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Abstract

We present a new computer system, called GraPHedron, which uses a polyhedral approach to help the user to discover optimal
conjectures in graph theory. We define what should be optimal conjectures and propose a formal framework allowing to identify
them. Here, graphs with n nodes are viewed as points in the Euclidian space, whose coordinates are the values of a set of graph
invariants. To the convex hull of these points corresponds a finite set of linear inequalities. These inequalities computed for a few
values of n can be possibly generalized automatically or interactively. They serve as conjectures which can be considered as optimal
by geometrical arguments.

We describe how the system works, and all optimal relations between the diameter and the number of edges of connected graphs
are given, as an illustration. Other applications and results are mentioned, and the forms of the conjectures that can be currently
obtained with GraPHedron are characterized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the early eighties, several software systems have been used to make conjectures in graph theory [35,38].
Hansen [35] divides such systems into two classes: automated systems that provide conjectures in a fully automated
way (i.e., without human intervention apart for the problem statement), and computer-assisted systems on the other
hand. Derived conjectures are then said to be obtained by an automated system or with a computer-assisted one.
Notice that in practice an automated system can often also be used interactively and leads to both automated and/or
computer-assisted conjectures.

Among such computer systems, we just mention the pioneering system Graph due to Cvetković et al. [11–16],
the Graffiti system of Fajtlowicz et al. [18,20–26] and the system AutoGraphiX developed by Caporossi and Hansen
[1,4–7,17,27,34,39–41]. According to Hansen [35] they are the main operational systems in the field, each one leading
to dozens of papers:

Collectively, this number of papers is large (over 200) and perhaps unequaled in the field of discovery science.
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It appears that the forms of conjectures found by and/or with these systems are often relations among graph invariants,
i.e., numerical values associated with each graph G preserved by isomorphism. This is also often the case in the literature.
However, some theorems—discovered without computer-assistance—have forms that are not considered by the current
systems [36].

We present here a new computer-assisted system, called GraPHedron (which can, in some cases, give conjectures
in a fully automated way). Considering that conjectures in graph theory are often relations among graph invariants, the
system tries to answer the following question:

What are all the best inequalities among a selected set of invariants, valid for graphs of a given class?

As the paper’s title suggests, the arguments used to answer this question will be taken from polyhedral theory.
Actually, the name GraPHedron is the contraction of the words graph and polyhedron.

This paper is organized as follows. In Section 2, we give some notations and definitions. In Section 3, we explain
the principles of GraPHedron, and give our answer to the above question. The outline of this system is explained
in Section 4. We next present applications and first results in Section 5. As the goal of this paper is to present the
system, the results presented in Section 5 will be viewed as an illustration and references to more important results
will be given. The different forms of conjectures that can be currently derived with GraPHedron are characterized in
Section 6. Finally, we draw some concluding remarks in Section 7.

2. Notations and definitions

Classical notions of graph theory and polyhedral theory will be used. Readers that are not familiar with these notions
are referred to standard textbooks on graphs [3,19] and on polytopes [46]. However, we recall and fix some notations
and definitions in this section.

We consider simple, loop-free, undirected graphs G(V, E) with node set V and edge set E. The number of nodes of
G is denoted by n(G) = |V | and the number of edges by m(G) = |E|. The degree of a node v, denoted by dG(v), is
the number of nodes w such that {v, w} ∈ E. The distance dG(v, w) between two nodes v and w is the length (i.e., the
number of edges) of a shortest path between v and w. We note G " H if the graph G is isomorphic to the graph H.

Classical graphs will be used: stars, denoted by Sn, paths denoted by Pn and complete graphs Kn, where n is the
number of nodes. A complete graph is also called a clique.

Definition 1. A (graph) invariant i(G) is a numerical value associated with a graph G and preserved by isomorphism.

For instance, the integers n(G) and m(G) are invariants. Invariants can also have boolean, rational or irrational values.
As graphs are used in many different applications, there exist dozens of invariants describing specific characteristics
of graphs. In the following we will use the diameter D(G) which is the maximum distance between two nodes of G;
the maximum degree !(G) = maxv∈V dG(v) and the stability number "(G) which is the maximum cardinality of a set
of non-adjacent nodes.

When the context is clear, we often omit to note explicitly G in the above notations.

Definition 2. The set of invariants I = {i1, i2, . . . , ip} is a set of p algebraic expressions involving one or more
invariants.

This definition is not ambiguous because an algebraic expression involving several invariants is also an invariant.
For a given set I of p invariants, one can associate to a graph G a point (i1(G), i2(G), . . . , ip(G)) in the space of
invariants Sp. Depending of the type of the invariants values, Sp can be Zp, Qp or Rp (boolean values are considered
as integers where true is 1 and false is 0).

