
ConsistentQuery Answering for Primary Keys and Conjunctive
Queries with Negated Atoms

Paraschos Koutris

University of Wisconsin-Madison

Madison, WI, USA

paris@cs.wisc.edu

Jef Wijsen

Université de Mons

Mons, Belgium

jef.wijsen@umons.ac.be

ABSTRACT
This paper studies query answering on databases that may be in-

consistent with respect to primary key constraints. A repair is any

consistent database that is obtained by deleting a minimal set of

tuples. Given a Boolean query q, the problem CERTAINTY(q) takes
a database as input and asks whether q is true in every repair of

the database. A significant complexity classification task is to deter-

mine, given q, whether CERTAINTY(q) is first-order definable (and
thus solvable by a single SQL query). This problem has been exten-

sively studied for self-join-free conjunctive queries. An important

extension of this class of queries is to allow negated atoms. It turns

out that if negated atoms are allowed, CERTAINTY(q) can express

some classical matching problems. This paper studies the existence

and construction of first-order definitions for CERTAINTY(q) for
q in the class of self-join-free conjunctive queries with negated

atoms.

CCS CONCEPTS
• Information systems→Relational database query languages;
•Theory of computation→Logic anddatabases; Incomplete,
inconsistent, and uncertain databases;

KEYWORDS
Conjunctive queries; consistent query answering; negation; primary

keys

ACM Reference Format:
Paraschos Koutris and Jef Wijsen. 2018. Consistent Query Answering for

Primary Keys and Conjunctive Queries with Negated Atoms. In PODS’18:
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3196959.3196982

1 INTRODUCTION
Consistent query answering for primary keys is the following prob-

lem. Fix a relational database schema with one primary key con-

straint per relation. A database is allowed to violate the primary

key constraints of its schema, and is consistent if it satisfies these

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-4706-8/18/06. . . $15.00

https://doi.org/10.1145/3196959.3196982

R x y

Alice Bob

Alice George

Maria Bob

Maria John

S y x

Bob Alice

Bob Maria

George Alice

George Maria

Figure 1: Example of an inconsistent database violating the
primary key constraints. Blocks of key-equal tuples are sep-
arated by dashed lines.

constraints. A repair of a database db is any consistent database

that is obtained by deleting a minimal set of tuples from db. Given
a Boolean query q, CERTAINTY(q) is the problem that takes a data-

base as input, and asks whether q evaluates to true on every repair

of the database.

The complexity of the problem CERTAINTY(q) for self-join-free
Boolean conjunctive queries has been settled in [19]. An important

extension of conjunctive queries (CQs) is to allow negated atoms.

This class of queries has received several names: CQs with atomic

negation, CQs with negated atoms, CQs with safe negation, CQs

with negation. These are first-order queries of the form:

∃®x (R1(®x1) ∧ · · · ∧ Rℓ(®xℓ) ∧ ¬Rℓ+1(®xℓ+1) ∧ · · · ∧ ¬Rn (®xn)) ,

subject to the restriction, called safety, that every variable that

occurs within the scope of a negation, also occurs in an atom that

is not negated. Such a query is Boolean if it contains no free vari-

ables, and self-join-free if all relation names are pairwise distinct. In

this paper, we study the complexity of CERTAINTY(q) for self-join-
free conjunctive queries with negated atoms. The extension with

negation allows, among others, expressing some widely studied

matching problems, as illustrated by Examples 1.1 and 1.2. Such

expressiveness obviously does not come for free. It is a general

observation—and our work is no exception—that whenever nega-

tion is added to a negation-free query language, reasoning problems

become more involved.

Example 1.1. Let q1 = ∃x∃y(R(x ,y) ∧ ¬S(y,x)), where primary

keys are underlined. Intuitively, one can think of a fact R(д,b) as

“girl д knows boy b.” Conversely, S(b,д) means that “boy b knows

girl д.” See Fig. 1 for an example inconsistent database. The repairs

of R correspond to all ways in which each girl can choose one boy

she knows. Conversely, the repairs of S correspond to all ways

in which each boy can choose one girl he knows. Then, given a

database of R-facts and S-facts, the query q1 is true in every repair if
and only if it is impossible to match each girl to a distinct boy such

that every girl is matched to a boy she knows and by whom she

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

209

https://doi.org/10.1145/3196959.3196982
https://doi.org/10.1145/3196959.3196982

is known. For the database in Fig. 1, observe that such a matching

is possible: we can pair Alice with George, and Maria with Bob.

This pairing corresponds to the repair with facts R(Alice,George),
R(Maria,Bob), S(George,Alice), and S(Bob,Maria), which does not

satisfy q1.
If every R-fact R(д,b) has a corresponding S-fact S(b,д), and

vice versa, and if our databases have the same number of girls and

boys, then CERTAINTY(q1) is equivalent to the complement of the

Bipartite Perfect Matching (BPM) problem. �

In general, our work concerns the following complexity classifi-

cation question: given a Boolean conjunctive query q with negated

atoms, what is the complexity of the problem CERTAINTY(q)? A
fine-grained complexity classification is too ambitious when one re-

alizes that the exact complexity of BPM is already an open problem

(see, for example, [9, 10]). In this paper, we concentrate on deciding

whether or not CERTAINTY(q) is in the complexity class FO. In
our setting, FO is the class of decision problems that take as input

a relational database (over a fixed schema) and can be solved by a

single first-order query. Membership of a database-related problem

in FO is of practical interest, because this means that the problem

can be solved using standard SQL database technology. A first-order

query φ that solves CERTAINTY(q) is called a consistent first-order
rewriting for q.

For example, for the query q1 of Example 1.1, we can conclude

that CERTAINTY(q1) is not in FO, because BPM is known not to be

in FO (see the proof of Lemma 5.2 for a more detailed argumenta-

tion). Thus, q1 has no consistent first-order rewriting. Example 1.2

introduces another matching problem that can be reduced to the

complement of CERTAINTY(qHall), where qHall is a conjunctive

query with negated atoms that does have a consistent first-order

rewriting.

Example 1.2. Consider the following problem, which we call S-

Covering: given a set S and a listT1,T2, . . . ,Tℓ of (possibly empty)

subsets of S , can we pick at most one element from eachTi such that
every element of S is picked once? That is, we are asking whether

there exists an injective function f : S → {1, 2, . . . , ℓ} such that

for every element a ∈ S , a ∈ Tf (a). Hall’s Marriage Theorem [14]

gives a sufficient and necessary condition for the existence of such

function.

S-Covering can be first-order reduced to the complement of

CERTAINTY(qHall) with

qHall = ∃x(S(x) ∧ ¬N1(c,x) ∧ · · · ∧ ¬Nℓ(c,x)),

where c is a constant. The reduction constructs a database db that

contains S(a) for every a ∈ S , and that contains Ni (c,a) whenever
a ∈ Ti . The repairs correspond to all ways of picking elements from

the ℓ sets. A repair of db that falsifies qHall will satisfy ¬qHall :

¬qHall ≡ ∀x(S(x) → (N1(c,x) ∨ · · · ∨ Nℓ(c,x))).

Obviously, such a repair, if it exists, picks at most one element from

each Ti , and picks every element of S .
An immediate corollary of our results will be that if ℓ is fixed,

CERTAINTY(qHall) can be solved by a single first-order query. Fig-

ure 2 shows the query for solving the case ℓ = 3. The details are

postponed until Example 6.12. �

We are not aware of other existing work on theoretical aspects of

CERTAINTY(q) for conjunctive queries with negated atoms. This

paper makes a first significant contribution in this direction by

establishing the following result (see Theorem 4.3):

Given a self-join-free Boolean conjunctive query q
with weakly-guarded negation, it is decidable whether

the problem CERTAINTY(q) is in FO. Moreover, if

CERTAINTY(q) is in FO, then a first-order query that

solves CERTAINTY(q), called a consistent first-order
rewriting, can be effectively constructed.

Negation is calledweakly-guarded if whenever some variables x and

y occur together in a negated atom, they also occur together in some

non-negated atom. Weakly-guarded negation is safe (take x and y
to be the same), and strictly weaker than guarded negation (where

for each negated atom, there exists a non-negated atom containing

all the variables of the negated atom). To prove the above result,

we significantly extend existing techniques in consistent query

answering.

We briefly discuss the restrictions we impose on the queries we

consider. The restriction to Boolean queries allows us to define

CERTAINTY(q) as a decision problem. The extension to queries

with free variables is easy, essentially because free variables can

be treated as constants. This is argued in [19, Section 3.3] for

querieswithout negated atoms, and the same argumentation holds if

negated atoms are allowed. The restriction to self-join-free queries

is used in several proofs. The complexity classification of prob-

lems CERTAINTY(q) remains an open task if self-joins are allowed,

even in the absence of negated atoms. The restriction to weakly-

guarded negation is also used in several proofs, and will be dis-

cussed in Section 7. If we look beyond conjunctive queries, it is

natural to consider classes of queries that contain disjunctions of

(restricted) Boolean conjunctive queries. The complexity classifica-

tion of CERTAINTY(q) for queries q with disjunction is still largely

open.

Organization. This paper is organized as follows. Section 2 dis-

cusses related work. Section 3 introduces our theoretical frame-

work. Section 4 introduces our main theorem, which establishes

a sufficient and necessary condition for CERTAINTY(q) to be in

FO, where q is a self-join-free Boolean conjunctive query with

weakly-guarded negation. Section 5 shows that the condition is

necessary; and Section 6 shows that the condition is sufficient.

Section 7 discusses in more depth the notion of weakly-guarded

negation. Finally, Section 8 concludes the paper.

2 RELATEDWORK
Consistent query answering (CQA) goes back to the seminal work

by Arenas, Bertossi, and Chomicki [1], and is the topic of the mono-

graph [4]. The term CERTAINTY(q) was coined in [28] to refer

to CQA for Boolean queries q on databases that violate primary

keys, one per relation, which are fixed by q’s schema. The complex-

ity classification of CERTAINTY(q) for the class of self-join-free

Boolean conjunctive queries has attracted much research; see, for

example, [12, 15, 17]. These works were concluded by [18, 19],

where it was shown that for every query q in the class of self-join-

free Boolean conjunctive queries, CERTAINTY(q) is either in P or

coNP-complete. Furthermore, it was shown that, given a query q

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

210

in this class, it is decidable whether CERTAINTY(q) is in FO; and if
CERTAINTY(q) is in FO, a consistent first-order rewriting for q (i.e.,

a first-order query that solves CERTAINTY(q)) can be effectively

constructed.

Little is known about CERTAINTY(q) beyond self-join-free con-

junctive queries. Fontaine [11] obtained the following interest-

ing result for UCQ , the class of Boolean queries that can be ex-

pressed as disjunctions of Boolean conjunctive queries (possibly

with self-joins). A daring conjecture is that for every query q in

UCQ , CERTAINTY(q) is either in P or coNP-complete. Fontaine

showed that this conjecture implies Bulatov’s dichotomy theorem

for conservative CSP [6], which has an involved proof. This re-

lationship between CQA and CSP was further explored in [22].

The complexity of CQA for aggregation queries with respect to

violations of functional dependencies has been studied in [2].

The counting variant of the problem CERTAINTY(q), denoted
♯CERTAINTY(q), asks to determine the number of repairs that sat-

isfy some Boolean query q. In [25], it was shown that for every

self-join-free Boolean conjunctive query q, the counting problem
♯CERTAINTY(q) is either in FP or ♯P-complete. For conjunctive

queries q with self-joins, the complexity of ♯CERTAINTY(q) has
been established under the restriction that all primary keys consist

of a single attribute [26].

The work on CQA has inspired work on inconsistency-tolerant

query answering in ontology-based data access [5, 20, 21]. It is

common to assume that the ontological theory (usually a TBox in

some description logic) is correct, while the database (ABox) may

contain erroneous facts that are not consistent with the ontological

theory. A repair is defined as a maximal (with respect to set inclu-

sion) subset of the ABox that is consistent with respect to the TBox.

Restricted forms of negation show up in different studies that deal

with inconsistent and incomplete information; see, for example,

[13] and the references therein.

Guarded-Negation First-Order Logic (GNFO) [3] restricts first-

order logic by requiring that all occurrences of negation are of the

form α ∧ ¬ϕ, where α is an atomic formula, a guard, containing all

free variables of ϕ. Note that our results cover first-order queries
that are not in GNFO. For example, negation is weakly-guarded in

∃x∃y∃z(R(x ,y) ∧ S(y, z) ∧T (z,x) ∧ ¬N (x ,y, z)), a formula not in

GNFO.

In practice, CQA problems have been solved by means of expres-

sive solvers for ASP or BIP [16, 23, 24]. These solvers may generally

not outperform the best SQL engines on large database problems

that can be solved in FO.

3 PRELIMINARIES
We assume disjoint sets of variables and constants. If ®x is a sequence

containing variables and constants, then vars(®x) denotes the set of
variables that occur in ®x . A valuation over a set U of variables is a

total mapping θ fromU to the set of constants. At several places, it

is implicitly understood that such a valuation θ is extended to be

the identity on constants and on variables not in U . If V ⊆ U , then

θ [V] denotes the restriction of θ to V .

Atoms and key-equal facts. Each relation name R of arity n,
where n ≥ 1, has a unique primary key which is a set {1, 2, . . . ,k}

where 1 ≤ k ≤ n. We say that R has signature [n,k] if R has ar-

ity n and primary key {1, 2, . . . ,k}. We say that R is simple-key if

k = 1, and all-key if n = k . Elements of the primary key are called

primary-key positions, while k + 1, k + 2, . . . , n are non-primary-key
positions. For all positive integers n,k such that 1 ≤ k ≤ n, we
assume denumerably many relation names with signature [n,k].

