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Introduction

We consider simple undirected graphs.

For a graph G = (V , E ),
its order |V | is denoted by n;
its size |E | is denoted by m.
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Introduction

A graph invariant is a function on graphs that is constant on isomorphism
classes.
Examples: order n, size m, chromatic number χ, maximum degree ∆,
diameter D, planarity, . . .

Example (Several isomorphic graphs → one graph G)

n(G) = 4, m(G) = 5, χ(G) = 3,

∆(G) = 3, D(G) = 2, planarity(G) = true, . . .

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 3 / 38



Introduction

A graph invariant is a function on graphs that is constant on isomorphism
classes.
Examples: order n, size m, chromatic number χ, maximum degree ∆,
diameter D, planarity, . . .

Example (Several isomorphic graphs → one graph G)

n(G) = 4, m(G) = 5, χ(G) = 3,

∆(G) = 3, D(G) = 2, planarity(G) = true, . . .

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 3 / 38



Extremal Graph Theory

Extremal Graph Theory aims to find bounds on a graph invariant under
some constraints.
Generally, those constraints are of two types:

restricting class of graphs (e.g., connected graphs, trees);
fixing (and restricting) values of other invariants (e.g., size, maximum
degree).

Results in Extremal Graph Theory mainly consists in
giving bounds;
characterizing graphs achieving these bounds.
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Computer-assisted discovery

Context: Computer-assisted discovery in Extremal Graph Theory

Several existing systems: Graph, Graffiti, AutoGraphiX,
GraPHedron, . . .

exploit different ideas to help graph theorists
Objectives of this talk:

presentation of PHOEG, a successor of GraPHedron
use of an illustrative problem (eccentric connectivity index, ECI)

Remark: work under progress
PHOEG is currently a prototype
the problem about ECI is not fully solved
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Eccentric Connectivity Index

Let v be a vertex of a graph G , recall that:
degree d(v) = number of adjacent vertices of v ;

eccentricity ε(v) = maximal distance between v and any other vertex.

Example

a2

2 | 2

b
3

3 | 1

c 2

2 | 2

d
3

3 | 1
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Eccentric Connectivity Index
Definition
The Eccentric Connectivity Index (ECI) of a graph G , denoted by ξc(G), is

ξc(G) =
∑
v∈V

d(v)ε(v).

Example

a2 | 2
b

3 | 1

c 2 | 2

d
3 | 1

ξc(G) = 2 × (4 + 3) = 14
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Bounds on ξc for connected graphs with fixed size

Now, let’s make extremal graph theory about ξc with the help of a
computer.

First step: define a problem by choosing constraints.

Several papers containing bounds on ξc — using various invariants as
constraints — have been published (since 2010). However, the two simplest
graph invariants are the order n and the size m and this leads to the
following natural question.

Problem
Among connected graphs of order n and size m, what is the maximum
possible value for ξc?

(To avoid infinite eccentricities, we restrict the problem to connected graph)
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Upper bound on ξc for connected graphs with fixed size

We define En,m as follows :

The biggest possible clique
without disconnecting the graph.
A path with the remaining
vertices.
Add remaining edges between
vertices of the clique and the
first vertex of the path.

n = 7, m = 14

This graph is unique for given n and m. We define dn,m as the diameter of
En,m.
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Upper bound on ξc for connected graphs with fixed size

m = 4, dn,m = 4 m = 5, dn,m = 3 m = 6, dn,m = 3

m = 7, dn,m = 2 m = 8, dn,m = 2 m = 9, dn,m = 2
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a graph of order n and size m such that d ≥ 3. Then,

ξc(G) ≤ ξc(En,m),

with equality if and only if G ' En,m.

The authors prove that the conjecture is true when
m = n − 1, n, . . . , n + 4 (if n is large enough).
It exists a “proof” published in a journal of University of Isfahan (Iran,
2014) but that is obviously wrong.
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a graph of order n and size m such that d ≥ 3. Then,
ξc(G) ≤ ξc(En,m), with equality iff G ' En,m.

This conjecture leads to several questions:
Is the conjecture true?
If yes, how to prove it?
If no, how to improve or correct it?
What about graphs such that d < 3?

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 12 / 38



How the computer can help?

In the following, we will show how PHOEG can help to study all of the
above questions and to raise new ones.

P Helps Obtaining Extremal Graphs
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Exploring ξc with PHOEG

GraPHedron’s main principle:
view graphs as points in the space of invariants;
compute the convex hull of these points (for small values of n).

PHOEG is intended to be the successor of GraPHedron. It can be used to
explore graphs’ convex hull but also go further (see later).
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG – observations
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There is a lot of possible observations on these polytopes.
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Observations and questions

20 40 60
5

10

15

20
How to explain the grid?

GraPHedron: gives no access
to inner points

Is the conjecture of Zhang,
Liu and Zhou true when
d ≥ 3?