Definition 3. Let S be a finite set of points in Sp. The p-dimensional polytope P = conv(S) is the convex hull of S.

From a geometrical point of view, a polytope is an intersection of half-spaces. A p-dimensional polytope can thus
be defined as a set of solutions x ∈ Sp of a system of k linear inequalities

Ax!b, (1)

where A ∈ Sk×p is a k × p matrix and b ∈ Sk is a k-vector.
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A face of P is the intersection of P with a tangent hyperplane. Zero-dimensional faces are vertices, one-dimensional
faces are polytope edges and p − 1-dimensional faces are facets. An inequality which is a facet of P is called a facet
defining inequality. Note that to avoid confusion we use the words node and edge for graphs and vertex and polytope
edge for polytopes.

Definition 4. F(P) is the system of facet defining inequalities describing P.

Definition 5. Let C be a specific class of graphs (e.g., connected graphs). We note Cn the set of all non-isomorphic
graphs with n nodes, belonging to C.

3. Principles of GraPHedron

We present here the principles of GraPHedron, a computer system which helps to find optimal conjectures in graph
theory. First, in Section 3.1, the polyhedral approach of the system is explained. This approach is illustrated in Section
3.2 by an example. Finally, we explain in Section 3.3 the differences between this approach and a similar procedure
used in the system AutoGraphiX [6,7].

3.1. A polyhedral approach

As already stressed in the Introduction (and even if it is not always the case [36]), theorems in graph theory are often
expressions (equalities or inequalities) involving a set of invariants, under some conditions that graphs should respect.
These conditions, or hypotheses, are generally a specific class of graphs C. For example, a theorem can be valid only
for connected, bipartite or planar graphs. We ask the following question:

What are all the best linear inequalities among invariants of I, valid for all graphs of Cn?

Actually, to answer this question, one needs to answer some related ones:

• How to define a “best” or “optimal” linear inequality when n is given?
• What means “all” inequalities for a given problem?
• How to find these inequalities?

We derive answers from a polyhedral approach, considering graphs as points in the Euclidian space.

Definition 6. For a given class of graph C, a given set of invariants I and a fixed integer n, we define the invariants
polytope PC,I

n as

PC,I
n = conv{(x1, x2, . . . , xp) ∈ Sp | ∃G ∈ Cn, i1(G) = x1, i2(G) = x2, . . . , ip(G) = xp}.

When no confusion is possible, PC,I
n is simply denoted by Pn. This polytope can be described by a system F(Pn)

of facet defining inequalities. Any such linear inequality can be considered as best possible:

• any valid linear inequality among the invariants of I is dominated by a positive combination of facet defining
inequalities ∈ F(Pn);

• F(Pn) constitute a minimal system describing Pn, i.e., no facet defining inequality ∈ F(Pn) can be a logical
consequence of any other valid inequalities.

This definition of optimality is thus stronger than a “tight” inequality—a classical argument of quality—which means
only that the inequality defines a supporting hyperplane of Pn.

From the computation of Pn, we can derive a fruitful strategy to formulate conjectures. If n is small, Pn can be
computed effectively with a computer. The idea of the computer system GraPHedron is to compute the polytopes Pn

for some reasonable values of n and to display detailed information about them. If similarities between a facet of each
Pn can be pointed out, one often obtains a conjectured generalization of this facet for all n. Sometimes, the complete
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Fig. 1. Graphs of C4, their coordinates (D, m) and the polytope P4.

system F(Pn) can be conjectured and generalized for each n. The characterization of the vertex-graphs is also very
helpful to derives conjectures.

Definition 7. Let G ∈ Cn be a graph and Pn an invariants polytope. If the point (i1(G), i2(G), . . . , ip(G)) is a vertex
of Pn, then G is called a vertex-graph of Pn.

3.2. Illustration

To illustrate the polyhedral approach, we introduce a simple but beautiful example.

Example 1. What are all the best linear inequalities among the diameter D and the number of edges m of connected
graphs with n nodes?

Thus I = {D, m} and C is the class of connected graphs. Fig. 1 shows all graphs in C4, the associated vectors of
coordinates (D, m) and the corresponding polytope P4. This polytope is defined by the following set of facet defining
inequalities:

m"3,

3D + m"9,

D + m!7,

2D + m!9.

Polytopes Pn with larger values of n (i.e., n!11) can then be computed. Fig. 2 shows representations of P9 and
P10 produced by GraPHedron.