If R is a relation name with signature [n,k], then the expres-

sion R(s1, . . . , sn) is called an R-atom (or simply atom), where

each si is either a constant or a variable (1 ≤ i ≤ n). Such an

atom is commonly written as R(®x , ®y) where the primary-key value

®x = s1, . . . , sk is underlined and ®y = sk+1, . . . , sn . An R-fact (or
simply fact) is an R-atom in which no variable occurs. Two facts

R1(®a1, ®b1),R2(®a2, ®b2) are key-equal, denoted R1(®a1, ®b1) ∼ R2(®a2, ®b2),

if R1 = R2 and ®a1 = ®a2. An R-atom or an R-fact is called simple-key
if R is simple-key, and is called all-key if R is all-key.

We will denote atoms by F ,G,H ,N , P . For an atom F = R(®x , ®y),
we denote by key(F) the set of variables that occur in ®x , and by

vars(F) the set of variables that occur in F , that is, key(F) = vars(®x)
and vars(F) = vars(®x) ∪ vars(®y).

(Possibly inconsistent) databases, blocks, and repairs. A data-
base schema is a finite set of relation names. All constructs that

follow are defined relative to a fixed database schema. A database is
a finite set db of facts using only the relation names of the schema.

A block of db is a maximal set of key-equal facts of db. The term
R-block refers to a block of R-facts, i.e., facts with relation name

R. A database db is consistent if no two distinct facts are key-equal

(i.e., if every block of db is a singleton). A repair of db is a maximal

(with respect to set inclusion) consistent subset of db. We write

rset(db) for the set of repairs of db.
For every Boolean query q, CERTAINTY(q) is the problem that

takes a database db as input and asks whether q evaluates to true

on every repair of db. If CERTAINTY(q) is in FO, then a first-order

query that solves CERTAINTY(q) is called a consistent first-order
rewriting for q. In this paper, the complexity class FO stands for the

class of decision problems that take a database as input and that

can be solved in first-order logic with equality and constants, but

without other built-in predicates or function symbols.

Boolean conjunctive queries with negated atoms. A self-join-

free Boolean conjunctive query with negated atoms is a first-order

sentence q of the form

∃®u(F1 ∧ F2 ∧ · · · ∧ Fℓ ∧ ¬Fℓ+1 ∧ ¬Fℓ+2 ∧ · · · ∧ ¬Fm),

where 0 ≤ ℓ ≤ m, each Fi is an atom (1 ≤ i ≤ m), no two atoms

have the same relation name, and

⋃m
j=ℓ+1 vars(Fj) ⊆

⋃ℓ
i=1 vars(Fi).

The latter condition is called the safety condition. When a self-join-

free conjunctive query is understood, we will often use a relation

name at places where an atom is expected; for example, we will

use R instead of R(x ,y). This simplifies the technical treatment and

causes no confusion, because q cannot have two distinct atoms with

the same relation name R.
We denote by sjfBCQ¬

the set of self-join-free Boolean con-

junctive queries with negated atoms. For a query q in sjfBCQ¬
,

we denote by vars(q) the set of variables that occur in q. If ®x =
⟨x1, . . . ,xℓ⟩ is a sequence of distinct variables in vars(q), and ®c =
⟨c1, . . . , cℓ⟩ is a sequence of constants, then q[®x 7→®c] denotes the

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

211

query obtained from q by replacing all occurrences of xi with ci ,
for all 1 ≤ i ≤ ℓ.

A literal is an atom or the negation of an atom. Queries q in

sjfBCQ¬
will be denoted as sets of literals: q = {F1, . . . , Fℓ , ¬Fℓ+1,

. . . , ¬Fm }. We define q+ := {F1, . . . , Fℓ}, the set of all positive

literals in q, and q− := {Fℓ+1, . . . , Fm }, the set of atoms whose

negation belongs to q. Then, q is satisfied by a database db if there

exists a valuation θ over vars(q) such that for every P ∈ q+, θ (P) ∈
db, and for every N ∈ q−, θ (N) < db.

Example 3.1. For q = {R(x ,y),¬S(x ,y),¬T (y,x)}, we have q+ =

{R(x ,y)} and q− = {S(x ,y),T (y,x)}. �

Typed databases. For every variable x , we assume an infinite set

of constants, denoted type(x), such that x , y implies type(x) ∩
type(y) = ∅. We say that a database db is typed relative to q, with
q ∈ sjfBCQ¬

, if for every atom R(x1, . . . ,xn) in q
+ ∪ q−, for every

i ∈ {1, . . . ,n}, if xi is a variable, then for every fact R(a1, . . . ,an)
in db, ai ∈ type(xi) and the constant ai does not occur in q.

If q ∈ sjfBCQ¬
, then, because of the absence of self-joins, a

database db can be trivially transformed into a database db′ that is
typed relative to q such thatCERTAINTY(q) yields the same answer

on problem instances db and db′.

Guarded and weakly-guarded negation. Let q be a query in

sjfBCQ¬
. We say that negation in q is guarded if for every N ∈ q−,

there exists P ∈ q+ such that vars(N) ⊆ vars(P). We say that

negation in q is weakly-guarded if for every N ∈ q−, for all x ,y ∈

vars(N), there exists P ∈ q+ such that x ,y ∈ vars(P). Obviously, if
negation is guarded, it is also weakly-guarded.

Example 3.2. Negation is not weakly-guarded in the query {X (x),
Y (y), ¬R(x ,y), ¬S(y,x)}, because the variables x and y occur to-

gether in a negated atom, but do not occur together in a non-negated

atom. Negation is weakly-guarded, but not guarded, in the query

{R(x ,y, z,u), S(y,w, z), T (x ,u,w), ¬N (x ,y, z,u,w)}. �

Key-relevant facts. Let q be a query in sjfBCQ¬
. Assume that F

is an R-atom in q+ ∪ q− (thus, q contains either F or ¬F). Let r be a
consistent database. We say that an R-fact A of r is key-relevant for
q in r if there exists a valuation θ over vars(q) such that r |= θ (q)
and θ (F) ∼ A.

Example 3.3. Let q1 = {R(x ,y), ¬S(y,x)}, and let r = {R(b, 1),

S(1,a), S(2,a)}. The only valuation θ over {x ,y} such that r |= θ (q)
is θ = {x 7→ b, y 7→ 1}. Then, S(1,a) is key-relevant, because it
is key-equal to S(θ (y),θ (x)) = S(1,b). On the other hand, S(2,a) is

not key-relevant. �

4 THE MAIN THEOREM
In this section we present our main theorem, which implies decid-

ability of membership of CERTAINTY(q) in FO, when negation in

q is weakly-guarded. In order to state the theorem, we first need to

introduce the notion of attack graph for queries in sjfBCQ¬
.

4.1 The Attack Graph
Attack graphs were introduced in [29] for α-acyclic self-join-free
conjunctive queries, and were extended in [19] to all self-join-free

conjunctive queries. We now define a further extension that deals

with negated atoms. For a set p of non-negated atoms, we define

K(p) as the following set of functional dependencies whose left-

and right-hand sides are sets of variables:

K(p) := {key(F) → vars(F) | F ∈ p}.

Let q be a query in sjfBCQ¬
. For every atom F ∈ q+ ∪ q−, we

define the set of variables

F ⊕,q
:= {x ∈ vars(q) | K(q+ \ {F }) |= key(F) → x}.

That is, F ⊕,q
is the closure of key(F) with respect to the functional

dependencies arising in atoms that are not negated and distinct

from F .

Attacks between variables. Let F ∈ q+ ∪ q− and u,w ∈ vars(q)

such that u ∈ vars(F). We write F |u
q
 w if there exists a sequence

(u0,u1, . . . ,uℓ) of variables in vars(q) such that ℓ ≥ 0 and

• u0 = u and uℓ = w ;

• for all i ∈ {0, . . . , ℓ − 1}, there exists an atom P ∈ q+ such
that ui ,ui+1 ∈ vars(P); and

• for all i ∈ {0, . . . , ℓ}, ui < F
⊕,q

.

The sequence (u0,u1, . . . ,uℓ) will be called a witness for F |u
q
 w .

We write F |u
q
̸ w if it is not the case that F |u

q
 w . We write

F
q
 w (and we say that F attacks w) if F |u

q
 w for some u ∈

vars(F). We write F
q
̸ w if it is not the case that F

q
 w .

Attacks between atoms. The attack graph of q is a directed graph,

without self-loops, whose vertex set is q+ ∪ q−. There is a directed

edge from F to G (F , G) if F
q
 y for some y ∈ key(G). We

write F
q
 G (and we say that F attacks G) if the attack graph of q

contains a directed edge from F toG . We write F
q
̸ G if the attack

graph of q contains no directed edge from F to G.
We should note here that, when q contains no negated atoms,

then the notion of attack as defined above is identical to the notion

of attack used in [19].

Example 4.1. Let q2 = {P(x ,y), ¬R(x ,y), ¬S(y,x)}. AsK(q2
+) =

{xy → xy} ≡ {}, we necessarily have P ⊕,q2 = {x ,y}, R⊕,q2 = {x},

and S⊕,q2 = {y}. We have R |y
q2
 y and S |x

q2
 x . The attack graph

of q2 contains four edges: R
q2
 S , S

q2
 R, R

q2
 P , S

q2
 P . �

Example 4.2. Let q3 = {P(x ,y),¬N (c,y)}. Then,K(q3
+ \ {P}) =

{} and K(q3
+ \ {N }) = {x → y}. Consequently, P ⊕,q3 = {x} and

N ⊕,q3 = {}. We have P |y
q3
 y and N |y

q3
 y and N |y

q3
 x . A

witness for N |y
q3
 x is the sequence (y,x). The attack graph of q3

contains one edge: N
q3
 P . Note that P

q3
̸ N (because P attacks

no variable belonging to N ’s primary key). �

4.2 Main Theorem Statement
We can now state our main theorem.

Theorem 4.3. Let q be a self-join-free Boolean conjunctive query
with negated atoms such that negation in q is weakly-guarded. Then,

(1) if the attack graph ofq is cyclic, thenCERTAINTY(q) is L-hard
(and thus not in FO); and

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

212

(2) if the attack graph of q is acyclic, then CERTAINTY(q) is in
FO.

Moreover, if CERTAINTY(q) is in FO, then a consistent first-order
rewriting for q can be effectively constructed.

It is not hard to figure out that it is decidable, given q, whether
the attack graph of q is acyclic (in fact, this can be decided in

polynomial time in the size of q). Therefore, Theorem 4.3 gives us

a decision procedure to decide membership in FO.

Example 4.4. Consider q2 = {P(x ,y),¬R(x ,y),¬S(y,x)} from

Example 4.1. Negation in q2 is weakly-guarded. Since R
q2
 S and

S
q2
 R, the attack graph of q2 is cyclic, and thus Theorem 4.3 tells

us that CERTAINTY(q2) is not in FO. �

Example 4.5. Considerq3 = {P(x ,y),¬N (c,y)} fromExample 4.2.

Since negation in q3 is weakly-guarded and since the attack graph

of q3 is acyclic (because P
q
̸ N), the query q3 has a consistent

first-order rewriting. The construction of such rewriting will be

explained in Section 6, and will read as follows:

∃x∃yP(x ,y) ∧ ∀z
(
N (c, z) → ∃x

(∃yP(x ,y)∧
∀w(P(x ,w) → w , z)

))
.

The rewriting says that the set of P-facts is not empty, and that

for every N -fact N (c,a), there exists a P-block in which a does not

occur. �

Concerning the practical impact of Theorem 4.3, one may ask

whether acyclicity of attack graphs is a strong requirement in prac-

tice. We therefore end this section with queries on a concrete data-

base schema of four binary relations, admitting meaningful queries

with and without consistent first-order rewriting.

Example 4.6. A poll has resulted in facts of the form Likes(p, t),
indicating that person p has liked town t . The database schema

contains three other binary relations between persons and towns:

Born(p, t), Lives(p, t), and Mayor(t ,p) mean, respectively, “p was

born in t ,” “p currently lives in t ,” and “p is the mayor of t .”
The following queries are canonical queries with a cyclic attack

graph. The query q1, for example, asks whether there exist towns

whose mayor does not live in the town.

q1 = {Mayor(t ,p),¬Lives(p, t)}

q2 = {Likes(p, t),¬Lives(p, t),¬Mayor(t ,p)}

The following queries have an acyclic attack graph, and thus have

a consistent first-order rewriting. The query qa , for example, asks

whether people stay in a town which is not their birth town and

which they do not like.

qa = {Lives(p, t),¬Born(p, t),¬Likes(p, t)}

qb = {Likes(p, t),¬Born(p, t),¬Lives(p, t)}

The attack graph of qa contains one attack, which goes from Lives

to Likes (we have Lives|t
qa
 t). The attack graph of qb contains two

attacks, both ending in Likes (we have Born|t
qb
 t and Lives|t

qb
 t).

4.3 Properties of the Attack Relation

We show three properties of the attack relation

q
 that will be

used later on. The following two lemmas express how attacks on

variables carry over to atoms, and vice versa.

Lemma 4.7. Let q be a query in sjfBCQ¬, and let F ∈ q+ ∪ q−.

If F |w
q
 u for some w ∈ vars(F) and u ∈ vars(q), then for every

P ∈ q+ \ {F } such that u ∈ vars(P), there exists x ∈ key(P) such that

F |w
q
 x (and thus F

q
 P).

Lemma 4.8. Let q be a query in sjfBCQ¬. Let F ∈ q+ ∪ q− and

P ∈ q+ such that F , P . If F
q
 P , then F

q
 u for every u ∈

vars(P) \ F ⊕,q .

The following lemma will allow us to conclude that under the

restriction that negation is weakly-guarded, every cyclic attack

graph has a cycle of length two.

Lemma 4.9. Let q be a query in sjfBCQ¬ with weakly-guarded

negation. For all F ,G,H ∈ q+ ∪ q−, if F
q
 G and G

q
 H , then

either F
q
 H or G

q
 F .