GraPHedron does not allow
to constraint points

Upper bound when d < 3?

Idem

These questions are outside the scope of the former system:
let’s dive into PHOEG!
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From GraPHedron to PHOEG

Former system: graphs and invariant’s values written sequentially in
files;
PHOEG uses a PostgreSQL DB with more than 12 million of
non-isomorphic graphs (up to order 10);
Each graph has its unique signature:

to each graph G , one assigns a representative of its isomorphism class;
it is called the canonical form of G ;
in practice, Canon(G) is the smallest graph in the isomorphism class of
G (in the lexicographical order induced by adjacency matrices);
the canonical matrix is then translated into a string (graph6 format):

sig(C5) = ”DqK”;

sig(K3) = ”Bw”.

This allows complex (and fast) queries on graphs.
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Invariants’ Database

Graphs
signature
A_
A?
B?
BG
Bw
BW
C‘
C^
C~
C?
C@

NumVertices
signature val
A_ 2
A? 2
B? 3
BG 3
Bw 3
BW 3
C‘ 4
C^ 4
C~ 4
C? 4
C@ 4

NumEdges
signature val
A_ 1
A? 0
B? 0
BG 1
Bw 3
BW 2
C‘ 2
C^ 5
C~ 6
C? 0
C@ 1

ECI
signature val
A_ 2
BW 6
Bw 6
C^ 14
C~ 12
CF 9
CN 13
Cr 16
CR 14
D‘[ 25
D‘{ 20
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Database query – Points and multiplicities

SELECT P.val AS eci, num_edges.val AS m,
COUNT(*) AS mult

FROM eci P
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)

WHERE num_vertices.val = 7
GROUP BY m, eci;

eci | m | mult
----+----+------
47 | 8 | 5
46 | 8 | 3
40 | 8 | 3
32 | 7 | 3
48 | 12 | 55
48 | 18 | 1
61 | 14 | 4
59 | 13 | 1
48 | 11 | 17
43 | 9 | 14
47 | 6 | 1
64 | 10 | 1
59 | 11 | 1
45 | 9 | 7
38 | 6 | 2

[...]
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Database query – Polytope

SELECT ST_AsText(ST_ConvexHull(ST_Collect(ST_Point(eci, m))))
FROM poly;

st_astext
--------------------------------------------------------

POLYGON((18 6,42 21,66 18,68 17,66 11,62 8,54 6,18 6))
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Database query – Polytope
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Database query – adding other information

SELECT num_edges.val AS m,
p.val AS eci, d.val AS d,
diam.val AS diam

FROM eci p
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)
JOIN d USING(signature)
JOIN diam USING(signature)

WHERE num_vertices.val = 7
ORDER BY diam, d, m, eci;

m | eci | d | diam
---+-----+---+------
21 | 42 | 1 | 1
16 | 46 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2

[...]
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Coloring points with values of d
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Recall that the conjecture is stated for d ≥ 3. Is it true for n = 7?
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Database query – Extremal graphs

WITH tmp AS (
SELECT n.val AS n, m.val AS m,

P.signature, P.val AS eci, d.val AS d
rank() OVER (

PARTITION BY n.val, m.val
ORDER BY P.val DESC

) AS pos
FROM num_vertices n
JOIN num_edges m USING(signature)
JOIN d USING(signature)
JOIN eci P USING(signature)
WHERE n.val = 7

)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d >= 3
ORDER BY n, m, d, eci;

sig | n | m | eci | d
------+---+----+-----+----
F@IQO | 7 | 6 | 54 | 6
F@‘J_ | 7 | 7 | 57 | 5
FgCXW | 7 | 8 | 62 | 5
FWCYw | 7 | 9 | 62 | 4
FgCxw | 7 | 10 | 64 | 4
F‘Kyw | 7 | 11 | 66 | 4
F‘Kzw | 7 | 12 | 65 | 3
F‘Lzw | 7 | 13 | 65 | 3
F‘\zw | 7 | 14 | 65 | 3
FJ]|w | 7 | 15 | 65 | 3
FJ\|w | 7 | 15 | 65 | 3

⇒ counter-example to the conjecture !
Extremal graphs are not always unique
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Counter-example (n = 7 and m = 15)

5 × 2

5 × 2

5 × 2

4 × 3 5 × 2 5 × 2 1 × 3

It is possible to construct counter-examples for any values of n ≥ 6 (with d = 3).