Figs. 3 and 4 show drawings of the vertex-graphs of P9 and P10, as displayed by GraPHedron.
A look at the information displayed by GraPHedron for the polytopes Pn (n = 4, 5, . . . , 11) leads to the following

observations. The polytopes have always four facets and a very similar shape. Each vertex always corresponds to
only one graph. These vertex-graphs are easily characterized: the star Sn, the path Pn, the complete graph Kn and the
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Fig. 2. The polytopes P9 and P10.
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Fig. 3. The vertex-graphs of P9.
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Fig. 4. The vertex-graphs of P10.

complete graph with a removed edge Kn\e. The coordinates (D, m) of these graphs are trivially generalized in terms
of n:

Sn : (2, n − 1), (2)

Pn : (n − 1, n − 1), (3)

Kn :
(

1,

(
n

2

))
, (4)

Kn\e :
(

2,

(
n

2

)
− 1

)
. (5)
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If one conjectures that the coordinates associated with these graphs are always vertices ofPn (and that no other graph
corresponds to a vertex), the facet defining inequalities are also easily generalized. To avoid trivialities (as S3 " P3),
we assume that n"4.

Conjecture 1. For each connected graph G with n"4 nodes, m edges and a diameter D,

m"n − 1,

(n − 1)(n − 2)

2
D + m"(n − 1)2,

D + m! n(n − 1)

2
+ 1,

nD + 2m!(n + 2)(n − 1),

and these inequalities are the only possible facet defining inequalities for each n.

This conjecture is proven in Section 5.1.

3.3. The geometric procedure of AutoGraphiX

This polyhedral approach is simple and natural but was not yet been exploited systematically.
The system AutoGraphiX [6,7] uses an efficient meta-heuristic to obtain a set of graphs Gk for a parameter

k = kmin, . . . , kmax. These graphs are extremal or near-extremal for a given objective function f (G). AutoGraphiX
applies three different methods to obtain conjectures automatically from the set Gk: a numerical procedure which uses
techniques of Data Mining (a variant of principal component analysis); an algebraic procedure based on the recognition
of the graphs Gk and a geometric procedure, which consists in considering the graphs Gk “as points in a space of
characteristics, then uses a convex-hull (or gift-wrapping) algorithm to find facets, which correspond to conjectures”
[7, p. 83]. The latter procedure is thus similar to our approach but there are important differences.

Caporossi and Hansen restrict the points to a set of graphs which are extremal or near-extremal for f (G) and they
study the facets relevant for the type of the optimization problem (minimization or maximization): the coordinates are
thus (f (Gk), k). Of course, the order of graphs Gk is larger than what can be obtained by enumeration.

On the contrary, we consider all non-isomorphic graphs of C and try to characterize all the facets of the convex hull
of a set of points in a p-dimensional space. It allows to identify a finite number of optimal relations from which all other
relations follow, i.e., a minimal system of optimal relations. Moreover, we output the polyhedral information about the
problem which can be useful to understand the relations between invariants of I and to prove the derived conjectures.

4. Outline of the system

GraPHedron—developed by the author in the context of his PhD dissertation [43]—is written in C++ and is
developed to run on Unix-like systems. The current version is a console application. A web interface to this system is
publicly available [33] since January 2007.

The input of the program is the definition of a given problem written in a text file. A problem is defined by a set
of invariants I, a class of graphs C, a value’s range for n = nmin, . . . , nmax and several options. In Section 4.1, we
explain which expressions of invariants are recognized by GraPHedron. These expressions can be used in the problem
statement, reviewed in detail in Section 4.2.

The output is a set of various files. Among them is a report written in containing a complete description
of the systems F(Pn) (for n = nmin, . . . , nmax), representations of the polytopes and the vertex-graphs, automated
conjectures, etc.

To produce this output, GraPHedron includes the following three stages:

1. Data generation (graphs and invariants).
2. Polytope computation.
3. Creation of the report and derivation of conjectures.
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Table 1
Arithmetic operators

Description Accepted syntax Arity Prec.

Power x∧q Binary 11
Unary minus −x Unary 10
Multiplication x*y Binary 9
Division x/y Binary 9
Modulo x%q or xmody Binary 9
Plus x+y Binary 8
Minus x-y Binary 8
Maximum MAX(x,y,...) k-ary 7
Minimum MIN(x,y,...) k-ary 7
Mean MEAN(x,y,...) k-ary 7
Variance VAR(x,y,...) k-ary 7
Floor FLOOR(x) Unary 7
Ceil CEIL(x) Unary 7
Round ROUND(x) Unary 7

Table 2
Relational operators

Description Accepted syntax Arity Prec.

