Reconciling Rationality and Stochasticity:
 Rich Behavioral Models in Two-Player Games

Mickael Randour
Computer Science Department, ULB - Université libre de Bruxelles, Belgium

July 24, 2016

GAMES 2016-5th World Congress of the Game Theory Society

UNIVERSITÉ
LIBRE
DE BRUXELLES

The talk in one slide

Two traditional paradigms for agents in complex systems

(multi-player) game
large stochastic process

In some fields (e.g., computer science), need to go beyond: rich behavioral models

in an uncertain environment

Advertisement

Full paper available on arXiv [Ran16a]: abs/1603.05072

1 Rationality \& stochasticity

2 Planning a journey in an uncertain environment

3 Synthesis of reliable reactive systems

4 Conclusion

1 Rationality \& stochasticity

3 Synthesis of reliable reactive systems

4 Conclusion

Rationality hypothesis

Rational agents [OR94]:

- clear personal objectives,
- aware of their alternatives,
- form sound expectations about any unknowns,

■ choose their actions coherently (i.e., regarding some notion of optimality).
\Longrightarrow In the particular setting of zero-sum games: antagonistic interactions between the players.
\hookrightarrow Well-founded abstraction in computer science. E.g., processes competing for access to a shared resource.

Stochasticity

Stochastic agents:

■ often a sufficient abstraction to reason about macroscopic properties of a complex system,

- agents follow stochastic models that can be based on experimental data (e.g., traffic in a town).

Several models of interest:

■ fully stochastic agents \Longrightarrow Markov chain [Put94],
■ rational agent against stochastic agent \Longrightarrow Markov decision process [Put94],
■ two rational agents + one stochastic agent \Longrightarrow stochastic game or competitive MDP [FV97].

Choosing the appropriate paradigm matters!

As an agent having to choose a strategy, the assumptions made on the other agents are crucial.
\Longrightarrow They define our objective hence the adequate strategy.
\Longrightarrow Illustration: planning a journey.

1 Rationality \& stochasticity

2 Planning a journey in an uncertain environment

3 Synthesis of reliable reactive systems

4 Conclusion

Aim of this illustration

Flavor of \neq types of useful strategies in stochastic environments.
\triangleright Based on a series of papers, most in a computer science setting (more on that later) [Ran13, BFRR14b, BFRR14a, RRS15a, RRS15b, $\mathrm{BCH}^{+} 16$].

Applications to the shortest path problem.

\hookrightarrow Find a path of minimal length in a weighted graph (Dijkstra, Bellman-Ford, etc) [CGR96].

Aim of this illustration

Flavor of \neq types of useful strategies in stochastic environments.
\triangleright Based on a series of papers, most in a computer science setting (more on that later) [Ran13, BFRR14b, BFRR14a, RRS15a, RRS15b, $\mathrm{BCH}^{+} 16$].

Applications to the shortest path problem.

What if the environment is uncertain? E.g., in case of heavy traffic, some roads may be crowded.

Planning a journey in an uncertain environment

Each action takes time, target $=$ work.
\triangleright What kind of strategies are we looking for when the environment is stochastic (MDP)?

Solution 1: minimize the expected time to work

\triangleright "Average" performance: meaningful when you journey often.
\triangleright Simple strategies suffice: no memory, no randomness.
\triangleright Taking the car is optimal: $\mathbb{E}_{D}^{\sigma}\left(\right.$ TS $\left.^{\text {work }}\right)=33$.

Solution 2: traveling without taking too many risks

Minimizing the expected time to destination makes sense if we travel often and it is not a problem to be late.
With car, in 10% of the cases, the journey takes 71 minutes.

Solution 2: traveling without taking too many risks

Most bosses will not be happy if we are late too often. . .
\sim what if we are risk-averse and want to avoid that?

Solution 2: maximize the probability to be on time

Specification: reach work within 40 minutes with 0.95 probability
Sample strategy: take the train $\sim \mathbb{P}_{D}^{\sigma}\left[\right.$ TS $\left.^{\text {work }} \leq 40\right]=0.99$
Bad choices: car (0.9) and bike (0.0)

Solution 3: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)
Sample strategy: bike \sim worst-case reaching time $=45$ minutes.
Bad choices: train $(w c=\infty)$ and car $(w c=71)$

Solution 3: strict worst-case guarantees

Worst-case analysis \sim two-player zero-sum game against a rational antagonistic adversary (bad guy)
\triangleright forget about probabilities and give the choice of transitions to the adversary

Solution 4: minimize the expected time under strict worst-case guarantees

■ Expected time: car $\sim \mathbb{E}=33$ but $w c=71>60$
■ Worst-case: bike $\sim w c=45<60$ but $\mathbb{E}=45 \ggg 33$

Solution 4: minimize the expected time under strict worst-case guarantees

In practice, we want both! Can we do better?
\triangleright Beyond worst-case synthesis [BFRR14b, BFRR14a]: minimize the expected time under the worst-case constraint.

