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The goal of this short note is to provide a simpler derivation of the effective potential surrounding
a Schwarzschild black hole for spherically symmetric perturbations in the framework of torsion
bigravity than the one presented in Ref.[1]. We also discuss the unicity of the reduction process that
leads to the potential.

I. INTRODUCTION

In a recent work [1], a Zerilli-like equation driving perturbations around a Schwarzschild black
hole was established and discussed in the framework of torsion bigravity theory. In our opinion
the choice of the variables adopted makes the obtention of the perturbation equation a real “tour

de force”. Hereafter we indicate a more straightforward way that leads to the same result.

II. REDUCTION

Instead of using Cartan formalism we adopt the metric and connection approach based on the
introduction of Lagrange multipliers as described in Ref. [2]. The corresponding field equations
are given by Eqs (2.17)–(2.19), specialised to the Lagrangian Eq. (2.8) with LF given by Eq. (3.1).
The various coupling constants expressed in terms of the parametrisation used in Ref. [1] are :

cR =
λ

(1 + η)
, cF =

η λ

(1 + η)
, d3 = 2

η λ

κ2
, f1 =

η λ

κ2
+ c34 , f2 = −

5

3

η λ

κ2
− c34 , (2.1)

d1 = d2 = 0 , Λ = 0 . (2.2)

The geometrical entities are :

• The metric :

ds2 = −e2Φ[t,r] dt2 + e2Λ[t,r] dr2 + r2 (dθ2 + sin2[θ] dϕ2) (2.3)
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• The non-zero even-parity torsion1 components :

Trrt = e2Λ[t,r](Λ̇[t, r]− eΦ[t,r]X [t, r]) , (2.4)

Tθrθ = (r + r2 eΛ[t,r]W [t, r]) , Tϕrϕ = sin2[θ]Tθrθ , (2.5)

Tθθt = r2 eΦ[t,r] Y [t, r] , Tϕϕt = sin2[θ]Tθθt , (2.6)

Ttrt = e2Φ[t,r](eΛ[t,r] V [t, r]− Φ′[t, r]) , (2.7)

and those related by symmetry :Tαµν = −Tανµ. As shown in Ref. [1], odd-parity compo-
nents can be consistently set equal zero from the beginning of the discussion.

The links between the field equations written directly in terms of the natural components of
the metric and the connection and those written in terms of frame components are (using the
numbering of Appendix A of Ref.[1] and the notations of Section II of Ref.[2]) : Eq. (A4) ∼
Et
t , Eq. (A5) ∼ Er

t , Eq. (A6) ∼ Eθ
θ , the sum : Eq. (A7)+Eq. (A8) ∼ Et

r, Eq. (A9) ∼ Srtt,
Eq. (A10) ∼ Srtr, Eq. (A11) ∼ Sθtθ, Eq. (A12) ∼ Srθθ. The difference : Eq. (A7)-Eq. (A8) is
a consequence of the previous equations (See Eq. (2.42) of Ref.[2]). Thus we are confronted a

priori to a system of only 8 even-parity equations.
To pursue the analysis we introduce metric and torsion perturbations around the Schwarzschild

background as follows :

Λ[t, r] = − 1
2 log(1−

2m

r
) + ǫ

∫ +∞

−∞

e−i ω ta[ω, r] dω , (2.8)

Φ[t, r] = 1
2 log(1−

2m

r
) + ǫ

∫ +∞

−∞

e−i ω tb[ω, r] dω , (2.9)

V [t, r] = e−Λ[t,r]Φ′[t, r] + ǫ

∫ +∞

−∞

e−i ω tv[ω, r] dω , (2.10)

W [t, r] = −
e−Λ[t,r]

r
+ ǫ

∫ +∞

−∞

e−i ω tw[ω, r] dω , (2.11)

X [t, r] = e−Φ[t,r] Λ̇[t, r] + ǫ

∫ +∞

−∞

e−i ω tx[ω, r] dω , (2.12)

Y [t, r] = +ǫ

∫ +∞

−∞

e−i ω ty[ω, r] dω . (2.13)

1 In this note, torsion is defined according to Cartan structure equation (for the notations, see Ref.[2], Section

II.C): Tâ = 1

2
T â

b̂ĉ
eb̂ ∧ eĉ = deâ + Aâ

b̂
∧ eb̂; in Ref.[1] the opposite convention is used.
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These perturbations variables are related to those introduced in Ref.[1] by :