Less x<y Binary 6
Greater x>y Binary 6
Less or equal x< = y Binary 6
Greater or equal x> = y Binary 6
Equal a= b or a= =b Binary 5
Not equal a! = b or a< >b Binary 5

Table 3
Logical operators

Description Accepted syntax Arity Prec.

Not NOT a or !a Unary 4
And a AND b or a && b Binary 3
Exclusive or a XOR b Binary 2
Or a OR b or a||b Binary 1

Each stage can be carried out independently. The system will check if previous stages have to be done to realize the
current one. Details of each step are explained in Sections 4.3–4.5.

Finally, in Section 4.6, we give the current limitations of GraPHedron in terms of time and storage. We also explain
the choices made in the implementation, in order to address these limitations.

4.1. Algebraic expressions of invariants

An invariant of I can be defined as an algebraic expression of other invariants. One can use three types of operators
to build an expression. Arithmetic operators are used to construct arithmetic expressions and relational and logical
operators allow the construction of boolean expressions. Boolean expressions are generally used to define C (see
Section 4.2).

Tables 1–3 list the operators currently available in GraPHedron where x and y are arithmetic expressions, q an integer
and a and b are boolean expressions. Operator precedence determines the order in which the terms of an expression
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will be evaluated. Operators with the highest precedence will be evaluated before operators with lower precedence.
One can use parenthesis to enforce non-default precedence.

If an expression E uses an invariant with an irrational value, or a constant written in floating notation, then E is called
an approximated expression. If all expressions involved in a given problem are non-approximated, all computations are
made in exact arithmetic using the GMP library [32]. Otherwise, the user has to be aware of possible round-off errors:
all values are converted to floating point numbers.

4.2. Problem statement

A problem is defined from this information:

1. Set of invariants I: Each element of I is an algebraic expression of invariants, also called a coordinate of the
problem. In the case of a boolean expression, its value is considered as an integer (true is 1 and false is 0). There exist
currently about 70 invariants implemented in GraPHedron. The code is written in such a way that new invariants
can be added easily.

2. Class of graphs C: Graphs considered can be restricted to a specific class C in two ways:
(a) Selective generation: GraPHedron uses, as a sub-routine, the graph generator geng of McKay [42]. The

program geng allows one to restrict the graphs generated by fixing some parameters (e.g., minimum and
maximum degree, minimum and maximum number of edges, etc.). These parameters are fixed internally by
GraPHedron when the user asks to generate graphs from one of the following classes: trees, bipartite graphs,
k-regular graphs, triangle-free graphs (graphs without K3 sub-graphs) or C4-free graphs (graphs without cycles
with four nodes). These classes can be combined. For instance, one can generate only bipartite cubic graphs,
i.e., bipartite 3-regular graphs. For a given problem, we note Csel

n the set of all non-isomorphic graphs with n
nodes generated by selective generation.

(b) Graph filtering: The user can define a set of conditions, i.e., boolean expressions of invariants (see Section 4.1),
that graphs should respect. Each graph enumerated by selective generation will be tested and accepted only if
all conditions are true for it. We note Cfil

n the set of all non-isomorphic graphs with n nodes which respect to
the conditions defined for a given problem.

Each method has its advantage: selective generation allows to reach larger values for n and, as explained in Section
4.6, graphs filtering can be used to avoid re-computation of graphs and invariant values.
Selective generation and graphs filtering are combined to define C. For a given class C and a value of n, the set of
graph Cn is defined by

Cn = Csel
n ∩ Cfil

n .

3. Order of graphs: The user has to specify the values nmin and nmax. The polytopes Pn for n = nmin, . . . , nmax will
then be computed in a following stage. An optional value nstep can be defined to go from nmin to nmax by steps
of nstep. Acceptable values of nmax depend of the choice made in the selective generation. Some current limits are
given in Section 4.6.

4. Options: Several options are available allowing to adapt, or to add information in, the output generated by the
software. For instance, one can get statistics about the coordinate’s values, as illustrated in Section 5.2.

4.3. Data generation

If it was not already done in a previous execution of the program, the graphs of Csel
n for n = nmin, . . . , nmax are

generated by geng of McKay [42] and stored in a binary format. A graph G is stored as a set of bytes in which a bit
represents a boolean value of the upper triangle of the adjacency matrix. The remaining bits are set to 0. Therefore, if
G has n nodes, one uses

⌈
n(n − 1)

16

⌉

bytes to store G. This is smaller than a 4-bytes integer if n!8.
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Every graph has its own implicit reference, which is simply its position pos in the file. It allows a random access to
a graph G if one knows its position.