5 CYCLIC ATTACK GRAPHS
In this section we prove the first item of Theorem 4.3, which is

expressed by the following lemma.

Lemma 5.1. Let q be a query in sjfBCQ¬ with weakly-guarded
negation. If the attack graph of q is cyclic, then CERTAINTY(q) is
L-hard.

In Section 5.1, we show that three simple canonical queries have

no consistent first-order rewriting. These results are generalized in

Section 5.2. Finally, the proof of Lemma 5.1 is given in Section 5.3.

5.1 Simple Queries Without Consistent
First-Order Rewriting

To show that CERTAINTY(q) is not in FO for some query q in

sjfBCQ¬
, we will use first-order reductions from consistent query

answering for three “canonical” queries, containing zero, one, and

two negated atoms respectively.

q0 = {R(x ,y), S(y,x)}

q1 = {R(x ,y),¬S(y,x)}

q2 = {R(x ,y),¬S(x ,y),¬T (y,x)}

L-hardness of CERTAINTY(q0) is shown in [19, Lemma 4.2]. For

query q1, we show thatCERTAINTY(q1) is as hard as the Bipartite
Perfect Matching (BPM) problem, which is known to be NL-
hard [7].

Lemma 5.2. CERTAINTY(q1) is NL-hard for the Boolean query
q1 = {R(x ,y), ¬S(y,x)}.

Proof. We will show a first-order reduction from BPM to the

complement of CERTAINTY(q1). In BPM, we are given a bipartite

graph G withm vertices on each side, and we ask whether G has

a perfect matching (i.e., a matching of sizem). BPM is known to

be NL-hard [7]. Since NL is closed under complement, this implies

that CERTAINTY(q1) is NL-hard.

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

213

Given a bipartite graph G = (A,B,E), we construct a database
db as follows: for every edge {a,b} ∈ E, where a ∈ A,b ∈ B, the
database db contains the facts R(a,b) and S(b,a). The database is
obviously computable in FO. We will show that G has a perfect

matching if and only if there exists a repair of db that falsifies q1.
Assume that G has a perfect matchingM . Then, we construct a

repair r as follows. For every a ∈ A, if {a,b} is the unique edge in
M adjacent to a, we include in r the fact R(a,b). Similarly, for every

b ∈ B, if {a,b} is the unique edge in M adjacent to b, we include
in r the fact S(b,a). It is easy to verify that r falsifies q1, since if
R(a,b) ∈ r, then S(b,a) ∈ r as well.

For the opposite direction, assume that r is a repair of db that

falsifies q1. Observe that such a repair must satisfy the formula

¬q1 ≡ ∀x∀y(R(x ,y) → S(y,x)). We construct a matching M as

follows: if R(a,b) ∈ r, we add toM the edge {a,b}. It is easy to see

thatM is a matching; indeed, it is not possible that R(a,b),R(a′,b) ∈
r and a , a′, since that would imply that S(b,a), S(b,a′) ∈ r, a
contradiction. It is also a matching of sizem, since every one of the

m vertices in A is matched. �

The proof of the following lemma is in the Appendix.

Lemma 5.3. CERTAINTY(q2) is L-hard for the Boolean query q2 =
{R(x ,y), ¬S(x ,y), ¬T (y,x)}.

5.2 Attack Cycles of Length Two
The following helping lemma implies that if CERTAINTY(q) is hard
for a complexity class under first-order reductions, then the problem

remains hard if one or more negated atoms are added to q. The
proof is straightforward and can be found in the Appendix.

Lemma 5.4. Let q be a query in sjfBCQ¬. For every q′ ⊆ q such
thatq+ ⊆ q′, there exists a first-order reduction fromCERTAINTY(q′)
to CERTAINTY(q).

We now aim to show that if the attack graph of a query q ∈

sjfBCQ¬
contains a cycle of length two, then CERTAINTY(q) is

not in FO. Three cases are distinguished, depending on whether

the cycle contains zero, one, or two negated atoms. In the case

of two negated atoms (and only in this case), the assumption of

weakly-guarded negation is needed.

Lemma 5.5. Let q be a query in sjfBCQ¬. Suppose that there exist

two atoms F ,G ∈ q+ such that F
q
 G

q
 F . Then, CERTAINTY(q)

is L-hard (and thus not in FO).

Proof. It can be seen that F
q+
 G

q+
 F . For sjfBCQ¬

queries

without negated atoms, the attack graph defined in Section 3 is

identical to the construct with the same name in [19]. L-hardness
of CERTAINTY(q) then follows by [19, Lemma 4.3] and Lemma 5.4.

�

Lemma 5.6. Let q be a query in sjfBCQ¬. Suppose that there ex-

ist two atoms F ∈ q+, G ∈ q− such that F
q
 G

q
 F . Then,

CERTAINTY(q) is NL-hard (and thus not in FO).

Proof. We will show a first-order reduction from the problem

CERTAINTY(q1) with q1 = {R(x ,y),¬S(y,x)}, which is NL-hard
by Lemma 5.2.

Since F
q
 G, there exists vF ∈ vars(F),u ∈ key(G) such that

F |vF
q
 u. Similarly, there exists vG ∈ vars(G),u ′ ∈ key(F) such

that G |vG
q
 u ′. For all a ∈ type(x) and b ∈ type(y), define Θa

b as

the following valuation over vars(q). For everyw ∈ vars(q),

Θa
b (w) =

a if G |vG

q
 w and F |vF

q
̸ w

b if F |vF
q
 w and G |vG

q
̸ w

⟨a,b⟩ if F |vF
q
 w and G |vG

q
 w

⊥ otherwise

Sublemma 5.1. For every H ∈ q+ \ {F }, for all a,a′ ∈ type(x)
and b,b ′ ∈ type(y), {Θa

b (H),Θa′
b′(H)} is consistent.

Proof. Assume Θa
b (H) and Θa′

b′(H) are key-equal. We need to

show Θa
b (H) = Θa′

b′(H).

Case a = a′ and b = b ′. Trivial.
Case a = a′ and b , b ′. Then, F |vF

q
̸ w for all w ∈ key(H).

By Lemma 4.7, F |vF
q
̸ w for all w ∈ vars(H) and, conse-

quently, Θa
b (H) = Θa′

b′(H).

Case a , a′ and b = b ′. Symmetric to the previous case.

Case a , a′ and b , b ′. Then F |vF
q
̸ w and G |vG

q
̸ w for

all w ∈ key(H). By Lemma 4.7, F |vF
q
̸ w and G |vG

q
̸ w

for allw ∈ vars(H) and, consequently, Θa
b (H) = Θa′

b′(H).

This concludes the proof of Sublemma 5.1. �

Sublemma 5.2. For all a,a′ ∈ type(x) and b,b ′ ∈ type(y),

(1) Θa
b (F) and Θ

a′
b′(F) are key-equal if and only if a = a′;

(2) Θa
b (F) and Θ

a′
b′(F) are equal if and only if a = a′ and b = b ′.

Consequently, the set {R(a,b),R(a′,b ′)} is consistent if and only if
{Θa

b (F),Θ
a′
b′(F)} is consistent.

Proof. 1 =⇒ G |vG
q
 u ′ for some u ′ ∈ key(F). 1 ⇐= If

w ∈ key(F), then F |vF
q
̸ w . 2 =⇒ Since equal facts are key-

equal, the equality a = a′ follows from 1 =⇒ . From F |vF
q
 vF

withvF ∈ vars(F), it followsb = b ′. 2 ⇐= Trivial. This concludes

the proof of Sublemma 5.2. �

Sublemma 5.3. For all a,a′ ∈ type(x) and b,b ′ ∈ type(y),

(1) Θa
b (G) and Θ

a′
b′(G) are key-equal if and only if b = b ′;

(2) Θa
b (G) and Θ

a′
b′(G) are equal if and only if a = a′ and b = b ′.

Consequently, the set {S(b,a), S(b ′,a′)} is consistent if and only if
{Θa

b (G),Θ
a′
b′(G)} is consistent.

Proof. This can be proved along the same lines as the proof of

Sublemma 5.2. �

For every database db that is input toCERTAINTY(q1), we define
f (db) as follows:

• if db contains R(a,b), then f (db) includes Θa
b (q
+);

• if db contains S(b,a), then f (db) contains Θa
b (G).

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

214

Clearly, f is computable in FO. Note incidentally that whenever T
is a relation name in q− \ {G}, then f (db) contains no T -facts. Let

д(db) = (f (db)\{Θa
b (F) | R(a,b) ∈ db})

\{Θa
b (G) | S(b,a) ∈ db}.

By Sublemmas 5.1, 5.2, and 5.3,

rset(f (db)) = { f (r) ∪ д(db) | r ∈ rset(db)}.

Let db be a database that is input to CERTAINTY(q1). Let r be a
repair of db. It suffices to show that the following are equivalent:

(1) r |= q1;
(2) f (r) ∪ д(db) |= q.

1 =⇒ 2 We can assume R(a,b) ∈ r such that S(b,a) < r. Then
Θa
b (q
+) ⊆ f (r). Assume, towards a contradiction, Θa

b (G) ∈ f (r).
Then there must exist S(b ′,a′) ∈ r such that Θa′

b′(G) = Θa
b (G).

Then, from the second item in Sublemma 5.3, a = a′ and b = b ′,
hence S(b,a) ∈ r, a contradiction. We conclude by contradiction

Θa
b (G) < f (r). It is now correct to conclude f (r) ∪ д(db) |= q.

2 =⇒ 1 Let θ be a valuation over vars(q) such that θ (q+) ⊆

f (r) ∪ д(db) and θ (G) < f (r). By our construction, we can assume

R(a,b) ∈ r such that θ (F) = Θa
b (F). By item 2 in Sublemma 5.2,

R(a,b) is unique.
We will show that for every x ∈ vars(G), θ (x) = Θa

b (x). It follows

that θ (G) = Θa
b (G). It is then correct to conclude that S(b,a) < r, or

else Θa
b (G) = θ (G) ∈ f (r), a contradiction.

We can assume a sequence

(v0, P1,v1, P2,v2 . . . , Pℓ−1,vℓ−1, Pℓ ,vℓ)

such that (v0,v1,v2 . . . ,vℓ−1,vℓ) is a witness forG |vG
q
 u ′ (thus

v0 = vG and vℓ = u
′
), and for all i ∈ {1, . . . , ℓ}, Pi ∈ q+ such that

vi−1,vi ∈ vars(Pi). Obviously, for every i ∈ {0, . . . , ℓ}, we have

G |vG
q
 vi .

We show by induction on decreasing i that for all i ∈ {0, . . . , ℓ},

θ (vi) ∈ {a, ⟨a,b⟩}. For the basis of the induction (i.e., i = ℓ),
we have vℓ = u ′ ∈ key(F) and, since θ (F) = Θa

b (F), θ (u
′) =

Θa
b (u

′) ∈ {a, ⟨a,b⟩}. Note incidentally that from u ′ ∈ key(F) and

thus F |vF
q
̸ u ′, it follows θ (u ′) = a. For the induction step (i.e.,

i → i − 1), the induction hypothesis is θ (vi) ∈ {a, ⟨a,b⟩}. We can

assume an R-fact R(a′,b ′) ∈ r such that θ (Pi) = Θa′
b′(Pi) ∈ Θa′

b′(q
+),

and thus θ (vi) = Θa′
b′(vi) ∈ {a′, ⟨a′,b ′⟩}. Since θ (vi) ∈ {a, ⟨a,b⟩},

it must be the case that a′ = a. From R(a,b),R(a,b ′) ∈ r, it follows
b ′ = b (because r is consistent). From θ (Pi) = Θa

b (Pi), it follows

θ (vi−1) ∈ {a, ⟨a,b⟩}, which concludes the induction step. In partic-

ular, θ (vG) ∈ {a, ⟨a,b⟩}.
Likewise, we can assume a sequence

(v0, P1,v1, P2,v2 . . . , Pm−1,vm−1, Pm ,vm)

such that (v0,v1,v2 . . . ,vm−1,vm) is a witness for F |vF
q
 u (thus

v0 = vF and vm = u), and for all i ∈ {1, . . . ,m}, Pi ∈ q+ such that

vi−1,vi ∈ vars(Pi). Obviously, for every i ∈ {0, . . . ,m}, we have

F |vF
q
 vi .

We show by induction on increasing i that for all i ∈ {0, . . . ,m},

there exists ai ∈ type(x) such that θ (vi) ∈ {b, ⟨ai ,b⟩}. For the basis
of the induction (i.e., i = 0), we have v0 = vF ∈ vars(F) and, since

θ (F) = Θa
b (F), θ (vF) = Θa

b (vF) ∈ {b, ⟨a,b⟩}. For the induction step

(i.e., i → i + 1), the induction hypothesis is θ (vi) ∈ {b, ⟨ai ,b⟩} for
some ai ∈ type(x). We can assume an R-fact R(a′,b ′) ∈ r such
that θ (Pi+1) = Θa′

b′(Pi+1) ∈ Θa′
b′(q
+), and thus θ (vi) = Θa′

b′(vi) ∈

{b ′, ⟨a′,b ′⟩}. Since θ (vi) ∈ {b, ⟨ai ,b⟩}, it must be the case that b ′ =
b. From θ (Pi+1) = Θa′

b (Pi+1), it follows θ (vi+1) ∈ {b, ⟨a′,b⟩}, which

concludes the induction step. In particular, θ (u) ∈ {b, ⟨am ,b⟩} for

some am ∈ type(x). Further, fromu ∈ key(G), it followsG |vG
q
̸ u,

hence θ (u) = b.
Let x be an arbitrary variable in vars(G). We can assume an atom

P0 ∈ q+ such that x ,vG ∈ vars(P0). We can assume R(a′,b ′) such

that θ (P0) = Θa′
b′(P0), hence θ (vG) = Θa′

b′(vG) and θ (x) = Θa′
b′(x).

