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ABSTRACT: The emergence of polymeric materials displaying high charge-carrier mobility
values despite poor interchain structural order has spawned a renewal of interest in the
identification of structure—property relationships pertaining to the transport of charges along
conjugated polymer chains and the subsequent design of optimized architectures. Here, we
present the results of intrachain charge transport simulations obtained by applying a robust
surface hopping algorithm to a phenomenological Hamiltonian parametrized against first-
principles simulations. Conformational effects are shown to provide a clear signature in the
temperature-dependent charge-carrier mobility that complies with recent experimental

@Q Surface Hopping

/Planar geometry JLarge coupling
v stiff chains

observations. We further contrast against molecular crystals the evolution with electronic ‘”

bandwidth and electron—phonon interactions of the room-temperature mobility in polymers,
showing that intrachain charge-carrier mobility values in excess of 100 cm?/(V s) can be
achieved through a proper chemical engineering of the backbones.

harge transport is a key process in the working
mechanism of a wide range of optoelectronic applications
based on organic semiconductors.”” In molecular materials,
the motion of excess charge carriers is often modeled either in
real space as successive hops between molecular units or in
momentum space using a band model.>* These are, however,
limiting cases with static and/or dynamic energetic (local) and
positional (nonlocal) disorders acting in synergy to spatially
confine the charge, all the way from extended to localized
states. The resulting crossover from band to hopping regime
can be handled only by simultaneously solving the nuclear and
electronic equations of motion, either in a full quantum
mechanical way’ or through a mixed quantum-—classical
scheme.*™
The situation is, nevertheless, far more complex in
conjugated polymers, namely because of the large anisotropy
in charge transport, with large though-bond interactions along
the conjugated backbone (mediating intrachain transport)
versus weak through-space interactions between the backbones
(driving interchain transport). Most of the present theoretical
models rest on the assumption that high-mobility polymers
consist of spatially close semicrystalline domains intercon-
nected by “tie chains”.'”'" Overall, charge transport in these
systems is a multiscale process where the macroscopic
transport is limited by the amorphous domains and exhibits
hopping-type transport behavior.'> Consequently, earlier
approaches for improving the charge transport properties in
conjugated polymers primarily concentrated on enhancing the
interchain interactions in highly crystalline materials,"”'* very
similar to the approach devised for molecular crystals.'>'® For
instance, the hole mobility of poly(2,5-bis(3-alkylthiophen-2-
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yl)thieno[3,2-b]thiophene) (PBTTT), u =~ 1 cm?/(V s), gets
enhanced by an order of magnitude compared to that of
poly(3-hexylthiophene) (P3HT) and poly(5,5'- bis(3-alkyl-2-
thienyl)-2,2’-bithiophene) (PQT) because of improved side-
chain registry. Kline et al. have shown that 4 can significantly
increase with molecular weight in regioregular P3HT;'” they
have proposed that transport is restricted by the grain
boundaries in low molecular weight polymers comprising
rod-like nanocrystallites, while in high molecular weight
polymers, long chains bridge the ordered domains.'® Pulse
radiolysis time-resolved microwave conductivity measurements
on various polymers by Grozema et al. have suggested
transport is unhindered over small length scales and the
mobility can be comparable to that of inorganic semi-
conductors."” Cook and co-workers have recently reported
charge mobility as high as 86 cm?/(V s) along a single
polyfluorene chain employing a pulse radiolysis technique.”
Over the past few years, experimental and theoretical studies
have indicated that high u values can be achieved in novel
conjugated polymer architectures despite poor interchain
registry.”">> These disordered or even seemingly amorphous,
high-mobility, donor—acceptor type conjugated copolymers
have emerged with charge mobility greater than 1 cm?/(V
s),”>7%° thanks to their extended persistence lengths associated
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with the high polymer backbone rigidity, and extended
conjugation via fused aromatic rings.'” Recent optical
spectroscopic studies of poly(indacenodithiophene-alt-benzo-
thiadiazole) (IDTBT) type polymers, with y ~ 2 cm?*/(V s),
have revealed that only few close contacts between chains
allow for three-dimensional percolation network with charge
transport being primarily intrachain in these copolymers.”®
Charge transport in conjugated polymeric materials is a
complex multiscale process, as realistic polymer chains involve
multiple chromophores delineated by structural or chemical
defects and because both intra- and interchain motion likely
coexist. Here, motivated by the emergence of novel
architectures with high intrachain charge-carrier mobility, we
address the question of what is the microscopic limit to charge
transport along conjugated polymer backbones. Although
fundamental and timely, this question has surprisingly not
been addressed in a comprehensive way yet. Previous charge
transport simulations in polymers have either assumed
incoherent hopping between conformational subunits®”*® or
focused on the electronic degrees of freedom while ignoring
teedback effects from the nuclei, thus not incorporating
polaronic effects.”” Recently, Schmidt and co-workers have
carried out first-principles calculations on P3HT employing the
Kubo formalism and Holstein Hamiltonian, but considering a
prefect crystalline structure.’® Binder and co-workers have
recently studied exciton dynamics mediated by torsional
fluctuations in oligothiophene and oligo(para-phenylene vinyl-
ene) systems using multi-layer multi-configuration time-
dependent Hartree (ML-MCTDH) method, revealing a
temperature dependence similar to that reported in the present
study. However, a direct comparison is not easy as motion of
charges and excitons are governed by different interactions,
being short-range for the former but long-range for the
latter.”’ ~*> While a fully quantum-mechanical treatment of
both nuclear and electronic degrees of freedom is computa-
tionally prohibitive, especially as one aims (as here) at
exploring a large chemical and parameter space, charge
transport can instead be modeled through a mixed
quantum—classical dynamics approach, within model (Hol-
stein—Peierls type)®** or atomistic’® Hamiltonians, which
treats the nuclear motion classically and the electron dynamics
quantum-mechanically. This is a reasonable approximation,
because the temperature dependence of the mobility primarily
stems from low-frequency vibrations with wavenumber below
100 cm™° (note that at ultralow temperature, quantum
effects like tunneling may come into the picture,’”** and we
have deliberately refrained from entering into this regime).
Here, we present a simplified but physically sound model
that captures the important effects of both local and nonlocal
electron—phonon interactions associated with conformational
motion to explore the (temperature-dependent) charge-carrier
mobility in single conjugated polymer chains across a broad
parameter space. For this purpose, we resort to a crossing-
corrected variant””*’ of Tully’s fewest switches surface
hopping algorithm®' that incorporates nonadiabatic transition
between different adiabatic potential energy surfaces (PESs).
This state-of-the-art technique can efliciently deal with
complex surface crossings in extended systems** (methodology
in detail is given in the Supporting Information). The
dynamics of the system is described by an ensemble of
independent trajectories, where each trajectory occupies an
“active” PES at individual time steps. Along each trajectory, the
electronic wave function |®(t)) is propagated via the time-
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dependent Schrodinger equation (TDSE) dl®(t))/ot
H.®(t))/1h. In the adiabatic basis representation