For each invariant i involved in an algebraic expression of I or a boolean expression used in graph filtering, its
values i(G) is computed for all G ∈ Csel

n and stored in a binary file at the same position pos than the graph G. This
computation will be made only once. If another problem uses again i and the same set Csel

n , the data can be directly
reused. This is very useful when computing i takes a long time, as for an NP-hard invariant. Moreover, experiences
show that, in the whole process, the computation of invariants is the most time-consuming step when n grows, even for
invariants with a polynomial complexity (see Section 4.6).

As a graph G and its corresponding values i1(G), i2(G), . . . , ip(G) are implicitly linked by their positions, one can
“forget” completely that a vector of numerical values represents a graph in the next stages.

4.4. Polytopes computation

For each n = nmin, . . . , nmax, the polytope Pn is computed as follows.

1. Determine a set S of points: A point of S represents one or more graphs ∈ Cn. A point is internally defined by
(a) references (positions) to graphs belonging to a set G ⊆ Cn;
(b) the number of graphs in G;
(c) a vector v of coordinates (x1, x2, . . . , xp) such that x1 = i1(G), x2 = i2(G),…, xp = ip(G) for all G ∈ G.
The number of references stored in a point can be limited. These references are used later, e.g., to draw graphs
corresponding to a given point. The number of graphs belonging to G is always computed.
To determine S, GraPHedron does not need to access the graphs. It reads numerical values which are in a same
position in the files containing invariant values (see Section 4.3). These values are used to determine if the conditions
are respected (graph filtering) and to compute a vector v′. If a point q with a vector v of coordinates exists already
in S such that v = v′, the set G of q is updated. Otherwise a new point is added in S.
When the dimension p is small and if the vectors often have same values, e.g., integers between 0 and n, the number
of points in S is generally very smaller than the number of graphs in Cn (see Section 4.6).

2. Compute the convex hull of S: This is done using libcdd of Fukuda [28]. Several algorithms and tools exist to
compute the convex hull of a set of points. See [2] for a survey on these algorithms and an efficiency comparison
of the main existing tools. Avis et al. [2] conclude that there are no algorithms that are the best in all cases. Their
efficiency depends on the type of polytopes. Unfortunately, as we want to design a system which can be applied
with any set of invariants, we cannot know a priori the characteristics of the polytopes. However, our requirements
are that the convex hull computation software should be able to manage a lot of points, which are not necessarily
vertices, and to deal with both exact arithmetic and floating arithmetic. This is the case of libcdd. Moreover,
libcdd is a library and hence avoids calling external software.

Similar to before, if the system detects that a polytope has already been computed, it will not be re-computed a
second time.

4.5. Report and conjectures

The output of GraPHedron is a report created with . This report contains all the information computed.
The polytopes Pn are described in both representations: a system F(Pn) of facet defining inequalities and a set of
vertices.

The user has to study the inequalities by hand or by interacting with the system and can see and/or print the vertex-
graphs. In the case of two coordinates, the report contains a drawing of the polytopes. For three coordinates, the
polytopes can be exported to be visualized and manipulated with polymake [30,31]. All the files generated to create
the report are reusable and written in classical formats, e.g., EPS files for figures.

Note that when p = 2 and the number of facets of Pn is constant independently of n, the system is able to generate
conjectures in a fully automated way. For instance, Conjecture 1 is automatically detected and added to the report.
In Section 3.2, we used a characterization of the vertex-graphs to derive Conjecture 1. GraPHedron uses a different
method. It tries to detect similarities between facets, analyzing the values of their coefficients. Then, it generalizes
similar facets in terms of n. This recognition works effectively if the coefficients fk(n) are polynomials in n with a
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Table 4
Needed resources for general graphs

n # of graphs CPU time File size (in Kb)

5 34 0.00 s 0.17
6 156 0.00 s 0.41
7 1044 0.00 s 3.16
8 12 346 0.02 s 48.33
9 274 668 0.43 s 1341.26

10 12 005 168 18.19 s 7.034 × 104

11 1 018 997 864 27 min 14.68 s 6.966 × 106

12 1.65 × 1011 (est.) 3.4 days (computed) 1.451 × 109

13 5.05 × 1013 (est.) 3.3 years (computed) 4.932 × 1011

Table 5
Needed resources for trees

n # of trees CPU time File size (Kb)

5 3 0.00 s 0.11
10 106 0.00 s 0.72
15 7741 1.79 s 105.94
20 823 065 60 min 29.74 s 1.93 × 104

Table 6
CPU times (in second) for each step when solving Example 1

Value of n 7 8 9 10

Graph generation 0.00 (0%) 0.02 (0.2%) 0.43 (4.6%) 18.19 (4.2%)
Computation of c 0.00 0.08 1.49 78.13
Computation of D 0.01 0.12 2.92 161.57
Computation of m 0.00 0.04 0.82 42.75
Total time for invariants 0.01 (16.7%) 0.24 (45.3%) 5.23 (56.5%) 282.63 (66.0%)
Computation of Pn 0.05 (83.3%) 0.27 (50.94%) 3.59 (38.8%) 127.23 (29.7%)
Total time 0.06 0.53 9.25 428.05

degree !6. Other functions fk(n) can also be detected (see [37]). Automatization in more general cases, e.g., when
the number of facets are increasing when n grows, are under study [37].