From θ (vG) ∈ {a, ⟨a,b⟩}, it follows a = a′. Likewise, we can assume

an atom P1 ∈ q+ such that x ,u ∈ vars(P1). We can assumeR(a′′,b ′′)

such that θ (P1) = Θa′′
b′′(P1), hence θ (u) = Θa′′

b′′(u) and θ (x) = Θa′′
b′′(x).

From θ (u) = b, it follows b = b ′′. Form θ (x) = Θa
b′(x) = Θa′′

b (x),

it is correct to conclude that θ (x) = Θa
b (x). This concludes the

proof. �

The proof of the following lemma, which can be found in the

Appendix, shows L-hardness by a first-order reduction from the

problem CERTAINTY(q2), which is L-hard by Lemma 5.3. Note that,

as announced in the beginning of this section, the assumption of

weakly-guarded negation is made in the lemma’s hypothesis. In

fact, Example 7.1 in Section 7 shows that without this assumption,

the lemma fails to hold true.

Lemma 5.7. Let q be a query in sjfBCQ¬ with weakly-guarded
negation. Suppose that there exist two atoms F ,G ∈ q− such that

F
q
 G

q
 F . Then, CERTAINTY(q) is L-hard (and thus not in FO).

5.3 Proof of Lemma 5.1
The main lemma of this section now has a short proof.

Proof of Lemma 5.1. Assume that the attack graph ofq is cyclic.
By Lemma 4.9, the attack graph of q contains a cycle of length two.

Depending on the number of atoms of q− in the cycle, we use

Lemma 5.5, Lemma 5.6, or Lemma 5.7 to conclude that the problem

CERTAINTY(q) is not in FO. �

6 ACYCLIC ATTACK GRAPHS
In this section, we show the second item of Theorem 4.3, which is

expressed by the following lemma.

Lemma 6.1. Let q be a query in sjfBCQ¬ with weakly-guarded
negation such that the attack graph of q is acyclic. Then, the problem
CERTAINTY(q) is in FO and a consistent first-order rewriting for q
can be effectively constructed.

Algorithm 1 solves the problem CERTAINTY(q) under the con-
ditions of Lemma 6.1. In Section 6.1, we show that if a query q in

sjfBCQ¬
contains a negated atom ¬N such that key(N) = ∅, then

the problem CERTAINTY(q) can be simplified by eliminating ¬N
from q. Then, in Section 6.2, we show that unattacked variables can

be reified, that is, treated as constants in CERTAINTY(q). Reifica-
tion and elimination of atoms with variable-free primary keys are

the essential cruxes in the proof of Lemma 6.1, which is given in

Section 6.3.

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

215

Algorithm 1: Outline of an algorithm for CERTAINTY(q)
with data complexity in FO.

FUNCTION IsCertain(q, db)
INPUT : q ∈ sjfBCQ¬

with weakly-guarded negation

and acyclic attack graph; database db
OUTPUT : Is q true in every repair of db?
if every atom of q is all-key

then (return true if db satisfies q; otherwise return false)
else pick an unattacked, non-all-key atom F ∈ q+ ∪ q−

case key(F) , ∅

return true if
there exists a valuation θ over key(F)
such that IsCertain(θ (q), db);

otherwise return false

case key(F) = ∅; let F = R(®a, ®y), vars(®a) = ∅

subcase F ∈ q−; let q′ = q \ {¬F }
return true if

IsCertain(q′, db) and for all
®b such

that R(®a, ®b) ∈ db, it is the case that
IsCertain(q′∪{¬E(®y)}, db∪{E(®b)});

/* E is a fresh, all-key relation name */

otherwise return false

subcase F ∈ q+; let q′ = q \ {F }
return true if

there exists
®b such that R(®a, ®b) ∈ db and

for all
®b ′ such that R(®a, ®b ′) ∈ db, there

exists a valuation θ over vars(®y) such
that θ (®y) = ®b ′ and IsCertain(θ (q′), db);

otherwise return false

6.1 Variable-Free Primary Keys
We give two lemmas that explain how to deal with negated atoms

¬N such that key(N) = ∅. Notice that such N can never have

an incoming attack. We first treat the case where N contains no

variables.

Lemma 6.2. Let q be a query in sjfBCQ¬. Let N ∈ q− such that
vars(N) = ∅. For every database db, q is true in every repair of db if
and only if both N < db and q \ {¬N } is true in very repair of db.

We next focus on eliminating negated atoms of the form ¬R(a, ®y)
where ®a is variable-free, but ®y is not. This elimination requires

disequalities between variables and constants. We therefore extend

queries q with disequalities of the form ®v , ®c , where ®v is a sequence

of distinct variables and ®c a sequence of constants. For the following
definition, note that queries are modeled as sets containing atoms

and disequalities (thus, the union acts as a logical AND).

Definition 6.3. Wedenote by sjfBCQ¬,
the set of queries that can

be written as a disjoint union q∪C with q ∈ sjfBCQ¬
andC is a set

of disequalities of the form ®v , ®c , where ®v is a sequence of distinct

variables in vars(q) and ®c is a sequence of constants. The semantics

is standard: q ∪ C is satisfied by a database db if there exists a

valuation θ over vars(q) such for every P ∈ q+, θ (P) ∈ db, for every

N ∈ q−, θ (N) < db, and for every ⟨v1, . . . ,vℓ⟩ , ⟨c1, . . . , cℓ⟩ in C ,
there exists i ∈ {1, . . . , ℓ} such that θ (vi) , ci .

We say that negation in q ∪ C is weakly-guarded if negation

in q is weakly-guarded and for every disequality ®v , ®c in C , for
every v1,v2 ∈ vars(®v), there exists an atom P ∈ q+ such that

v1,v2 ∈ vars(P). �

Example 6.4. {R(x ,y, z),¬N (y)} ∪ {xz , ab} denotes the query

∃x∃y∃z(R(x ,y, z) ∧ ¬N (y) ∧ ¬(x = a ∧ z = b)).

Whenever we write q ∪ C , it is understood that q contains no

disequalities, and that C contains only disequalities.

Lemma 6.5. Let q be a query in sjfBCQ¬. Let N ∈ q− such that
key(N) = ∅ and vars(N) , ∅. Let ®y be a sequence of distinct variables
such that vars(®y) = vars(N). For every database db, q is true in every
repair of db if and only if the following two conditions are satisfied:

(1) q \ {¬N } is true in every repair of db; and
(2) for every valuation θ over vars(N) such that θ (N) ∈ db, the

query (q \ {¬N }) ∪ {®y , θ (®y)} is true in every repair of db.

Proof. Easy. Note that if a database db falsifies the singleton

conjunctive query {N }, then the condition 2 is necessarily satisfied;

in that case (and only in that case), condition 1 is relevant. �

Notice that we require vars(®y) , ∅ in the statement of Lemma 6.5.

If we allow vars(®y) = ∅ and admit that the empty valuation is

the only valuation over the empty set of variables, then, under

the restriction vars(®y) = ∅, condition 2 is equivalent to requiring

N < db. Thus, if we allow vars(®y) = ∅ in Lemma 6.5, then we obtain

a generalization of Lemma 6.2.

Lemma 6.5 reduces consistent query answering from a query in

sjfBCQ¬
to a query in sjfBCQ¬,

. Since attack graphs have not been

designed for queries in sjfBCQ¬,
, we have to be able to translate

back from sjfBCQ¬,
to sjfBCQ¬

. The following lemma states that

this translation is indeed possible.

Lemma 6.6. Let q ∪ C ∈ sjfBCQ¬, such that C contains ®v , ®c .
Let C ′ = C \ { ®v , ®c}. Then, there exists a first-order reduction from
CERTAINTY(q ∪C) to CERTAINTY(q ∪ {¬E(®v)} ∪C ′), where E is
a fresh relation name that is all-key.

Proof. Let db be a database that is input to CERTAINTY(q ∪C).
Let д(db) = db ∪ {E(®c)}. Clearly, д(db) is computable in FO. It is
easy to see that every repair of db satisfies q∪C if and only if every

repair of д(db) satisfies q ∪ {¬E(®v)} ∪C ′
. �

6.2 Reifiable Variables
The following definition introduces the notion of reifiable variables.

We then show a lemma, Lemma 6.8, whose corollary will be that

unattacked variables are reifiable, provided that negation is weakly-

guarded.

Definition 6.7. Letq be a query in sjfBCQ¬
. LetX = {x1, . . . ,xℓ}

be a non-empty subset of vars(q). We say that X is reifiable in q
if for every database db such that q is true in every repair of db,
there exist constants c1, . . . , cℓ (which depend on db) such that

q[⟨x1, ...,xℓ ⟩7→⟨c1, ...,cℓ ⟩] is true in every repair of db. �

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

216

Reifiable variables will turn out to be essential in the proof of

Lemma 6.1, in the following manner. Let ®x be a sequence of distinct

variables occurring in some queryq of sjfBCQ¬
. We aim to treat the

variables of ®x as constants: we denote by q(®x) the query q in which

®x is seen as a sequence of constants, which behave like Skolem

constants. Now assume that CERTAINTY(q(®x)) is in FO and that φ
is a consistent first-order rewriting for q(®x). Since ®x was seen as a

sequence of constants, these constants will also occur in φ. Then, if
vars(®x) is reifiable in q, it will be the case that ∃®xφ is a consistent

first-order rewriting for q.

Lemma 6.8. Let q be a query in sjfBCQ¬ with weakly-guarded
negation and let X ⊆ vars(q). Let G ∈ q+ ∪ q− such that for every

x ∈ X ,G
q
̸ x . Let r be a consistent database. LetA,B be key-equalG-

facts such thatA ∈ r is key-relevant forq in r. Let rB = (r \ {A})∪{B}.
For every valuation ζ over X , if rB |= ζ (q), then r |= ζ (q).

Proof. The proof is trivial if A = B. We next consider the case

A , B.
Assume a valuation ζ overX such that rB |= ζ (q). We can assume

a valuation ζ + over vars(q) that extends ζ such that rB |= ζ +(q).
Since A is key-relevant for q in r, we can assume a valuation µ over
vars(q) such that r |= µ(q) and µ(G) ∼ A. We distinguish two cases:

G ∈ q− and G ∈ q+.

Case that G ∈ q−. Since r |= µ(q), we have µ(G) < r and, since
A ∈ r, µ(G) , A. If ζ +(G) , A, then r |= ζ +(q) and the desired

result holds. In what follows, we consider the case ζ +(G) = A.
From ζ +(G) = A ∼ µ(G), it follows that ζ + and µ agree on all

variables of key(G). Since r \ {A} = rB \ {B} and µ(q+) ⊆ r \ {A}
and ζ +(q+) ⊆ rB \ {B}, it follows from [29, Lemma 4.3] that ζ +

and µ agree on all variables ofG⊕,q
. Then, vars(G) * G⊕,q

, or else

µ(G) = ζ +(G) = A, a contradiction.
We define κ as the valuation over vars(q) such that for every

P ∈ q+,

κ(P) =

{
µ(P) if G

q
 P

ζ +(P) otherwise

We show below that κ is well-defined, that r |= κ(q), and that

κ[X] = ζ . It is then correct to conclude r |= ζ (q).

Proof that κ is well-defined. To show that κ is well-defined, as-

sume P1, P2 ∈ q+ and v ∈ vars(P1) ∩ vars(P2) such that G
q
 P1

but G
q
̸ P2. From G ∈ q−, it follows P1 , G , P2. By Lemma 4.7,

from G
q
̸ P2 and v ∈ vars(P2), it follows G

q
̸ v . By Lemma 4.8,

from G
q
 P1, v ∈ vars(P1), and G

q
̸ v , it follows v ∈ G⊕,q

.

Consequently, ζ +(v) = µ(v).

Proof that r |= κ(q). We have r \ {A} = rB \ {B}, where A,B
are G-facts. For every P ∈ q+, we have κ(P) ∈ r, because either
κ(P) = µ(P) ∈ r \ {A} or κ(P) = ζ +(P) ∈ rB \ {B}.

We show next that for every N ∈ q− (possibly N = G), either
κ(N) = µ(N) or κ(N) = ζ +(N). To this extent, let N ∈ q− and let

w be an arbitrary variable in vars(N). We distinguish two cases.

• CaseG
q
 u for someu ∈ vars(N). Since negation is weakly-

guarded, we can assume P ∈ q+ such that u,w ∈ vars(P).

It follows by Lemma 4.7 that G
q
 P , hence κ(P) = µ(P). It

follows κ(w) = µ(w).

• Case G
q
̸ u for all u ∈ vars(N). Since negation is safe, we

can assume P ∈ q+ such that w ∈ vars(P). If G
q
̸ P , then

κ(P) = ζ +(P), and thus κ(w) = ζ +(w). Assume next that

G
q
 P . Since G

q
̸ w , it follows w ∈ G⊕,q

by Lemma 4.8.

Since µ and ζ + agree on all variables of G⊕,q
, it follows

κ(w) = µ(w) = ζ +(w).

It is correct to conclude that for all N ∈ q−, either κ(N) = µ(N) or

κ(N) = ζ +(N). Let N ∈ q− \ {G}. Since r and rB contain exactly

the same set of N -facts, it follows that µ(N) < r and ζ +(N) < r,
thus κ(N) < r. So it remains to be shown that κ(G) < r. Since

vars(G) * G⊕,q
, we have G

q
 u for some u ∈ vars(G) (the first

case above), and thus κ(G) = µ(G) < r.

Proof that κ(x) = ζ (x) for every x ∈ X . This is obvious if x ∈

G⊕,q
. Assume next that x < G⊕,q

. We can assume an atom P ∈ q+

such that x ∈ vars(P). We haveG
q
̸ P , or elseG

q
 x by Lemma 4.8

and thus x < X , a contradiction. It follows κ(P) = ζ +(P), hence
κ(x) = ζ (x).