{#(rR(0)} (10(1)) = Xic(D)lgh(5R(£)))), this yields

&) = ((OER®D)/in — T (OR()-4,(R(0)
j (1)
d(R(t)) being the nonadiabatic coupling vector. R represents
the corresponding coordinates of the nuclear degrees of

freedom under study, and its dynamics on the active PES is
modeled by the Langevin equation

MR = -V’ — yMR + ¢ ()

where —V’ is the effective force on the active PES, M the mass
equivalent corresponding to the classical nuclear degrees of
freedom, y the friction coefficient, and £ a Markovian Gaussian
random force (for details, see ref 6). Stochastic hops between
adiabatic PESs are implemented to achieve the internal
consistency; that is, the fraction of trajectories on each PES
should agree with the corresponding quantum population
obtained by the TDSE."' Mean-squared displacement (MSD)
is then calculated by

N,

1V, ;
MSD(t) = — X (PO (t))
Mraj i
1 ’

2 (O ()

traj

3)

where Ny, is the number of independent trajectories and |
(1)) is the active state at time ¢ for the ith trajectory; in the
current study, N,,; = 10 000 is chosen to obtain a smooth time
evolution profile of MSD(t). Linear evolution of MSD(t)
signifies that an equilibrium diffusion regime is attained, and
the charge mobility can then be computed from the diffusion
coefficient (D) using the Einstein relation

1.
D= Egn; [d(MSD(t))/dt] 4)

eD

" et

(s)

We also track the time-dependent inverse participation ratio
(IPR) that measures the charge delocalization length along the
polymer chain

N,

z’ 1

=Y, (K 6)

k) is any suitable local basis of the system as discussed below.