4.6. Limits and performance

Table 4 records (estimations of) the resources needed in the case of general graphs (for which the limitation today
is n = 11). These results were obtained on a Linux computer with a Pentium (R) IV (3 GHz) processor. Of course, for
more restricted classes, the manageable number n of nodes can reach larger values. For example, Table 5 refers to the
class of trees.

Table 6 shows the CPU times, and relative percentages of total time, spent for each step in the computation of the
problem posed in Example 1. The class of connected graphs was specified here using graph filtering. There are thus
three invariants that are quite easy to compute: m(G), D(G) and the boolean invariant c(G) which is true only if G is
connected. It is thus very efficient in time to keep the data computed in files. Of course, this feature has a cost in terms
of storage. Fortunately, the compression of invariant data files greatly reduces the space needed for them.

Generation of graphs and computation of invariants can be separated in a finite number of parts: either separating the
computation for different values of n or even splitting computation for a given n. This allows for parallel computations
and for keeping file sizes within permissible limits.
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5. Applications and first results

The main application of GraPHedron is to find optimal conjectures in graph theory, as illustrated with Example 1.
This example has led to Conjecture 1, which is proven in Section 5.1. A second example is also given in this section.
Other possible applications will then be presented in Section 5.2.

5.1. Discover new and optimal conjectures

Several results were obtained with the help of GraPHedron [8–10,43]. The system was not only useful to find
conjectures but also to write proofs. As an illustration, we now prove Conjecture 1 which can be reformulated as a
theorem.

Theorem 1. For each connected graph G with n"4 nodes, m edges and a diameter D

m"n − 1, (6)

(n − 1)(n − 2)

2
D + m"(n − 1)2, (7)

D + m! n(n − 1)

2
+ 1, (8)

nD + 2m!(n + 2)(n − 1) (9)

and these inequalities are the only possible facet defining inequalities for each n.

Proof. Inequality (6) is valid since we consider only connected graphs of order n. The minimum number of edges is
thus n − 1 which occurs only for trees. The diameter of trees varies from 2 for the star Sn to n − 1 for the path Pn. The
corresponding vectors (D, m), namely (2, n − 1) and (n − 1, n − 1) are linearly independent when n"4. It follows
that (6) is facet defining.

If D(G) = 1, then G " Kn. As m(Kn) =
(n

2

)
, the two sides of (7) are equal and this inequality is valid. If D(G)"2,

and because m"n − 1, we have

(n − 1)(n − 2)

2
D + m" (n − 1)(n − 2)

2
2 + n − 1 = (n − 1)2,

and (7) remains valid. When n"3, vectors (D, m) corresponding to Kn and Sn are linearly independent and satisfy (7)
with equality. Inequality (7) is thus facet defining.

Remark that if D < 2, Inequality (9) is dominated by Inequality (8). It is the opposite when D > 2 and these two
inequalities are equal when D = 2. We can thus assume that D!2 (resp. D"2) to prove that Inequality (8) (resp. (9))
is facet defining. To prove their validity, one has to answer to the following question: What is the maximum number of
edges in connected graphs with fixed number of nodes and diameter?

If D!2, the candidate graphs are trivially Kn and Kn\e which have linearly independent vectors (D, m) if only
n"3. Inequality (8) is thus facet defining.

Suppose now that D"2. It is known that ! + D!n + 1 for any connected graph [10]. Consider two cases to prove
the validity of Inequality (9) which can be rewritten as 2m!n2 − nD + n − 2.

(i) If ! + D < n + 1, then Inequality (9) holds because

2m =
n∑

i=1

d(vi)!n!!n(n − D)!n2 − nD + n − 2,

if n"2.
(ii) Suppose now ! + D = n + 1. In this case, it is proven [10] that any node v∗ of maximum degree must be on

some diameter path. Let P = v1, v2, . . . , vD+1 be a diameter path containing at least one node of degree !. By
construction, the diameter path P contains D + 1 nodes. Consequently, n − (D + 1) = ! − 2 nodes do not belong
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to P. We call them exterior nodes (relatively to path P). The extremities v1 and vD+1 of the diameter path P can
be adjacent to all exterior nodes but are adjacent only to one node of P. It follows that v1 and vD+1 are of degree
at most ! − 1. An upper bound of the number of edges is thus

2m =
n∑

i=1

d(vi)!2(! − 1) + (n − 2)!.