Case that G ∈ q+. This part of the proof can be found in the

Appendix. The proof outline is similar to the previous case. �

Corollary 6.9. Letq be a query in sjfBCQ¬ with weakly-guarded
negation. Let X ⊆ vars(q) such that for every x ∈ X , there exists no

G ∈ q+ ∪ q− such that G
q
 x . Then, X is reifiable in q.

Proof. Let db be a database that is given as input to the problem

CERTAINTY(q). For every repair r of db, define Reify(r) as the set
of valuations over X such that Reify(r) contains ζ if r |= ζ (q). The
hypothesis is that every repair of db satisfies q, thus for every repair
r of db, Reify(r) , ∅. We can assume the existence of a repair r of
db such that Reify(r) is minimal (i.e., there exists no repair s of db
such that Reify(s) (Reify(r)).

Let s be any repair of db. Construct a maximal sequence

r0, A1,B1, r1, A2,B2, r2, . . . , Aℓ ,Bℓ , rℓ ,

where r0 = r and for every i ∈ {1, . . . , ℓ},

(1) Ai ∈ r and Ai is key-relevant for ri−1 in q;
(2) Bi ∈ s such that Bi ∼ Ai and Bi , Ai ;
(3) ri = (ri−1 \ {Ai }) ∪ {Bi }.

Then, for every A ∈ rℓ such that A is key-relevant for q in rℓ ,
we have A ∈ s. Consequently, Reify(rℓ) ⊆ Reify(s). By Lemma 6.8,

Reify(rℓ) ⊆ Reify(r). SinceReify(r) is minimal,Reify(rℓ) = Reify(r).
It follows Reify(r) ⊆ Reify(s). The desired result follows, since

Reify(r) , ∅ and s is an arbitrary repair of db. �

6.3 Proof of Lemma 6.1
We first present a lemma which tells us that acyclicity of attack

graphs and weakly-guardedness of negation are preserved when

we replace a variable with a constant in a query.

Lemma 6.10. Let q be a query in sjfBCQ¬. Let x ∈ vars(q) and
let c be a constant. Then,

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

217

∃x(S(x)
∧∀z(N3(c, z) → ∃x(S(x) ∧ x , z))

∧∀z
(
N2(c, z) →

(∃x(S(x) ∧ x , z)
∧∀z′(N3(c, z

′) → ∃x(S(x) ∧ x , z ∧ x , z′))

))
∧∀z

©«N1(c, z) →
©«

∃x(S(x) ∧ x , z)
∧∀z′(N3(c, z

′) → ∃x(S(x) ∧ x , z ∧ x , z′))

∧∀z′
(
N2(c, z

′) →

(∃x(S(x) ∧ x , z ∧ x , z′)
∧∀z′′(N3(c, z

′′) → ∃x(S(x) ∧ x , z ∧ x , z′ ∧ x , z′′))

)) ª®®®¬
ª®®®¬

Figure 2: Consistent first-order rewriting for {S(x), ¬N1(c,x), ¬N2(c,x), ¬N3(c,x)}.

(1) for every F ,G ∈ q+ ∪ q−, if F[x 7→c]
q[x 7→c]
 G[x 7→c], then

F
q
 G; and

(2) if negation in q is weakly-guarded, then negation in q[x 7→c] is
weakly-guarded.

We now give the proof of Lemma 6.1, which shows membership

of CERTAINTY(q) in FO through the construction of a consistent

first-order rewriting for q. This construction is also captured by

Algorithm 1.

Proof of Lemma 6.1. For every q ∈ sjfBCQ¬
, define α(q) as

the number of atoms in q+ ∪ q− that are not all-key. Assume that

the attack graph of q is acyclic. We will show by induction on

increasing α(q) that CERTAINTY(q) is in FO. For the induction

basis, let α(q) = 0. Then all atoms in q are all-key. If db is an input

toCERTAINTY(q), then db is consistent and is its own unique repair.
Trivially, every repair of db satisfies q if and only if db satisfies q.
CERTAINTY(q) is thus in FO.

For the induction step, let α(q) ≥ 1. It can be easily seen that

every all-key atom has zero outdegree in the attack graph ofq. Since
the attack graph of q is acyclic, there exists an atom F ∈ q+ ∪ q−

such that F is not all-key and for every G ∈ q+ ∪ q−, for every

x ∈ key(F), G
q
̸ x .

Let ®x = ⟨x1, . . . ,xℓ⟩ be a sequence of distinct variables such

that vars(®x) = key(F). By Corollary 6.9, for every database db, the
following are equivalent:

(1) every repair of db satisfies q; and
(2) there exists a sequence ®c of constants such that every repair

of db satisfies q[®x 7→®c].

Let ®c = ⟨c1, . . . , cℓ⟩ be a sequence of constants such that for i ∈
{1, . . . , ℓ}, ci ∈ type(xi) and ci does not occur in q. In the sequel,

we show that q[®x 7→®c] has a consistent first-order rewriting φ. It is

then correct to conclude that ∃®xφ ′ is a first-order rewriting for q,
where φ ′ is obtained from φ by replacing each occurrence of each

ci by xi . This is tantamount to constructing a consistent first-order

rewriting for the query q(®x) in which the variables of ®x are free and

treated as constants.

Let ®y be a sequence of distinct variables such that vars(®y) =
vars(F) \ key(F). Let q′ = q \ {F ,¬F }. We distinguish two cases.

Case F ∈ q+. Obviously, the following are equivalent:

(1) q[®x 7→®c] is true in every repair of db;

(2) there exists a sequence
®d of constants such that F

[®x ®y 7→®c ®d]
belongs to db, and for every F -fact A of db that is key-equal

to F
[®x ®y 7→®c ®d], there exists a sequence ®e of constants such that

F[®x ®y 7→®c ®e] = A and q′[®x ®y 7→®c ®e] is true in every repair of db.

We have that α(q′
[®x ®y 7→®c ®d]) < α(q). By Lemma 6.10, the attack

graph of q′
[®x ®y 7→®c ®d] remains acyclic, and negation in q′

[®x ®y 7→®c ®d] is

weakly-guarded. We have that CERTAINTY(q′
[®x ®y 7→®c ®d]) is in FO

by the induction hypothesis. Since the condition in item 2 can be

tested in first-order logic, CERTAINTY(q[®x 7→®c]) is in FO. In case

that F[®x 7→®c] = R(®c, ®y), a consistent first-order rewriting for q[®x 7→®c]
is ∃®yR(®c, ®y) ∧ ∀®y(R(c, ®y) → ψ), whereψ is a consistent first-order

rewriting forq′[®x 7→®c](®y). The rewriting is slightly more complicated

if the non-primary-key part of F[®x 7→®c] contains constants or double

occurrences of the same variable.

Case F ∈ q−. The following are equivalent:

(1) q[®x 7→®c] is true in every repair of db;
(2) q′[®x 7→®c] is true in every repair of db; and
(a) If ®y is the empty sequence: F[®x 7→®c] < db.

(b) If ®y is not the empty sequence: for every sequence
®d of

constants such that F
[®x ®y 7→®c ®d] ∈ db, it is the case that

q′[®x 7→®c] ∧ ®y , ®d is true in every repair of db.

The correctness follows from Lemmas 6.2 and 6.5. By Lemma 6.10,

the attack graph of q′[®x 7→®c] is acyclic, and negation in q′[®x 7→®c] is

weakly-guarded.

Define p := q′[®x 7→®c] ∪ {¬E(®y)}, where E is a fresh relation name

that is all-key. It is easy to see that the attack graph ofp is acyclic and
that negation in p is weakly-guarded (because vars(®y) ⊆ vars(F)
and ¬F is weakly-guarded in q). Since α(p) < α(q), CERTAINTY(p)
is in FO by the induction hypothesis. By Lemma 6.6, the prob-

lem CERTAINTY(q′[®x 7→®c] ∧ ®y , ®d) can be first-order reduced to

CERTAINTY(p), and can thus be solved in FO.
Since the conditions in item 2 can be tested in first-order logic,

CERTAINTY(q[®x 7→®c]) is in FO. The construction of a consistent first-
order rewriting for CERTAINTY(q[®x 7→®c]) goes as follows. Assume

F[®x 7→®c] = R(®c, ®s). Notice that vars(®s) = vars(®y), but unlike ®y, the

sequence ®s can contain constants and double occurrences of the

same variable. Note that every variable of vars(®y)will occur in some

non-negated atom of q′[®x 7→®c]. If vars(®y) = ∅, a consistent first-order

rewriting for q[®x 7→®c] is ψ ∧ ¬R(®c, ®s), where ψ is a consistent first-

order rewriting for q′[®x 7→®c]. If vars(®y) , ∅, a consistent first-order

rewriting for q[®x 7→®c] isψ ∧ ∀®z(R(®c, ®z) → ϕ), where ®z is a sequence

of fresh variables, of the same length as ®s , and ϕ is a consistent

first-order rewriting for q′[®x 7→®c] ∧ ®z , ®s . �

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

218

Example 6.11. Consider q = {P(y), ¬N (c,a,y,y)}. The attack

graph of q contains a single edge from N to P . The following query
is a consistent first-order rewriting for q:

∃yP(y) ∧ ∀z1∀z2∀z3
(N (c, z1, z2, z3) → ∃y(P(y) ∧ ¬(z1 = a ∧ z2 = y ∧ z3 = y))),

which can be simplified into:

∃yP(y) ∧ ∀z(N (c,a, z, z) → ∃y(P(y) ∧ y , z)). �

Example 6.12. Example 1.2 argued that the query qHall = {S(x),
¬N1(c,x), ¬N2(c,x), . . . , ¬Nℓ(c,x)} captures the complement of

S-Covering. The attack graph of qHall is acyclic, and thus qHall has
a consistent first-order rewriting. Figure 2 shows a consistent first-

order rewriting for the case ℓ = 3 that is constructed as outlined in

the proof of Lemma 6.1.

Let db be an input database to CERTAINTY(qHall). What the

rewriting says is that for every (possibly empty) subset s ⊆ db
containing only Ni -facts and not containing two facts with the

same relation name (i.e., if Ni (c,u), Nj (c,w) ∈ s, then i = j implies

u = w), there exists an S-fact S(a) in db such that a does not occur

in any of the Ni -facts of s.
Consider the instance of S-Covering defined in Example 1.2,

and let db be the database obtained by the reduction described in

that example. It can be easily verified that the S-Covering problem

has no solution if and only if db satisfies the consistent first-order

rewriting forqHall . Note incidentally that the length of the rewriting
is exponential in the size of the rewritten query. �

7 BEYONDWEAKLY-GUARDED NEGATION
Theorem 4.3 covers all queries of sjfBCQ¬

with weakly-guarded

negation. However, it does not extend to all sjfBCQ¬
queries. In

fact, one can show that sjfBCQ¬
contains queries q with an acyclic

attack graph such that CERTAINTY(q) is not in FO; and queries

q′ with a cyclic attack graph such that CERTAINTY(q′) is in FO
(an example is the query q4 of Example 7.1). Thus, for sjfBCQ¬

queries in which negation is not weakly-guarded, acyclicity of the

attack graph is neither necessary nor sufficient for the existence

of consistent first-order rewritings. Note nevertheless that a cycle

of length two with at least one non-negated atom always implies

that no consistent first-order rewriting exists, even if negation is

not weakly-guarded, because Lemmas 5.5 and 5.6 do not make the

hypothesis that negation is weakly-guarded.

We now argue that allowing non-weakly-guarded negation re-

quires some fundamental, but currently not well understood, ex-

tension in the construction of consistent first-order rewritings.

Our construction of consistent-first-order rewritings in the proof

of Lemma 6.1 repeatedly finds a literal F or ¬F such that key(F) is
reifiable, and then rewrites F by means of an existential quantifi-

cation over the variables in key(F) (and a universal quantification

over the remaining variables of F). Intuitively, the existential quan-
tification fixes a block, and the universal quantification ranges

over all facts of that block. Our results tell us that if negation is

weakly-guarded, then a consistent first-order rewriting (if it exists)

can always be constructed in this way. The following Example 7.1

shows that this construction is no longer sufficient if we allow non-

weakly-guarded negation. Indeed, for the query q4 in that example,

X x
1

2

3

Y y

a
b

R x y
1 a
1 b
2 a
2 b
3 a
3 b

S y x

a 1

a 2

a 3

b 1

b 2

b 3

Figure 3: All repairs satisfy the Boolean query q4 = {X (x),
Y (y), ¬R(x ,y), ¬S(y,x)}.

no primary key is reifiable, and yet q4 has a consistent first-order
rewriting.

Example 7.1. Consider the query

q4 = {X (x),Y (y),¬R(x ,y),¬S(y,x)},

in which negation is not weakly-guarded. We can show that the

problem CERTAINTY(q4) is in FO by means of combinatorial argu-

ments. Let db be a set containing X -facts X (a1), X (a2), . . . , X (am),

and Y -facts Y (b1), Y (b2), . . . , Y (bn). Ifm = 0 or n = 0, then q4 is
obviously false in every repair of db. So assume next thatm,n ≥ 1,

and consider the negation of q4:

¬q4 ≡ ∀x∀y((X (x) ∧ Y (y)) → (R(x ,y) ∨ S(y,x))).

