the reduction
description in Lemma 7.2 to be
• for each variable z, we add ϕcz [Rw] and ϕcz [RvRw];
• for each clause C and positive literal z of C , we add ϕzC [u];
• for each clause C and variable z that occurs in a negative
literal of C , we add ϕzC [uRv]; and
• add a canonical copy of p (which starts in the constant c).

An example is shown in Figure 14. Since the constant c occurs at
most twice in q, the query q can only be satisfied by a repair r such
that either

• r contains ϕzC [uRv], ϕ
c
z [Rw], and the canonical copy of p; or

• r contains ϕzC [u], ϕ
c
z [RvRw], and the canonical copy of p.

coNP-hardness can now be proved as in the proof of Lemma 7.2.

B.5 Proof of Theorem 8.8
Proof of Theorem 8.8. Immediate consequence of Theorem 8.7

and Lemma B.8. □
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