Λo[ω, r] = a[ω, r] , (2.14)

φo[ω, r] = b[ω, r] , (2.15)

Vo[ω, r] = v[ω, r] +

…

1−
2m

r

(

b′[ω, r]−
m

r (r − 2m)
a[ω, r]

)

, (2.16)

Wo[ω, r] = w[ω, r] −
1

r

…

1−
2m

r
a[ω, r] , (2.17)

Xo[ω, r] = x[ω, r] − i ω
1

»

1− 2m
r

a[ω, r] , (2.18)

Yo[ω, r] = y[ω, r] . (2.19)

Plugging the expressions 2.8–2.13 into the field equations and expanding them to first order in ǫ
provides the perturbation equations. They consist of 8 equations (equivalent to those provided
in the Supplemental Material linked to Ref. [1]). Two of them involve the third derivative
(with respect to r) of b[ω, r] and the second derivatives of all the 6 perturbations variables. The
redundancy of this system allows one, by taking linear combinations of the various equations and
their derivatives, to reduce the system to :

v[ω, r] = 2
κ2r3 +m (1 + η)

κ r3 − 2m (1 + η)
w[ω, r] , (2.20)

x[ω, r] = −2
κ2r3 +m (1 + η)

κ r3 − 2m (1 + η)
y[ω, r] , (2.21)

a[ω, r] =

…

1−
2m

r

η

1 + η

κ2 r3 − 2m (1 + η)

(r − 2m)
(κ2 r3 − 2mη)

(

r w[ω, r] + i
m

ω r
y[ω, r]

)

,

(2.22)

b′[ω, r] = −
1

»

1− 2m
r

(ηr
(

κ2r3 − 2(1 + η)m
)(

κ2r3(2r − 3m) + 2mη(r − 3m)
)

(r − 2m)(1 + η)(κ2 r3 − 2ηm)2
w[ω, r]

+
iη(κ2r3 − 2m(1 + η))(ω2 r3(κ2r3 − 2mη) + 2m(κ2r2(2 r − 3m)− ηm)

(r − 2m)(1 + η)(κ2 r3 − 2ηm)2
y[ω, r]

)

,

(2.23)

w′[ω, r] =
1

r

(r − 3m

r − 2m
+ 6m

(1 + 3 η)κ6 r9 − 10 η (1 + η)κ4mr6 + 4 η (1 + η)2κ2m2 r3 + 8 η2(1 + η)2m3

(κ4 r6 − 4 η (1 + η)m2)(κ2 r3 − 2 (1 + η)m)(κ2 r3 − 2ηm)

)

w[ω, r]

− i
(κ2(κ2 r3 − 2 (1 + η)m)2(κ2 r3 + 4 ηm)

(κ4 r6 − 4 η (1 + η)m2)(κ2 r3 − 2 ηm)
−

r

r − 2m
ω2

)

q[ω, r] , (2.24)

q′[ω, r] = i
r

r − 2m
w[ω, r] −

κ2 r3 (3 r − 5m)− 2 (1 + η)m2

r (r − 2m)(κ2 r3 − 2 (1 + η)m)
q[ω, r] , (2.25)

where

q[ω, r] :=
y[ω, r]

ω
. (2.26)
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III. ZERILLI’S CONSTRUCTION

Zerilli has presented [3], in the framework of the analysis of gravitational perturbations around
a black hole, the result of the reduction of a system of first order differential equation system :

z′1[ω, r] = α[ω, r] z1[ω, r] + β[ω, r] z2[ω, r] (3.1)

z′2[ω, r] = γ[ω, r] z1[ω, r] + δ[ω, r] z2[ω, r] (3.2)

to a second order Schrödinger-type equation :

n[r]φ′[ω, r] = ψ[ω, r] , (3.3)

n[r]ψ′[ω, r] = (V [r] − ω2)φ[ω, r] , (3.4)

under the assumptions that :

α[ω, r] = α0[r] + α2[r]ω
2 , β[ω, r] = β0[r] + β2[r]ω

2 , (3.5)

γ[ω, r] = γ0[r] + γ2[r]ω
2 , δ[ω, r] = δ0[r] + δ2[r]ω

2 , (3.6)

by defining2 :

φ[ω, r] = A[r] z1[ω, r] +B[r] z2[ω, r] , (3.7)