For every repair, there are m × n different valuations that make

the premise X (x) ∧ Y (y) in ¬q4 true, but a repair can contain at

mostm R-facts of the form R(ai ,bj) and at most n S-facts of the

form S(bj ,ai). It follows that if m × n > m + n (i.e., if m , 1,

n , 1, and either m , 2 or n , 2, which can be tested in FO),
then no repair can satisfy ¬q4, and thus every repair will satisfy

q4, no matter what is the content of R and S . For example, in the

database of Fig. 3, we havem = 3 and n = 2; since 3 × 2 > 3 + 2,

every repair satisfies q4. The only remaining cases to consider are

m = 1, n = 1, orm = n = 2. These degenerated cases can be easily

dealt with in FO. For example, if m = n = 2, then there exists a

repair satisfying ¬q4 if and only if db includes {R(a1,bj1), R(a2,bj2),
S(bj1 ,a2), S(bj2 ,a1)}, with 1 ≤ j1 , j2 ≤ 2; indeed, the latter set is

consistent and covers the four pairs in {a1,a2} × {b1,b2}. So we

can conclude that CERTAINTY(q4) is in FO.
Significantly, neither {x} nor {y} is reifiable in q4. Indeed, as

argued above, all repairs of the database of Fig. 3 satisfy q4, but
for every i ∈ {1, 2, 3}, there exists a repair falsifying q[x 7→i]; like-

wise, there exists a repair falsifying q[y 7→a], and a repair falsifying

q[y 7→b]. To conclude, CERTAINTY(q4) has a consistent first-order
rewriting which is not based on “reification,” and which differs in

a fundamental way from the consistent first-order rewritings that

apply for weakly-guarded negation. �

Even in the case of non-weakly-guarded negation, reifiable vari-

ables can be eliminated in FO complexity. An important task is

therefore to determine decidability of the following problem: given

a query q in sjfBCQ¬
and a variable x ∈ vars(q), is {x} reifiable

in q? The following lemma states that attacked variables are not

reifiable (independent of whether negation is weakly-guarded or

not). Together with Corollary 6.9, this implies that in the case of

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

219

weakly-guarded negation, the reifiable variables are exactly the

unattacked variables. Such a characterization remains open for

non-weakly-guarded negation.

Proposition 7.2. Let q be a query in sjfBCQ¬, and let x ∈

vars(q). If F
q
 x for some F ∈ q+ ∪q−, then {x} is not reifiable in q.

8 CONCLUSION
We have studied the complexity of the problem CERTAINTY(q) for
queries q in sjfBCQ¬

, the class of self-join-free Boolean conjunc-

tive queries with negated atoms. It was shown that for queries q in

sjfBCQ¬
with weakly-guarded negation, membership of the prob-

lemCERTAINTY(q) in FO is decidable. Moreover, ifCERTAINTY(q)
is in FO, then a consistent first-order rewriting for q can be ef-

fectively constructed. It remains an open problem to extend this

decidability result to the entire class sjfBCQ¬
. Weakly-guarded

negation relaxes guarded negation. Remarkably, within FO, the
same “rewriting-by-reification” method applies to all queries with

weakly-guarded negation, but falls short when negation is not

weakly-guarded.

Another open problem is to determine, for queries q in sjfBCQ¬
,

the exact complexity of CERTAINTY(q) if it is not in FO. In this

respect, notice that for q1 = {R(x ,y), ¬S(y,x)}, CERTAINTY(q1) is
intimately related to Bipartite Perfect Matching whose exact

complexity is an important open problem. Further, we pose the

conjecture that for every query q in sjfBCQ¬
, CERTAINTY(q) is

either in P or coNP-complete.

ACKNOWLEDGMENTS
Paraschos Koutris was supported by Google and by the University

of Wisconsin-Madison Office of the Vice Chancellor for Research

and Graduate Education with funding from the Wisconsin Alumni

Research Foundation.

A PROOFS OF SECTION 4
Proof of Lemma 4.7. Assume F |w

q
 u for some w ∈ vars(F)

and u ∈ vars(q). We can assume a sequence (w0,w1, . . . ,wℓ) that

is a witness for F |w
q
 u (thusw0 = w andwℓ = u).

Let P ∈ q+ \ {F } such that u ∈ vars(P). Assume towards a

contradiction that for every x ∈ key(P), we have F |w
q
̸ x . Then,

for every x ∈ key(P), (w0,w1, . . . ,wℓ ,x) is not a witness for F |w
q

x , and thus, sincewℓ ,x ∈ vars(P), we have x ∈ F ⊕,q
. Consequently,

key(P) ⊆ F ⊕,q
, and thus vars(P) ⊆ F ⊕,q

. Then u ∈ F ⊕,q
, and

thus F
q
̸ u, a contradiction. We conclude by contradiction that

F |w
q
 x for some x ∈ key(F). �

Proof of Lemma 4.8. Assume F
q
 P . We can assume variables

w ∈ vars(F) and x ∈ key(P) such that (w0,w1, . . . ,wℓ) is a witness

for F |w
q
 x (thus w0 = w and wℓ = x). Then, for every u ∈

vars(P) \ F ⊕,q
, the sequence (w0,w1, . . . ,wℓ ,u) is a witness for

F |w
q
 u, hence F

q
 u. �

The following lemma will be used in the proof of Lemma 4.9; it

does not assume that negation is weakly-guarded.

Lemma A.1. Let q be a query in sjfBCQ¬. Let F ,G ∈ q+∪q− such
that F , G. If

• F |vF
q
 wG for some vF ∈ vars(F) andwG ∈ key(G)

• and G |xG
q
 y for xG ∈ vars(G) and y ∈ vars(q) such that

• there exists P ∈ q+ such thatwG ,xG ∈ vars(P)

then either F |vF
q
 y or G |xG

q
 v for some v ∈ key(F).

Proof. Assume F |vF
q
 wG and G |xG

q
 y. Let P ∈ q+ such

that wG ,xG ∈ vars(P). Assume F |vF
q
̸ y. Let (v0,v1, . . . ,vℓ)

be a witness for F |vF
q
 wG (thus v0 = vF and vℓ = wG). Let

(x0,x1, . . . ,xm) be a witness forG |xG
q
 y (thus x0 = xG and xm =

y). Since wG ,xG ∈ vars(P) and (v0,v1, . . . ,vℓ ,x0,x1, . . . ,xm) is

not a witness for F |vF
q
 y, it follows that for some j ∈ {0, . . . ,m},

we have x j ∈ F ⊕,q
. Then, there exists a sequence

S0, P1, S1, P2, S2, . . . , Pn−1, Sn−1, Pn , Sn

such that

• key(F) = S0 (S1 (· · · (Sn ⊆ vars(q);
• P1, P2, . . . , Pn ∈ q+ \ {F };
• for all i ∈ {1, . . . ,n}, key(Pi) ⊆ Si−1 and Si = Si−1∪vars(Pi);
and

• x j ∈ Sn .

We show that G < {P1, P2, . . . , Pn }. Assume, towards a contra-

diction, that for k ∈ {1, . . . ,n}, G = Pk . Then, G ∈ q+ and

key(G) ⊆ F ⊕,q
, hence vars(G) ⊆ F ⊕,q

. Then wG ∈ F ⊕,q
, which

contradicts F |vF
q
 wG .

We show the following:

Countdown Property: for all i ∈ {1, . . . ,n}, if G |xG
q
 u for

some u ∈ Si , then for somew ∈ Si−1, we have G |xG
q
 w .

To this extent, assume i ∈ {1, . . . ,n} and u ∈ Si such that G |xG
q

u. The desired result is obvious if u ∈ Si−1. Assume next that

u < Si−1. Then, u ∈ vars(Pi) \ key(Pi). By Lemma 4.7, G |xG
q
 w

for somew ∈ key(Pi). From key(Pi) ⊆ Si−1, it followsw ∈ Si−1.

Since G |xG
q
 x j with x j ∈ Sn , by repeated application of the

Countdown Property, we obtain thatG |xG
q
 v for some v ∈ S0 =

key(F). �

We can now give the proof of Lemma 4.9.

Proof of Lemma 4.9. The proof is obvious if F = H . We next

treat the case F , H .

Assume F
q
 G and G

q
 H . We can assume vF ∈ vars(F) and

wG ∈ key(G) such that F |vF
q
 wG . Likewise, we can assume

xG ∈ vars(G) and yH ∈ key(H) such that G |xG
q
 yH . Since

negation is weakly-guarded, we can assume P ∈ q+ such that

wG ,xG ∈ vars(P) (if G ∈ q+, then P can be taken to be G). By

Lemma A.1, either F |vF
q
 yH or G |xG

q
 v for some v ∈ key(F)

(or both). Thus, either F
q
 H or G

q
 F (or both). �

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

220

t

u

v

t

u

v

Figure 4: Top: Database that results from the reduction in
the proof of Lemma 5.3. The round nodes and straight lines
represent the undirected graph. Dashed and full arrows rep-
resent S-facts andT -facts respectively. Bottom: A repair that
falsifies the query.

B PROOFS OF SECTION 5
Proof of Lemma 5.3. We show a first-order reduction from the

problem UFA (Undirected Forest Accessibility) [8] to the problem

CERTAINTY(q2). In UFA, we are given an acyclic undirected graph,

and nodes u,v . The problem is to determine whether there is a

path between u and v . The problem is L-complete, and remains

L-complete when the given graph has exactly two connected com-

ponents. Moreover, we can assume in the reduction that the two

connected components each contain at least one edge.

Given an acyclic undirected graph G = (V ,E) with exactly two

connected components, and two nodesu,v , we construct a database
db as follows:

(1) for every edge {a,b} in E, the database db contains the facts

R(a, {a,b}), R(b, {a,b}), S(a, {a,b}), S(b, {a,b}), T ({a,b},a),

and T ({a,b},b), in which {a,b} is treated as a constant; and

(2) db contains R(u, t), R(v, t), S(u, t), S(v, t), where t is a new
value not occurring elsewhere.

Clearly, the computation of db from G is in FO. As illustrated in

Fig. 4, the database db can be represented as a digraph with dashed

and full edges representing S-facts and T -facts respectively. Notice
that every vertex in this digraph corresponds to either a vertex or

an (undirected) edge of G.
We next show that there exists a path between u and v in G if

and only if every repair of db satisfies q2.
Assume first that u,v are not connected in G. A repair r of db

that falsifies q2 can be constructed as illustrated in Fig. 4. This repair

r contains S(u, t) and S(v, t), and for every s < {u,v}, the repair
contains a directed path from s to either u or v . In this way, for

every R(c,d) ∈ r, either S(c,d) ∈ r or T (d, c) ∈ r, hence r ̸ |= q2.
For the opposite implication, assume that u and v are connected

inG . Letu0,u1, . . . ,un withu0 = u andun = v be the (unique) path

between u and v in G. Assume towards a contradiction that r is a
repair of db such that r ̸ |= q2. We show by induction on increasing

i that for all i ∈ {0, . . . ,n − 1}, the facts S(ui+1, {ui ,ui+1}) and

T ({ui ,ui+1},ui) both belong to r.
For the induction basis, let i = 0. Since r contains R(u0, t) and

r ̸ |= q2, it must be the case that S(u0, t) ∈ r. Since R(u0, {u0,u1}) ∈
r and S(u0, {u0,u1}) < r and r ̸ |= q2, it must be the case that

T ({u0,u1},u0) ∈ r. Since R(u1, {u0,u1}) ∈ r and T ({u0,u1},u1) < r
and r ̸ |= q2, it must be the case that S(u1, {u0,u1}) ∈ r.

For the induction step, i → i + 1, the induction hypothesis

is that S(ui+1, {ui ,ui+1}) and T ({ui ,ui+1},ui) both belong to r.
Since R(ui+1, {ui+1,ui+2}) ∈ r and S(ui+1, {ui+1,ui+2}) < r and
r ̸ |= q2, it must be the case that T ({ui+1,ui+2},ui+1) ∈ r. Since
R(ui+2, {ui+1,ui+2}) ∈ r and T ({ui+1,ui+2},ui+2) < r and r ̸ |= q2,

it must be the case that S(ui+2, {ui+1,ui+2}) ∈ r.
It follows that S(v, {un−1,v}) ∈ r (recall v = un). But then

S(v, t) < r. Since r contains R(v, t) but neither S(v, t) nor T (t ,v)
(the latter fact does not belong to db), it follows that r |= q2, a
contradiction. �

Proof of Lemma 5.4. Let q+ ⊆ q′ ⊆ q. We show a first-order

reduction fromCERTAINTY(q′) toCERTAINTY(q). Let db be a data-
base that is input to CERTAINTY(q′). Let db0 be the database ob-
tained from db by deleting, for all¬N ∈ q\q′, allN -facts. Obviously,

db0 can be computed in FO. It is straightforward to see that every

repair of db satisfies q′ if and only if every repair of db0 satisfies
q. �

Proof of Lemma 5.7. We will show a first-order reduction from

CERTAINTY(q2) with q2 = {T (x ,y), ¬R(x ,y), ¬S(y,x)}.

Since F
q
 G, there exists vF ∈ vars(F),u ∈ key(G) such that

F |vF
q
 u. Similarly, there exists vG ∈ vars(G),u ′ ∈ key(F) such

that G |vG
q
 u ′. For all a ∈ type(x) and b ∈ type(y), define Θa

b as

the following valuation over vars(q). For everyw ∈ vars(q),

Θa
b (w) =

a if G |vG

q
 w and F |vF

q
̸ w

b if F |vF
q
 w and G |vG

q
̸ w

⟨a,b⟩ if F |vF
q
 w and G |vG

q
 w

⊥ otherwise

Sublemma B.1. For every H ∈ q+, for all a,a′ ∈ type(x) and
b,b ′ ∈ type(y), {Θa

b (H),Θa′
b′(H)} is consistent.

Proof. Assume Θa
b (H) and Θa′

b′(H) are key-equal. We need to

show Θa
b (H) = Θa′

b′(H).

Case a = a′ and b = b ′. Trivial.
Case a = a′ and b , b ′. Then, F |vF

q
̸ w for all w ∈ key(H).

By Lemma 4.7, F |vF
q
̸ w for all w ∈ vars(H) and, conse-

quently, Θa
b (H) = Θa′

b′(H).

Case a , a′ and b = b ′. Symmetric to the previous case.