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 26 / 38



Counter-example (n = 7 and m = 15)

5 × 2

5 × 2

5 × 2

3 × 3 5 × 2 5 × 2 2 × 3

It is possible to construct counter-examples for any values of n ≥ 6 (with d = 3).

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 26 / 38



Counter-example (n = 7 and m = 15)

5 × 2

5 × 2

5 × 2

3 × 3 5 × 2 5 × 2 2 × 3

It is possible to construct counter-examples for any values of n ≥ 6 (with d = 3).

G. Devillez — UMONS PHOEG Helps Obtaining Extremal Graphs ECCO XXIX - 2016 26 / 38



Coloring points with values of d
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Upper bound when d ≤ 2?
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Upper facet of the polytope (n = 7)
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A new upper bound tight when d ≤ 2

Theorem
Let G be a graph of order n and size m. Then,

ξc(G) ≤ n(n − 1)(n − 2) − 2m(n − 3),

with equality if and only if G is the complement of a matching.

Note that the bound is valid for all graphs but can be tight only if

m ≥
(

n
2

)
−
⌊n

2

⌋
,

(and thus d ≤ 2).
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Coloring points with values of the diameter
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Can the diameter explain the blue grid? Actually, yes!
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Understanding the grid of blue points

20 30 40 50 60 70
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Suppose D(G) = 2 (light blue points)
For each vertex v, since D(G) = 2, either
ε(v) = 1 or ε(v) = 2

If ε(v) = 1, then v is dominant and
d(v) = n − 1
Let k be the number of dominant vertices of G
The sum of degrees of non dominant vertices is

2m − k(n − 1)

Thus,
ξc(G) = k(n − 1) + 2(2m − k(n − 1)) = 4m − k(n − 1),

that is maximum if k = 0 and, moreover, explain the grid.
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PHOEG – Transproof

Up to this point, we have
a tight upper bound when d ≤ 2;
and counter-examples for the unicity if d = 3.

However, the conjecture may be true if d ≥ 4 (actually, we believe it is).

Is PHOEG able to help also for a proof?

This is the purpose of the Transproof module:
using graph transformations is a common proof technique;
not always easy to find “good” transformations.
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Metagraph of transformations – edge removal
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Graph database

Metagraph stored in a graph DB (Neo4j)
Easy queries, e.g.,
match (n)-[e:EdgeRemoval]->(m)
where n.invariant < m.invariant
return n,e,m
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Finding transformations

Actually, removing an edge is not well suited for our problem.

Indeed, the size of our graphs is fixed.

A rotation can be better since it keeps the size unchanged.

Definition
Let G = (V , E ) be a graph and u, v , w be three vertices
of G such that uv ∈ V and uw /∈ V . Then, G ′ is the
graph obtained from G by applying a rotation
rot(u, v , w) if

G ′ = G − uv + uw .

w

v

u
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The metagraph of rotations for ξc when n = 5 et m = 6

Applying only one rotation is thus not sufficient to have a proof.

Finding good transformations for ξc : work in progress.
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Concluding remarks

Not only extremal graphs are useful to study extremal properties of an
invariant
Exact approach limited to small graphs (n ≤ 10)
However, dealing with small graphs has already shown to be very useful
and led to numerous results (AutoGraphiX, GraPHedron)
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Perspectives

Invariants’ DB allows a form of dynamic programming
Create a simple interface for queries
Allow easy visualization and manipulation of outputs (GUI, PDF, etc.)
Simplify the definitions of transformations
Suggest automatically (a short list of) transformations
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Eccentric Connectivity Index

History and motivation
Sharma, Goswani and Madan introduced ξc in 1997 in Chemistry;
Useful as a discriminating topological descriptor for Structure
Properties and Structure Activity studies;
Since 1997, more than 200 chemical papers about ξc : applications in
drug design, prediction of anti-HIV activities, etc.

However, the first mathematical paper with extremal properties on ξc

was published only in 2010;
Since 2010, about a dozen papers containing bounds on ξc .
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Upper bound on ξc for connected graphs with fixed size

Definition
For positive integers n and m with n − 1 ≤ m ≤

(n
2
)
, let

dn,m =
⌊

2n + 1 −
√

17 + 8(m − n)
2

⌋
.

In the following, we simply use d for dn,m.

Definition
Let En,m be the graph obtained from a clique Kn−d−1 and a path
Pd+1 = v0v1 . . . vd by joining each vertex of the clique to both vd and vd−1,
and by joining

m − n + 1 −
(

n − d
2

)
vertices of the clique to vd−2.
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Upper bound on ξc for connected graphs with fixed size

Example (n = 5)

m 4 5 6 7 8 9 10
d 4 3 3 2 2 2 1
n − d − 1 0 1 1 2 2 2 3
# edges to vd−2 0 0 1 0 1 2 0
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