As ! + D = n + 1, we obtain

2m!2(n − D) + (n − 2)(n − D + 1) = n2 − nD + n − 2,

which proves the validity of (9) in this case.

The points corresponding to Kn\e and Pn are again linearly independent when n"4. Inequality (9) is thus also an
inequality defining a facet. The description of the polytope is complete. #

Example 2. What is the minimum number of edges in connected graphs with a fixed number of nodes and a fixed
stability number?

This question was listed as an open problem in Ore [44] for 43 years. It constitutes a variant of a famous theorem of
Turán [45], which is applied when graphs are not necessarily connected. A complete answer to Example 2, obtained
with the help of GraPHedron and proved in [10], is given in the family of inequalities (12):

Theorem 2 (Christophe et al. [10]). For any connected graph G with n"4 nodes, m edges and stability number "

m"n − 1, (10)

k" + m!
(

n − k

2

)
+ kn for k = 1, 2, . . . , n − 2, (11)

m"(t (n, k) − t (n, k − 1) + 1)(" − k) + t (n, k) + (k − 1)

for k = 2, 3, . . . ,

⌊
n + 1

2

⌋
with

⌈
n

k − 1

⌉
+=

⌊
n

k + 1

⌋
+ 1, (12)

where

t (n, k) =
(⌈n

k

⌉
− 1

)
.

(
n − k

2

⌈n

k

⌉)
.

These inequalities are the only possible facet defining inequalities for each n.

Note that in this case, the number of facets is no more constant as (11) and (12) are families of inequalities for a
parameter k. A more readable answer to Example 2, obtained with the characterization of vertex-graphs, is given in
[10] and will be recalled in Section 6.

Other illustrations of this strategy to obtain new results in graph theory can be found in [8–10,43].

5.2. Other applications

Here are some other applications of GraPHedron:
(a) Check existing conjectures and theorems. One can submit to GraPHedron an existing conjecture C or theorem T

expressed as an inequality (or an equality) among p invariants. The system can then be used in two ways:
(1) Check for validity and optimality. This can be done without computing the polytopes. Browsing the graphs of

Cn, one can check if:
• C is rejected since a counter-example exists;
• C is valid;
• C or T is tight by exhibiting a graph satisfying the conjecture or theorem with equality;
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Fig. 5. Distribution of points in P9 for Examples 1 and 2.

• C or T is facet defining by exhibiting a set of p graphs, satisfying the conjecture or theorem with equality,
and corresponding to p linearly independent vectors of coordinates.

(2) Extract invariants and compute associated polytopes. A conjecture or a theorem which is not facet defining in
all polytopes means that one can improve it. Applying the strategy described in Section 3 can lead to a better
formulation. Otherwise, showing that an existing theorem is facet defining is a strong criterion of quality.

(b) Help for theorem-proving. Because there are extremals for a given problem, the knowledge of the vertex-graphs is
of great help when one has to prove the conjectures derived with or by the system. Moreover, if their coordinates
are characterized, one gets directly a set of linearly independent vectors. This is intensively used in the proofs,
see for example the proof of Theorem 1.
The representation of the polytopes is useful too when one has to detect if an inequality is dominated by another.

(c) Compare values of heuristics and exact algorithms. Let h(G) be the value obtained when a heuristic H is applied
to G. If the heuristic H contains no random choice, h(G) is unique for each graph and can thus be considered as
an invariant. Otherwise, the arithmetic average of all possible values given by H for a graph G is also an invariant.
Such an invariant, divided by the value obtained by an exact algorithm, is again an invariant representing a factor
of approximation. To illustrate, the maximal-matching heuristic provides a 2-approximation of three classical
NP-hard problems (minimum vertex cover, minimum maximal matching and minimum edge dominating set) [29].
Using GraPHedron, finer worst-case approximation factors were obtained in [8], under some assumptions on the
density of the graphs.

(d) Education. The system is easy to use and some well-chosen problems, as Example 1, can be used with students.
Information is displayed in a way that makes basic notions of graph theory and polyhedral theory handy to
illustrate. Of course, the proofs of conjectures—which can appear quite easily—is another challenge. This provides
an exciting way to be initiated to the world of research in graph theory.