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

221

Case a , a′ and b , b ′. Then F |vF
q
̸ w and G |vG

q
̸ w for

all w ∈ key(H). By Lemma 4.7, F |vF
q
̸ w and G |vG

q
̸ w

for allw ∈ vars(H) and, consequently, Θa
b (H) = Θa′

b′(H).

This concludes the proof of Sublemma B.1. �

Sublemma B.2. For all a,a′ ∈ type(x) and b,b ′ ∈ type(y),

(1) Θa
b (F) and Θ

a′
b′(F) are key-equal if and only if a = a′; and

(2) Θa
b (F) and Θ

a′
b′(F) are equal if and only if a = a′ and b = b ′.

Consequently, the set {R(a,b),R(a′,b ′)} is consistent if and only if
{Θa

b (F),Θ
a′
b′(F)} is consistent.

Proof. 1 =⇒ G |vG
q
 u ′ for some u ′ ∈ key(F). 1 ⇐= If

w ∈ key(F), then F |vF
q
̸ w . 2 =⇒ F |vF

q
 vF with vF ∈

vars(F). 2 ⇐= Trivial. This concludes the proof of Sublemma B.2.

�

Sublemma B.3. For all a,a′ ∈ type(x) and b,b ′ ∈ type(y),

(1) Θa
b (G) and Θ

a′
b′(G) are key-equal if and only if b = b ′; and

(2) Θa
b (G) and Θ

a′
b′(G) are equal if and only if a = a′ and b = b ′.

Consequently, the set {S(b,a), S(b ′,a′)} is consistent if and only if
{Θa

b (G),Θ
a′
b′(G)} is consistent.

Proof. Symmetric to the proof of Sublemma B.2. �

For every database db that is input toCERTAINTY(q2), we define
f (db) as follows:

• if db contains T (a,b), then f (db) includes Θa
b (q
+);

• if db contains R(a,b), then f (db) contains Θa
b (F); and

• if db contains S(b,a), then f (db) contains Θa
b (G).

Clearly, f is computable in FO. Note that whenever H is a relation

name in q− \ {F ,G}, then f (db) contains no H -facts. Let

д(db) = (f (db)\{Θa
b (F) | R(a,b) ∈ db})

\{Θa
b (G) | S(b,a) ∈ db}.

By Sublemmas B.1, B.2, and B.3,

rset(f (db)) = { f (r) ∪ д(db) | r ∈ rset(db)}.

Let db be a database that is input to CERTAINTY(q2). Let r be a
repair of db. It suffices to show that the following are equivalent:

(1) r |= q2;
(2) f (r) ∪ д(db) |= q.

1 =⇒ 2 We can assume T (a,b) ∈ r such that R(a,b) < r and
S(b,a) < r. We have Θa

b (q
+) ⊆ f (r). Assume, towards a contradic-

tion, Θa
b (F) ∈ f (r). Then there must exist R(a′,b ′) ∈ r such that

Θa′
b′(F) = Θa

b (F). From the second item in Sublemma B.2, a = a′

and b = b ′, hence R(a,b) ∈ r, a contradiction. Symmetrically, we

can show that Θa
b (G) < f (r). Consequently, f (r) ∪ д(db) |= q.

2 =⇒ 1 Note that fromu ′ ∈ key(F) ⊆ F ⊕,q
, it follows F |vF

q
̸

u ′. Likewise, from u ∈ key(G) ⊆ G⊕,q
, it follows G |vG

q
̸ u.

Consequently, for all a ∈ type(x) and b ∈ type(y), Θa
b (u

′) = a and

Θa
b (u) = b.

Let θ be a valuation over vars(q) such that θ (q+) ⊆ f (r) ∪ д(db)
and θ (F),θ (G) < f (r). Since q is weakly-guarded, there exists an

atom F ′ ∈ q+ such that vF ,u
′ ∈ vars(F ′) and an atom G ′ ∈ q+

such that vG ,u ∈ vars(G ′). By our construction, we can assume

atoms T (a,b),T (a′,b ′) ∈ r such that θ (F ′) = Θa
b (F

′) and θ (G ′) =

Θa′
b′(G

′). Consequently, θ (vF) = Θa
b (vF) ∈ {b, ⟨a,b⟩} and θ (vG) =

Θa′
b′(vG) ∈ {a′, ⟨a′,b ′⟩}. Furthermore, θ (u ′) = Θa

b (u
′) = a and

θ (u) = Θa′
b′(u) = b

′
.

It will be the case that a = a′ and b = b ′. The proof of b = b ′ is
given in the next paragraph; the proof of a = a′ is symmetrical.

We can assume a sequence

(v0, P1,v1, P2,v2 . . . , Pℓ−1,vℓ−1, Pℓ ,vℓ)

such that (v0,v1,v2 . . . ,vℓ−1,vℓ) is a witness for F |vF
q
 u (thus

v0 = vF and vℓ = u) and for all i ∈ {1, . . . , ℓ}, Pi ∈ q+ such that

vi−1,vi ∈ vars(Pi). Obviously, for every i ∈ {0, . . . , ℓ}, we have

F |vF
q
 vi . We show by induction on increasing i that for all i ∈

{0, . . . , ℓ}, there exists ai ∈ type(x) such that θ (vi) ∈ {b, ⟨ai ,b⟩}.
For the basis of the induction, i = 0, we have already shown θ (v0) ∈
{b, ⟨a,b⟩}. For the induction step, i → i+1, the induction hypothesis
is θ (vi) ∈ {b, ⟨ai ,b⟩}. We can assume T (a′′,b ′′) ∈ r such that

θ (Pi+1) = Θa′′
b′′(Pi+1) ∈ θ (q+). Consequently, θ (vi) = Θa′′

b′′(vi) ∈

{b ′′, ⟨a′′,b ′′⟩} and θ (vi+1) = Θa′′
b′′(vi+1) ∈ {b ′′, ⟨a′′,b ′′⟩}. Since

θ (vi) ∈ {b, ⟨ai ,b⟩} by the induction hypothesis, b = b ′′, which
concludes the induction step (take ai+1 equal to a

′′
). Consequently,

for i = ℓ, we obtain θ (u) ∈ {b, ⟨aℓ ,b⟩} for some aℓ ∈ type(x). Since
we also have θ (u) = b ′, it is correct to conclude b ′ = b.

We show that for every variable x ∈ vars(F) ∪ vars(G), θ (x) =
Θa
b (x). To this extent, let x ∈ vars(F) (the case x ∈ vars(G) is

symmetrical). We can assume the existence of an atom P1 such that

x ,vF ∈ vars(P1). We can assume T (a1,b1) ∈ r such that θ (P1) =

Θa1
b1
(P1) ∈ θ (q+). Hence, θ (vF) = Θa1

b1
(vF) ∈ {b1, ⟨a1,b1⟩}. Since

also θ (vF) ∈ {b, ⟨a,b⟩}, it follows b = b1. Thus, θ (x) = Θa1
b (x).

Likewise, we can assume the existence of an atom P2 such that

x ,u ′ ∈ vars(P2). We can assume a2 ∈ type(x) and b2 ∈ type(y)
such that θ (P2) = Θa2

b2
(P2) ∈ θ (q+). Hence, θ (u ′) = Θa2

b2
(u ′) = a2.

From θ (u ′) = a, it follows a = a2. Thus, θ (x) = Θa
b2
(x). From θ (x) =

Θa1
b (x) and θ (x) = Θa

b2
(x), it is correct to conclude θ (x) = Θa

b (x).

Assume now towards a contradiction that R(a,b) ∈ r. Then,
Θa
b (F) = θ (F) ∈ f (r), a contradiction. Hence, R(a,b) < r. By a

symmetric argument, S(b,a) < r. It follows r |= q2. This concludes
the proof �

C PROOFS OF SECTION 6
Full proof of Lemma 6.8. The proof is trivial ifA = B. We next

consider the case A , B.
Assume a valuation ζ overX such that rB |= ζ (q). We can assume

a valuation ζ + over vars(q) that extends ζ such that rB |= ζ +(q).
Since A is key-relevant for q in r, we can assume a valuation µ over
vars(q) such that r |= µ(q) and µ(G) ∼ A. We distinguish two cases:

G ∈ q− and G ∈ q+.

Case that G ∈ q−. This part of the proof was given in the main

body of the article.

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

222

Case that G ∈ q+. The desired result is obvious if ζ +(G) , B. In
the remainder of the proof, we assume ζ +(G) = B. From µ(G) ∈ r
and µ(G) ∼ A, it follows µ(G) = A.

Since A and B are key-equal, ζ + and µ agree on all variables of

key(G). Since r \ {A} = rB \ {B} and µ(q+ \ {G}) ⊆ r \ {A} and
ζ +(q+ \ {G}) ⊆ rB \ {B}, it follows from [29, Lemma 4.3] that ζ +

and µ agree on all variables ofG⊕,q
. Then, vars(G) * G⊕,q

, or else

A = B, a contradiction.
We define κ as the valuation over vars(q) such that for every

P ∈ q+,

κ(P) =

{
µ(P) if P = G or G

q
 P

ζ +(P) otherwise

We show below that κ is well-defined, that r |= κ(q), and that

κ[X] = ζ . It is then correct to conclude r |= ζ (q).

Proof that κ is well-defined. To show that κ is well-defined, as-

sume P1, P2 ∈ q+ and v ∈ vars(P1) ∩ vars(P2) such that P1 , G

and G
q
̸ P1 (the “otherwise" case in the definition of κ) and either

P2 = G or G
q
 P2. From G

q
̸ P1, it follows G

q
̸ v by Lemma 4.7.

If P2 = G , then from P2
q
̸ v and v ∈ vars(P2), it follows v ∈ G⊕,q

,

hence ζ +(v) = µ(v). If G
q
 P2 with P2 , G, then, since G

q
̸ v , it

follows v ∈ G⊕,q
by Lemma 4.8, hence ζ +(v) = µ(v).

Proof that r |= κ(q). We first show that κ(q+) ⊆ r. From κ(G) =
µ(G) and µ(G) = A ∈ r, it follows κ(G) ∈ r. For every P ∈ q+ \ {G},

either κ(P) = µ(P) ∈ r or κ(P) = ζ +(P) ∈ rB \ {B} = r \ {A}. It is
correct to conclude κ(q+) ⊆ r.

We show next that for every N ∈ q−, κ(N) < r. To this extent, let
N ∈ q−. We show below that either κ(N) = µ(N) or κ(N) = ζ +(N)

(or both). We have that r and rB contain the same set of N -facts.

Since µ(N) < r and ζ +(N) < rB , it follows κ(N) < r.
To show thatκ(N) = µ(N) orκ(N) = ζ +(N), letw be an arbitrary

variable of vars(N). We distinguish two cases:

• CaseG
q
 u for someu ∈ vars(N). Since negation is weakly-

guarded, we can assume P ∈ q+ such that u,w ∈ vars(P).
We distinguish two cases: P , G or P = G . If P , G , then, by

Lemma 4.7, G
q
 P , hence κ(P) = µ(P), thus κ(w) = µ(w). If

P = G, then κ(P) = µ(P), hence κ(w) = µ(w).

• Case G
q
̸ u for all u ∈ vars(N). Since negation is safe, we

can assume P ∈ q+ such that w ∈ vars(P). If G , P and

G
q
̸ P , then κ(P) = ζ +(P), and thus κ(w) = ζ +(w).

Assume next that G = P . From w ∈ vars(G) and G
q
̸ w , it

follows w ∈ G⊕,q
. Since µ and ζ + agree on all variables of

G⊕,q
, it follows κ(w) = µ(w) = ζ +(w).

Finally, assume that G , P and G
q
 P . From G

q
̸ w , it

follows w ∈ G⊕,q
by Lemma 4.8, hence κ(w) = µ(w) =

ζ +(w).

Proof that κ(x) = ζ (x) for every x ∈ X . Let x ∈ X , and thus

G
q
̸ x . We can assume an atom P ∈ q+ such that x ∈ vars(P).

If P = G, then it must be the case that x ∈ G⊕,q
, hence κ(x) =

ζ (x) = µ(x). Assume next G , P . If G
q
̸ P , then κ(P) = ζ +(P),

hence κ(x) = ζ (x). If G
q
 P , then x ∈ G⊕,q

by Lemma 4.8, hence

κ(x) = ζ (x) = µ(x). This concludes the proof. �

Proof of Lemma 6.10. The proof of the second item is straight-

forward. For the first item, assume F[x 7→c]
q[x 7→c]
 G[x 7→c]. Then,

we can assume vG ∈ vars(F) \ {x} and wG ∈ key(G) \ {x} and a

sequence (v0,v1, . . . ,vℓ) that is a witness for F[x 7→c] |vF
q[x 7→c]
 wG

(thus v0 = vF and vℓ = wG). Thus, for every i ∈ {0, 1, . . . , ℓ},

vi , x and vi < F[x 7→c]
⊕,q[x 7→c]

.

It is easy to show that F ⊕,q \ {x} ⊆ F[x 7→c]
⊕,q[x 7→c]

. It follows

that the above sequence is also a witness for F |vF
q
 wG , hence

F
q
 G. �

D PROOF OF PROPOSITION 7.2
Proof of Proposition 7.2. Since F

q
 x , there exists vF ∈

vars(F) such that F |vF
q
 x . We also have F |vF

q
 vF . For ev-

ery constant c , define Θc as the valuation over vars(q) such that for

everyw ∈ vars(q),

Θc (w) =

{
c if F |vF

q
 w

⊥ otherwise

Let a,b be distinct constants. Let db be the database that includes

both Θa (q
+) and Θb (q

+), and that contains both Θa (F) and Θb (F).

Note that if T is a relation name in q− \ {F }, then db contains no
T -facts. We show that

(1) for every H ∈ q+ \ {F }, {Θa (H),Θb (H)} is consistent; and

(2) Θa (F) and Θb (F) are key-equal but distinct.