ψ[ω, r] = C[r] z1[ω, r] +D[r] z2[ω, r] . (3.8)

with

A[r]D[r] −B[r]C[r] 6= 0 . (3.9)

As we don’t completely agree on one point exposed in Ref.[3], let us reconsider hereafter the
reduction process.
Inserting the expressions [3.7, 3.8] of φ[ω, r] and ψ[ω, r] into Eqs [3.3, 3.4] , taking into account
Eqs [3.1, 3.2] and the arbitrariness of the values on a point of the functions z1[ω, r] and z2[ω, r]
(expressing the Cauchy problem of the differential system) we obtain four constraints :

• from Eq. [3.3] :

n[r] (A′[r] + α[ω, r]A[r] + γ[ω, r]B[r]) = C[r] , (3.10)

n[r] (B′[r] + δ[ω, r]B[r] + β[ω, r]A[r]) = D[r] , (3.11)

• from Eq. [3.4] :

n[r] (C′[r] + α[ω, r]C[r] + γ[ω, r]D[r]) = (V [r]− ω2)A[r] , (3.12)

n[r] (D′[r] + β[ω, r]C[r] + δ[ω, r]D[r]) = (V [r]− ω2)B[r] . (3.13)

2 In Refs. [1, 3] the transformation considered is the inverse of the one introduced here :

z1[ω, r] = f [r]φ[ω, r] + g[r]ψ[ω, r] ,

z2ω, r] = h[r]φ[ω, r] + k[r], ψ[ω, r] ,
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They can be rewritten as :

(A′[r] + α[ω, r]A[r] + γ[ω, r]B[r])D[r] − (B′[r] + δ[ω, r]B[r] + β[ω, r]A[r])C[r] = 0 , (3.14)

(C′[r] + α[ω, r]C[r] + γ[ω, r]D[r])B[r] − (D′[r] + δ[ω, r]D[r] + β[ω, r]C[r])A[r] = 0 , (3.15)

n[r]
(B′[r] + δ[ω, r]B[r] + β[ω, r]A[r])A[r] − (A′[r] + α[ω, r]A[r] + γ[ω, r]B[r])B[r]

A[r]D[r] −B[r]C[r]
= 1 ,

(3.16)

n[r]
(C′[r] + α[ω, r]C[r] + γ[ω, r]D[r])D[r] − (D′[r] + δ[ω, r]D[r] + β[ω, r]C[r])C[r]

A[r]D[r] −B[r]C[r]
= V [r]− ω2 .

(3.17)

Combining Eqs [3.14] and [3.15] we obtain :

(A[r]D[r] −B[r]C[r])′

(A[r]D[r] −B[r]C[r])
= −(α[ω, r] + δ[ω, r]) (3.18)

whose independence with respect to ω requires that :

α[ω, r] + δ[ω, r] = α0[r] + δ0[r] (3.19)

i.e.

α2[r] = −δ2[r] (3.20)

Thus the integration of Eq. [3.18] leads to a first relation :

(A[r]D[r] −B[r]C[r]) = e−
∫
(α0[r]+δ0[r]) dr . (3.21)

We obtain from Eqs [3.10, 3.11] that the independence of the functions C[r] and D[r] with respect
to ω requires :

α2[r]A[r] + γ2[r]B[r] = 0 , (3.22)

β2[r]A[r] + δ2[r]B[r] = 0 (3.23)

(3.24)

which implies the compatibility condition :

α2[r] δ2[r]− β2[r] γ2[r] = 0 . (3.25)

Moreover, by expanding Eq. [3.17] in power of ω, it splits into two parts :

n[r]

(

D[r]C[r](δ2 [r]− α2[r]) + C2[r]β2[r]−D2[r] γ2[r]

A[r]D[r] −B[r]C[r]
= 1 , (3.26)

n[r]
(C′[r] + α0[r]C[r] + γ0[r]D[r])D[r] − (D′[r] + δ0[r]D[r] + β0[r]C[r])C[r]

A[r]D[r] −B[r]C[r]
= V [r] .