(e) Get information about the points distribution. One can ask, as an option, that the system adds the distribution of
the points, corresponding to graphs, inside the polytopes. It can be of interest as sometimes a vast majority of
graphs are far away from some facets. Fig. 5 shows the distribution inside the polytope P9 derived from Examples
1 (left) and 2 (right). A white point means that there is only one graph corresponding to this coordinate. An
increasing level of gray shows the growing frequency of graphs sharing the same coordinates.
In Example 1, some graphs correspond to points which are Pareto optimal. GraPHedron was able to detect these
points and made the following conjecture automatically:

Conjecture 2. For each connected graph G with n"3 nodes, m edges and a diameter 2!D!n − 1

2m!D2 − D(2n + 1) + (n − 1)(n + 4). (13)
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Note that (13) is dominated by the facet defining inequality (9).

(f) Get information about invariants. One can ask, as an option, that the system computes, during its process, various
statistics about the coordinates of the problem.

6. Forms of conjectures

When n is fixed, facets are linear inequalities among p invariants. A generalization of these inequalities in terms of
n leads to a first basic form of conjectures:

f1(n)i1(G) + f2(n)i2(G) + · · · + fp(n)ip(G)!f0(n), (14)

where fi(n) are functions, linear or not, of n. Theorem 1 is an example of such conjectures where coefficients fi(n)

are linear or quadratic functions. It follows that (14) is linear for each n, i.e., when n is fixed, but can be non-linear
when n is taken as a parameter.

Conjecture 2 shows that even when n is fixed, the system can lead to inequalities that are not linear, when one
consider points that are Pareto optimal.

A third situation appears with Example 2. This shows the existence of families of inequalities, e.g., the n − 2 facets
described in (11). It gives n − 2 inequalities of the form (14)

m!
(

n − k

2

)
+ k(n − ") for k = 1, 2, . . . , n − 2. (15)

When families of inequalities occur to describe the polytopes Pn, the vertex-graphs of Pn are often also of a specific
family. For instance, graphs which are vertex-graphs of the polytopes described by (15) are complete split graphs. A
complete split graph CS(n, ") with 1!"!n is constructed from an independent set of size " and a clique of size n−".
Each vertex in the independent set is adjacent to each vertex in the clique. By construction,

m(CS(n, ")) =
(

n − "
2

)
+ (n − ")" = 1

2
[n(n − 1) + "(" − 1)]. (16)

There is exactly one such graph for each possible values of ", i.e., for the integers " = 1, 2, . . . , n. It follows that the
family of inequalities (15) can be reformulated, without loss of generality, as

m! 1
2 [n(n − 1) + "(" − 1)], (17)

which is non-linear in ", even if n is fixed. Fig. 6 shows the representations in the plane of (15), the black lines, and
(17), the dotted curve, when n = 5.

The family of facets expressed in (11), which is the answer to Example 2, can also be reformulated, without loss of
generality [10], as

m"
(⌈n

"

⌉
− 1

)
·
(
n − "

2

⌈n

"

⌉)
+ " − 1. (18)

In this case the function is not polynomial as the ceiling operator is used.
Therefore, forms of conjectures that can be derived with or by GraPHedron are not limited to the form (14).

7. Concluding remarks

We have presented a formal framework, supplied by an automated tool, allowing to identify facet defining inequal-
ities among graph invariants. More precisely, the following three points are together the specificity of the system
GraPHedron:

(a) First, we associate a notion of “optimality of a conjecture”. Authors often argue that a bound is tight, which means
only that the inequality defines a supporting hyperplane. We propose to consider facet defining inequalities as a
criterion of conjecture’s quality.
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Fig. 6. Family of inequalities (15) and its quadratic generalization (17), when n = 5.

(b) Moreover, the polyhedral approach allows to achieve a complete study of the relations among the selected set
of graph invariants. It is not only a lower and/or an upper bound on a relation, it is a minimal system of linear
inequalities describing the relations among the set of invariants.

(c) Finally, the output of the system is not only a list of conjectures. For a given problem, the system gives additional
geometrical information which can be correlated to graph theoretical interpretation. The system computes also
graphs that are fundamental to the problem: the vertex-graphs. All this information is useful in the proofs.

The proposed approach can also be used to check existing conjectures and theorems, to help for proving conjectures,
to study approximation ratios, in education, to get the spatial distribution of the graphs inside the polytopes and to get
statistics about invariants.

To avoid re-computation of graphs and invariants, the system is quite greedy in storage. Therefore, we think that
a web portal, on a dedicated server, allowing to use GraPHedron with much pre-computed data, is preferable to a
downloadable version of the software. This is the purpose of the web site www.graphedron.net [33], available since
January 2007.
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[15] D. Cvetković, I. Pevac, Discussing graph theory with a computer, III: man–machine theorem proving, Publ. Inst. Math. (Beograd) 34 (48)
(1983) 37–47.
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