For the first item, by Lemma 4.7, either F |vF
q
 u for some u ∈

key(H), or F |vF
q
̸ v for all v ∈ vars(H). In the former case,

Θa (H) and Θb (H) are not key-equal; in the latter case, Θa (H) and

Θb (H) are identical. For the second item, from key(F) ⊆ F ⊕,q
, it

follows that Θa (F) and Θb (F) are key-equal; from Θa (vF) = a

and Θb (vF) = b, it follows that Θa (F) and Θb (F) are distinct. It is
correct to conclude that db has two repairs, which we denote as

ra := db \ {Θb (F)} and rb := db \ {Θa (F)}.

We show that whenever µ is a valuation over vars(q) such that

µ(q+) ⊆ db, then either µ = Θa or µ = Θb . To this extent, assume

µ(q+) ⊆ db. Obviously, either µ(vF) = a or µ(vF) = b. Assume

µ(vF) = a (the case µ(vF) = b is symmetrical); it suffices to show

µ = Θa . Let v ∈ vars(q). If F |vF
q
̸ v , then µ(v) = ⊥ = Θa (v).

Assume next that F |vF
q
 v . Then, we can assume a sequence

(v0, P1,v1, P2,v2 . . . , Pℓ−1,vℓ−1, Pℓ ,vℓ)

such that (v0,v1,v2 . . . ,vℓ−1,vℓ) is a witness for F |vF
q
 v (thus

v0 = vF and vℓ = v) and for all i ∈ {1, . . . , ℓ}, Pi ∈ q+ such

that vi−1,vi ∈ vars(Pi). From µ(v0) = a and v0 ∈ vars(P1), it
follows µ(P1) = Θa (P1). It can now be easily shown, by induction

on increasing i , that for all i ∈ {1, . . . , ℓ}, µ(Pi) = Θa (Pi), and thus

µ(v) = Θa (v).
We show in the remainder that both repairs, ra and rb , satisfy q,

but that there exists no constant c ∈ {a,b} such that both repairs

satisfy q[x 7→c]. We distinguish two cases.

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

223

Case F ∈ q−. By symmetry, it suffices to show ra |= q[x 7→b] and

ra ̸ |= q[x 7→a]. The result ra |= q[x 7→b] follows from Θb (q
+) ⊆ ra

and Θb (F) < ra .
We next show ra ̸ |= q[x 7→a]. Assume, towards a contradiction,

a valuation µ over vars(q) \ {x} such that ra |= µ(q[x 7→a]), thus

µ(F[x 7→a]) < ra . Define µ[x 7→a] := µ ∪ {x 7→ a}, a valuation over

vars(q)which is obviously distinct fromΘb . Since µ[x 7→a](q
+) ⊆ ra ,

it follows, by our previous reasoning, that either µ[x 7→a] = Θa or

µ[x 7→a] = Θb . So it must be the case that µ[x 7→a] = Θa . We obtain

µ(F[x 7→a]) = µ[x 7→a](F) = Θa (F) ∈ ra , a contradiction.

Case F ∈ q+. By symmetry, it suffices to show ra |= q[x 7→a] and

ra ̸ |= q[x 7→b]. It is straightforward that ra |= q[x 7→a].

We next show ra ̸ |= q[x 7→b]. Assume, towards a contradiction,

a valuation µ over vars(q) \ {x} such that ra |= µ(q[x 7→b]), thus

µ(F[x 7→b]) ∈ ra . Define µ[x 7→b] := µ ∪ {x 7→ b}, a valuation over

vars(q)which is obviously distinct fromΘa . Since µ[x 7→b](q
+) ⊆ ra ,

it follows, by our previous reasoning, that either µ[x 7→b] = Θa or

µ[x 7→b] = Θb . So it must be the case that µ[x 7→b] = Θb . We obtain

µ(F[x 7→b]) = µ[x 7→b](F) = Θb (F) ∈ ra , a contradiction. �

REFERENCES
[1] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent

Query Answers in Inconsistent Databases. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
31 - June 2, 1999, Philadelphia, Pennsylvania, USA, Victor Vianu and Christos H.

Papadimitriou (Eds.). ACM Press, 68–79. https://doi.org/10.1145/303976.303983

[2] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan,

and Jeremy P. Spinrad. 2003. Scalar aggregation in inconsistent databases. Theor.
Comput. Sci. 296, 3 (2003), 405–434. https://doi.org/10.1016/S0304-3975(02)

00737-5

[3] Vince Bárány, Balder ten Cate, and Luc Segoufin. 2015. Guarded Negation. J.
ACM 62, 3 (2015), 22:1–22:26. https://doi.org/10.1145/2701414

[4] Leopoldo E. Bertossi. 2011. Database Repairing and Consistent Query
Answering. Morgan & Claypool Publishers. https://doi.org/10.2200/

S00379ED1V01Y201108DTM020

[5] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. 2016. Explaining

Inconsistency-Tolerant Query Answering over Description Logic Knowledge

Bases. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., Dale Schuurmans and Michael P.

Wellman (Eds.). AAAI Press, 900–906. http://www.aaai.org/ocs/index.php/AAAI/

AAAI16/paper/view/12025

[6] Andrei A. Bulatov. 2011. Complexity of conservative constraint satisfaction

problems. ACM Trans. Comput. Log. 12, 4 (2011), 24:1–24:66. https://doi.org/10.

1145/1970398.1970400

[7] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. 1984. Constant Depth

Reducibility. SIAM J. Comput. 13, 2 (1984), 423–439. https://doi.org/10.1137/

0213028

[8] StephenA. Cook and PierreMcKenzie. 1987. Problems Complete for Deterministic

Logarithmic Space. J. Algorithms 8, 3 (1987), 385–394. https://doi.org/10.1016/

0196-6774(87)90018-6

[9] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. 2016. Bipartite per-

fect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, Daniel Wichs and Yishay Mansour (Eds.). ACM, 754–763. https:

//doi.org/10.1145/2897518.2897564

[10] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. 2017. Guest Column:

Parallel Algorithms for Perfect Matching. SIGACT News 48, 1 (2017), 102–109.
https://doi.org/10.1145/3061640.3061655

[11] Gaëlle Fontaine. 2013. Why is it Hard to Obtain a Dichotomy for Consistent

Query Answering?. In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer Society,

550–559. https://doi.org/10.1109/LICS.2013.62

[12] Ariel Fuxman and Renée J. Miller. 2007. First-order query rewriting for in-

consistent databases. J. Comput. Syst. Sci. 73, 4 (2007), 610–635. https:

//doi.org/10.1016/j.jcss.2006.10.013

[13] Víctor Gutiérrez-Basulto, Yazmin Angélica Ibáñez-García, and Roman

Kontchakov. 2012. An Update on Query Answering with Restricted Forms of

Negation. In Web Reasoning and Rule Systems - 6th International Conference,
RR 2012, Vienna, Austria, September 10-12, 2012. Proceedings (Lecture Notes in
Computer Science), Markus Krötzsch and Umberto Straccia (Eds.), Vol. 7497.

Springer, 75–89. https://doi.org/10.1007/978-3-642-33203-6_7

[14] Philip Hall. 1935. On Representatives of Subsets. J. London Math. Soc. 10, 1 (1935),
26–30.

[15] Phokion G. Kolaitis and Enela Pema. 2012. A dichotomy in the complexity of

consistent query answering for queries with two atoms. Inf. Process. Lett. 112, 3
(2012), 77–85. https://doi.org/10.1016/j.ipl.2011.10.018

[16] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. 2013. Efficient Querying

of Inconsistent Databases with Binary Integer Programming. PVLDB 6, 6 (2013),

397–408. http://www.vldb.org/pvldb/vol6/p397-tan.pdf

[17] Paraschos Koutris and Dan Suciu. 2014. A Dichotomy on the Complexity of

Consistent Query Answering for Atoms with Simple Keys, See [27], 165–176.

https://doi.org/10.5441/002/icdt.2014.19

[18] Paraschos Koutris and Jef Wijsen. 2015. The Data Complexity of Consistent

Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key

Constraints. In Proceedings of the 34th ACM Symposium on Principles of Database
Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Tova
Milo and Diego Calvanese (Eds.). ACM, 17–29. https://doi.org/10.1145/2745754.

2745769

[19] Paraschos Koutris and Jef Wijsen. 2017. Consistent Query Answering for Self-

Join-Free Conjunctive Queries Under Primary Key Constraints. ACM Trans.
Database Syst. 42, 2 (2017), 9:1–9:45. https://doi.org/10.1145/3068334

[20] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and

Domenico Fabio Savo. 2015. Inconsistency-tolerant query answering in ontology-

based data access. J. Web Sem. 33 (2015), 3–29. https://doi.org/10.1016/j.websem.

2015.04.002

[21] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Gerardo I.

Simari. 2015. From Classical to Consistent Query Answering under Existential

Rules. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., Blai Bonet and Sven Koenig (Eds.). AAAI

Press, 1546–1552. http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/

view/9817

[22] Carsten Lutz and Frank Wolter. 2015. On the Relationship between Consistent

Query Answering and Constraint Satisfaction Problems. In 18th International
Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium
(LIPIcs), Marcelo Arenas and Martín Ugarte (Eds.), Vol. 31. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 363–379. https://doi.org/10.4230/LIPIcs.ICDT.

2015.363

[23] Marco Manna, Francesco Ricca, and Giorgio Terracina. 2015. Taming primary

key violations to query large inconsistent data via ASP. TPLP 15, 4-5 (2015),

696–710. https://doi.org/10.1017/S1471068415000320

[24] Mónica Caniupán Marileo and Leopoldo E. Bertossi. 2007. The Consistency

Extractor System: Querying Inconsistent Databases Using Answer Set Programs.

In Scalable Uncertainty Management, First International Conference, SUM 2007,
Washington, DC, USA, October 10-12, 2007, Proceedings (Lecture Notes in Computer
Science), Henri Prade and V. S. Subrahmanian (Eds.), Vol. 4772. Springer, 74–88.

https://doi.org/10.1007/978-3-540-75410-7_6

[25] DanyMaslowski and JefWijsen. 2013. A dichotomy in the complexity of counting

database repairs. J. Comput. Syst. Sci. 79, 6 (2013), 958–983. https://doi.org/10.

1016/j.jcss.2013.01.011

[26] Dany Maslowski and Jef Wijsen. 2014. Counting Database Repairs that Satisfy

Conjunctive Queries with Self-Joins, See [27], 155–164. https://doi.org/10.5441/

002/icdt.2014.18

[27] Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy (Eds.). 2014. Proc.
17th International Conference on Database Theory (ICDT), Athens, Greece, March
24-28, 2014. OpenProceedings.org. http://openproceedings.org/edbticdt2014/

ICDT_toc.html

[28] Jef Wijsen. 2010. On the first-order expressibility of computing certain answers to

conjunctive queries over uncertain databases. In Proceedings of the Twenty-Ninth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, Jan Paredaens andDirk Van
Gucht (Eds.). ACM, 179–190. https://doi.org/10.1145/1807085.1807111

[29] Jef Wijsen. 2012. Certain conjunctive query answering in first-order logic. ACM
Trans. Database Syst. 37, 2 (2012), 9:1–9:35. https://doi.org/10.1145/2188349.

2188351

Session: Consistent Query Answering, Certain Answers
and Repairs PODS’18, June 10-15, 2018, Houston, TX, USA

224

https://doi.org/10.1145/303976.303983
https://doi.org/10.1016/S0304-3975(02)00737-5
https://doi.org/10.1016/S0304-3975(02)00737-5
https://doi.org/10.1145/2701414
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12025
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12025
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1137/0213028
https://doi.org/10.1137/0213028
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1145/2897518.2897564
https://doi.org/10.1145/2897518.2897564
https://doi.org/10.1145/3061640.3061655
https://doi.org/10.1109/LICS.2013.62
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1007/978-3-642-33203-6_7
https://doi.org/10.1016/j.ipl.2011.10.018
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
https://doi.org/10.5441/002/icdt.2014.19
https://doi.org/10.1145/2745754.2745769
https://doi.org/10.1145/2745754.2745769
https://doi.org/10.1145/3068334
https://doi.org/10.1016/j.websem.2015.04.002
https://doi.org/10.1016/j.websem.2015.04.002
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9817
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9817
https://doi.org/10.4230/LIPIcs.ICDT.2015.363
https://doi.org/10.4230/LIPIcs.ICDT.2015.363
https://doi.org/10.1017/S1471068415000320
https://doi.org/10.1007/978-3-540-75410-7_6
https://doi.org/10.1016/j.jcss.2013.01.011
https://doi.org/10.1016/j.jcss.2013.01.011
https://doi.org/10.5441/002/icdt.2014.18
https://doi.org/10.5441/002/icdt.2014.18
http://openproceedings.org/edbticdt2014/ICDT_toc.html
http://openproceedings.org/edbticdt2014/ICDT_toc.html
https://doi.org/10.1145/1807085.1807111
https://doi.org/10.1145/2188349.2188351
https://doi.org/10.1145/2188349.2188351

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Main Theorem
	4.1 The Attack Graph
	4.2 Main Theorem Statement
	4.3 Properties of the Attack Relation

	5 Cyclic Attack Graphs
	5.1 Simple Queries Without Consistent First-Order Rewriting
	5.2 Attack Cycles of Length Two
	5.3 Proof of Lemma 5.1

	6 Acyclic Attack Graphs
	6.1 Variable-Free Primary Keys
	6.2 Reifiable Variables
	6.3 Proof of Lemma 6.1

	7 Beyond Weakly-Guarded Negation
	8 Conclusion
	Acknowledgments
	A Proofs of Section 4
	B Proofs of Section 5
	C Proofs of Section 6
	D Proof of Proposition 7.2
	References