We model the polymer chains as one-dimensional arrays of
N monomers (with open boundary conditions), each
associated with one electronic state lk). Although the model
can easily be extended, we describe the ions via two effective,
harmonic, classical vibrational degrees of freedom that
modulate the site energy (local electron—phonon coupling)
and electronic coupling (nonlocal electron—phonon coupling),
respectively. The intramonomer mode x; accounts for the
changes in the monomer geometry upon addition of an excess
charge, while intermonomer mode 8, describes the torsion
between successive monomer units k and k" along the polymer
axis. The onsite energy of monomer k gets linearly modulated
with x; by the coupling constant a; while the electronic

IPR(t) = ~
traj
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Figure 1. Temperature dependence of (A) charge-carrier mobility and (B) mean IPR within a single polymer chain at moderate (MD-derived
torsional stiffness constants) Ky = 1750 cm™" and 3260 cm™. Broken lines with circles represent planar equilibrium configuration, while solid lines
with squares represent twisted equilibrium configuration. Color codes for varying f are indicated in the figure. The lines are given only as a guide to

the eyes.
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Figure 2. Temperature dependence of (A) charge-carrier mobility and (B) mean IPR within a single polymer chain at high K, = 44 000 cm™" and
80000 cm™" (stiff torsional potentials). Color and symbol codes are similar to those in Figure 1.

coupling (i.e., the transfer integral) between nearest neighbors
k and k — 1 follows a sinusoidal evolution with 6;;_,. The
maximum electronic coupling (/) is achieved when 0, =
or 180°. Thus, the total Hamiltonian (H = H, + H,) reads

N N
H, = ), audk)(kl + D, Blcos(6y ,_,)

k=1 k=2
k) (k — 11 + Ik — 1)(KI] @)
Hn = Z —[mvkz + Iwkz + Kxxkz] + Z _e(ek,k—l - 6eq)2
2 2
k=1 k=2
(8)

0., being the equilibrium value of the intermonomer torsion
angle in the neutral ground-state equilibrium configuration. K,
(Ky) is the intramonomer vibrational force constant (intermo-
nomer torsional stiffness constant) while v, (w;) and m (I)
correspond to the linear (angular) velocity and effective mass
(moment of inertia) of monomer k.

Though our model is general enough that it can be applied
to any conjugated polymer, we have first parametrized it
against coarse-grained simulations performed on solid samples
of P3HT. In a nutshell (see details in the Supporting
Information), we have fitted the torsion potential in eq 8 to
reproduce the results obtained by Boltzmann inversion of
conformational populations derived from molecular dynamics
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(MD) simulations on large amorphous bundles of P3HT
chains (16 polymer chains of 300 monomers). This leads to a
double-well potential centered around 6,4 ~ 36° and 0.y ~
153° with torsional stiffness constants K, = 1750 cm™ and K/
= 3260 cm™', respectively. This asymmetry in the potential
energy surfaces around anti versus syn conformations has been
considered in the simulations, as detailed in the Supporting
Information. Next, we have carried out density functional
theory (DFT) calculations at the B3LYP/cc-pVDZ level on
P3HT dimers with varying torsional angle between the
monomer units employing the GAUSSIAN-16 package®
(see details in the Supporting Information); the corresponding
electronic structure has been successfully reproduced by our
tight-binding approach considering f & 3650 cm™" (that would
translate into a full electronic bandwidth of 4 ~ 1.8 eV at the
infinite chain length limit, a very large but expected value for
wide-band one-dimensional conjugated polymers).