Solution 4: minimize the expected time under strict worst-case guarantees

Sample strategy: try train up to 3 delays then switch to bike.
$\sim w c=58<60$ and $\mathbb{E} \approx 37.34 \ll 45$
\sim Strategies need memory \leadsto more complex!

Solution 5: multiple objectives \Rightarrow trade-offs

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \vDash \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Solution 5: multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS15a].
\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Solution 5: multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS15a].
In general, both memory and randomness are required.
\neq previous problems \sim more complex!

1 Rationality \& stochasticity

2 Planning a journey in an uncertain environment

3 Synthesis of reliable reactive systems

4 Conclusion

Controller synthesis

■ Setting:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.

■ For critical systems (e.g., airplane controller, power plants, ABS), testing is not enough!
\Rightarrow Need formal methods.

■ Automated synthesis of provably-correct and efficient controllers:
\triangleright mathematical frameworks,
\hookrightarrow e.g., games on graphs [GTW02, Ran13, Ran14]
\triangleright software tools.

Strategy synthesis in stochastic environments

Strategy $=$ formal model of how to control the system

Some other objectives

The example was about shortest path objectives, but there are many more! Some examples based on energy applications.
\triangleright Energy: operate with a (bounded) fuel tank and never run out of fuel [BFL+ 08$]$.
\triangleright Mean-payoff: average cost/reward (or energy consumption) per action in the long run [EM79].
\triangleright Average-energy: energy objective + optimize the long-run average amount of fuel in the tank [BMR $\left.{ }^{+} 15\right]$.
Also inspired by economics:
\triangleright Discounted sum: simulates interest or inflation $\left[\mathrm{BCF}^{+} 13\right]$.

Conclusion

Our research aims at:
■ defining meaningful strategy concepts,

- providing algorithms and tools to compute those strategies,
- classifying the complexity of the different problems from a theoretical standpoint.
\hookrightarrow Is it mathematically possible to obtain efficient algorithms?

Take-home message

Rich behavioral models are natural and important in computer science (e.g., synthesis).

Maybe they can be useful in other areas too. E.g., in economics: combining sufficient risk-avoidance and profitable expected return, value-at-risk models.

Thank you! Any question?

References I

T. Brázdil, T. Chen, V. Forejt, P. Novotný, and A. Simaitis.

Solvency Markov decision processes with interest.
In Proc. of FSTTCS, volume 24 of LIPIcs, pages 487-499. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
R. Brenguier, L. Clemente, P. Hunter, G.A. Pérez, M. Randour, J.-F. Raskin, O. Sankur, and M. Sassolas.

Non-zero sum games for reactive synthesis.
In Proc. of LATA, LNCS 9618, pages 3-23. Springer, 2016.
P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed automata with energy constraints. In Proc. of FORMATS, LNCS 5215, pages 33-47. Springer, 2008.
V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Expectations or guarantees? I want it all! A crossroad between games and MDPs.
In Proc. of SR, EPTCS 146, pages 1-8, 2014.
V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.
P. Bouyer, N. Markey, M. Randour, K.G. Larsen, and S. Laursen.

Average-energy games.
In Proc. of GandALF, EPTCS 193, pages 1-15, 2015.

References II

B.V. Cherkassky, A.V. Goldberg, and T. Radzik.

Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.
A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.
International Journal of Game Theory, 8:109-113, 1979.
J. Filar and K. Vrieze.

Competitive Markov decision processes.
Springer, 1997.

E. Grädel, W. Thomas, and T. Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS 2500. Springer, 2002.

M.J. Osborne and A. Rubinstein.

A Course in Game Theory.
MIT Press, 1994.
M.L. Puterman.

Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley \& Sons, Inc., New York, NY, USA, 1st edition, 1994.

M. Randour.

Automated synthesis of reliable and efficient systems through game theory: A case study.
In Proceedings of the European Conference on Complex Systems 2012, Springer Proceedings in Complexity XVII, pages 731-738. Springer, 2013.

References III

M. Randour.

Synthesis in Multi-Criteria Quantitative Games.
PhD thesis, Université de Mons, Belgium, 2014.
M. Randour.

Reconciling rationality and stochasticity: Rich behavioral models in two-player games. CoRR, abs/1603.05072, 2016.
M. Randour.

Reconciling rationality and stochasticity: Rich behavioral models in two-player games.
Talk at GAMES 2016-5th World Congress of the Game Theory Society, 2016.
M. Randour, J.-F. Raskin, and O. Sankur.

Percentile queries in multi-dimensional Markov decision processes.
In Proc. of CAV, LNCS 9206, pages 123-139. Springer, 2015.
M. Randour, J.-F. Raskin, and O. Sankur.

Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS 8931, pages 1-18. Springer, 2015.

Algorithmic complexity: hierarchy of problems

For shortest path