(3.27)

To go ahead let us assume γ2[r] 6= 0. We obtain from the condition [3.22] that :

B[r] = −
α2[r]

γ2[r]
A[r]=: µ[r]A[r] , (3.28)
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(where we have introduced µ[r] := −α2[r]/γ2[r] to lighten the next equation). Indeed, by intro-
ducing this expression of B[r] into Eqs [3.10, 3.11] and substituting the results in Eq. [3.21] we
obtain the main equation of the reduction process :

A2[r] =
e−

∫
(α0[r]+δ0[r]) dr

n[r]
(

β0[r] + (α0[r] + δ0[r])µ[r] + γ0[r]µ2[r] + µ′[r]
) . (3.29)

To simplify some expressions we find useful to set :

A[r] =:
Ã[r]
√

n[r]
, B[r] =:

B̃[r]
√

n[r]
, (3.30)

and rewrite Eq. [3.28] as :

B̃[r] = µ[r] Ã[r] . (3.31)

Inserting these redefinitions into Eqs [3.10, 3.11] we obtain :

C[r] =−
1

2
Ã[r]

n′[r]

n1/2[r]
+ n1/2[r] C̃[r] , (3.32)

D[r] =−
1

2
B̃[r]

n′[r]

n1/2[r]
+ n1/2[r] D̃[r] , (3.33)

in which we have introduced the functions C̃[r] and D̃[r] defined as :

C̃[r] := Ã′[r] + α0[r]Ã[r] + γ0[r]B̃[r] , (3.34)

D̃[r] := B̃′[r] + δ0[r]B̃[r] + β0[r]Ã[r] . (3.35)

All these redefinitions allow us to rewrite Eq. [3.26] as :

n2[r] =
Ã[r] D̃[r] − B̃[r] C̃[r]

(

β2[r] C̃2[r] − γ2[r] D̃2[r]− 2α2[r] C̃[r] D̃[r]
) (3.36)

which is easily expressed only in terms of K[r] := n[r]A2[r] = Ã2[r] using :

B̃[r] C̃[r] = µ[r] Ã[r] C̃[r] = µ[r]
(1

2
K ′[r] +

(

α0[r]− γ0[r]µ[r]
)

K[r]
)

, (3.37)

Ã[r] D̃[r] =
µ[r]

2
K ′[r] +

(

β0[r] + δ0[r]µ[r] + µ′[r]
)

K[r] , (3.38)

(that are immediate consequences of Eqs [3.34, 3.35]) and

C̃2[r] =
1

K[r]

(

Ã[r] C̃[r]
)2

, (3.39)

D̃2[r] =
1

K[r]

(

Ã[r] D̃[r]
)2

. (3.40)

The expression of the function K[r] is given by Eq. [3.29].
Accordingly the effective potential is completely determined by the functions appearing in the
first order differential system [3.1, 3.2]. More precisely, the differential system Eqs[3.1, 3.2] may
be reduced to a Schrödinger-type system (Eqs[3.3, 3.4]) under the assumptions [3.5, 3.6] if the
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condition [3.20 is satisfied. In this case the function n[r] and the functions A[r], B[r], C[r] and
D[r] defining a linear transformation between the solutions of the original differential system
and the Schrödinger-type one are obtained via the help of a function K[r] given by Eq. [3.29].

From this function (defined up to a multiplicative constant) we first obtain the function Ã[r] (as

a square root of K[r]) and then the three functions B̃[r],C̃[r] and D̃[r] thanks to Eqs [3.31, 3.34,
3.35]. Then Eq. [3.36] provides (up to an arbitrary sign) the function n[r]. from which, using
Eqs [3.30, 3.32, 3.33] we obtain the expressions of A[r],B[r], C[r] and D[r]. So we have explicit
expressions of all the elements needed to compute the potential V [r] via Eq. [3.27].
On the contrary to what is claimed in Ref. [3], no arbitrary function remains as the procedure
goes on but only an integration constant and a sign, both irrelevant. Applying this reduction
process to the system Eqs [2.24, 2.25] derived in the framework of torsion bigravity we recover
the effective potential displayed in Eq. (5.21) of Ref.[1]. Moreover Eq. [3.36] leads to :

n2[r] =
( dr

dr⋆

)2

=
( (r − 2m)

r

)2

(3.41)

in accordance with the covariance expected for a second order perturbation equation on a
Schwarzschild background.

IV. CONCLUSION

This note has no other claim than to provide a more direct way of obtaining the effective
potential driving the spherically symmetric perturbations of a Schwarzschild black hole in torsion
bigravity. All the merit of its first writing and its analysis from a physical point of view remains
due to the author of the work [1].
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