The other parameters are taken either from previous charge
transport studies on molecular crystals (K, = 14500 amu ps?,
a = 3500 cm'A7!, and y = 100 ps™)** or adjusted for
thiophene rings (m = 80 amu and I = 29 amu A?). Thereafter,
we refer to this set of parameters as the “P3HT model”.
Because we aim at deriving a general structure—property
relationship pertaining to charge transport along conjugated
polymer chains, we actually performed simulations for a broad
range of parameters associated with the most relevant degrees
of freedom and interactions, namely (i) the equilibrium torsion
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Figure 3. Temperature dependence of (A) charge-carrier mobility and (B) mean IPR within a single polymer chain at low Ky = 70 cm™ and 128
em™" (soft polymer backbone). Color and symbol codes are similar to those in Figure 1.

angle (taken to be either 0.y = 36°/153° in P3HT chains or
0°/180° for planar chains) and the conformational stiffness
(varied over 3 orders of magnitude in K, corresponding to
characteristic time scales with oscillation period 0.11 ps < T <
3.7 ps), along with (ii) the electronic coupling or bandwidth
(with f3 varied from 2000 to 6000 cm™).

We start our analysis by exploring the temperature-
dependent charge-carrier mobility and charge delocalization
as this provides a useful hint into the transport mechanism, in
addition to being a testbed for comparison to experiment. At
first, we consider the case of polymer chains with planar
equilibrium configurations, corresponding to equilibrium
angles 0., = 0°/180° in eq 8. At moderate and high values
of Ky (stiff chain), y(T) shows band-like transport (Figures 1A
and 2A) with mobility decreasing with temperature following a
power law, because of scattering with thermal phonons.
Furthermore, the mobility values are found to be comparable
to those reported for molecular crystals.” The charge carriers
remain largely extended over the polymer chain (with a
coherence length extending over ~30 repeating units) (Figures
1B and 2B) and the mean IPR reduces with increasing T, thus
remaining on par with g(T). This is reminiscent of the picture
prevailing in molecular crystals, as put forward by Troisi and
co-workers," where thermal fluctuations in the electronic
coupling (here driven by changes in conformation) drive a
transient localization of the charge carriers. We also find that p
displays the expected dependence on electronic bandwidth, i.e.
larger electronic coupling stimulates more extended delocaliza-
tion and, consequently, enhances mobility (Figures 1A and
2A). For low Ky (soft chains), u(T) shows a more complex
behavior: it is thermally activated at T > 200 K, while it
reduces with temperature at lower T following a power law
(Figure 3A). We also note that the charge-carrier mobility is a
tew orders of magnitude smaller than that in the case of stiffer
chains. In addition, the mobility values shrink when the
electronic bandwidth increases, at odds with the expectations
from the molecular crystal scenario. We associate the lower p
values and the anticorrelation between pg and f to the
formation of shallow trap states stemming from the conforma-
tional disorder in the flexible polymer chains. At low T, the
ions do not have enough kinetic energy to cross the energy
barrier associated with local, stochastic variations in torsion
angles, so that charge carriers get confined over conformational
subunits of ~5 monomer units in length (Figure 3B). In
addition, the larger the f, the deeper the trap states, explaining
the inverse dependence of y on f.

6522

Unexpected results are obtained when repeating these
calculations, but now considering the twisted ground-state
configuration (i.e., the MD-derived P3HT model). In soft
polymer chains (low Ky), #(T) displays a T-activated hopping
behavior over the entire temperature range (Figure 3A),
irrespective of the bandwidth. The flexibility of the polymer
backbone allows exploring a range of torsional conformations,
with low-energy conformations acting as traps for the charge
carriers. Thermal energy can be used to escape from the
transient conformationally induced potential wells and an
Arrhenius-like fit of the y(T) values in Figure 3A yields an
activation energy of ~70—120 cm™' that is comparable to the
stiffness constant. Except at low T, we note that similar results
are obtained for planar and twisted equilibrium geometries,
which is reasonable in the case of shallow potentials. We also
note that the T-dependence of the mobility in soft, twisted
polymer chains is similar to the T-dependence of exciton
diffusion coefficient in oligothiophene system observed by
Binder et al., where the torsion-induced dynamical barriers get
overcome by thermal energy.*”

The most remarkable results are obtained at intermediate
and large K, values (Figures 1A and 2A). There, the charge-
carrier mobility shows an unexpected temperature dependence,
with a strong thermally activated behavior at low T and a
power-law dependence at high T (with a critical crossover T
being a subtle function of K, and f). The temperature
dependence is also significantly different from that predicted
for planar chains (planar chains show a power-law dependence
across the entire parameter space). Furthermore, there is no
clear correlation between mobility and charge delocalization
length, the latter being very weakly T-dependent (Figures 1
and 2). For these relatively stiff backbones, the classical forces
felt by the ions tend to confine the system in regions close to
the twisted equilibrium geometry, while the electronic forces
favor more planar backbones. This interplay leads to a rather
complex density of states, the width of which depends on the
magnitude of electronic coupling # and where the low-energy
states are on average more confined in space (see the
Supporting Information). The mobility value is now primarily
dictated by the probability for the thermalized carriers to reach
higher-energy extended states (at the so-called mobility edge),
which explains the initial increase of y with T. At low T, the
energy gap between the active state and the available adiabatic
states indeed decreases with T (see the Supporting
Information). This energy gap is also larger for higher
values, hence the unconventional decrease in mobility with
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Figure 4. Room-temperature intrachain mobility for varying electronic bandwidth, £, and torsional stiffness, Ky, in (A) planar equilibrium geometry

and (B) twisted equilibrium geometry. Different K, are indicated in terms of ratio with the reference torsional stiffness of P3HT K, = 1750 cm™

1

and 3260 cm™". Mobility values are color-coded and shown in the adjacent colorbar.

bandwidth. At higher T, extended states become readily
available, irrespective of bandwidth, and a power law behavior
is recovered as in the planar equilibrium geometry case.
Furthermore, the calculated intrachain charge-carrier mobility
values for very stiff twisted polymers resemble that earlier
reported by Schmidt et al. in perfect P3HT crystals.”

To demonstrate the concerted effect of electronic bandwidth
and polymer backbone stiffness on intrachain charge transport,
we report in Figure 4A,B room-temperature (RT) charge-
carrier mobility calculated for a broad range of ff and K, values.
It is quite evident that the RT mobility strongly depends on
the torsional stiffness as well as the equilibrium configuration
of the neutral chain. For planar configurations, the RT mobility
gets enhanced with larger bandwidth (except at low K,) and
torsional stiffness, whereas for twisted configurations, the
mobility improves with increasing Kj, yet the dependence on
is nontrivial. Therefore, in contrast to previous studies*** and
expectations, enhanced electronic coupling can be detrimental
to charge transport along conjugated polymers, unless the
torsional potential is very stiff and the equilibrium geometry is
close to planarity. Recent experimental studies on stiff
polymers like IDTBT*” have revealed that the mobility follows
a power-law dependence at high T and features a sharp decline
at low T. We believe that this can be interpreted as a situation
where the polymer backbone is stiff but has slightly twisted
equilibrium ground-state conformation, which is supported by
molecular dynamics investigations.”’ In addition, the exper-
imentally measured mobility values (~2 cm?/(V s)) are also in
the range predicted by our theory for parameters relevant to
the P3HT model.

In conclusion, employing a mixed quantum—classical model,
we have explored the interplay between electronic coupling
along the polymer backbone, the equilibrium conformation,
and stiffness of the torsion potential on the (temperature-
dependent) intrachain charge-carrier mobility. We have in
particular demonstrated that the unusual evolution of the
mobility with temperature (thermally activated behavior at low
T and a power-law dependence at high T) is a fingerprint for
polymer backbones that display stiff torsion potentials with
nonplanar equilibrium geometries. By constraining the
conformation to be fully planar while retaining a large stiffness
constant, our calculations predict that the RT charge-carrier
mobility in conjugated (co)polymers would crank up from the
current ~1 cm?/(V s) to values beyond 100 cm?/(V s).
Possible strategies to increase rigidity and enforce planarity

would be to use larger fused-ring monomer units, to promote
weak (e.g, H-bonding) interactions between successive
monomer units and to link the repeating units by carbon—
carbon double bonds, as proposed recently by McCulloch and
co-workers.*® In conjunction with first-principle simulations,
we believe that our model can easily be extended to account
for the atomistic details of the polymer chains (e.g, the
presence of alternated donor and acceptor units in
copolymers) and guide the synthetic efforts toward a new
generation of amorphous yet high-mobility polymer materials.
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