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Abstract
We study standard Einstein–Maxwell theory minimally coupled to a complex
valued and self-interacting scalar field. We demonstrate that new, previously
unnoticed spherically symmetric, charged black hole solutions with scalar hair
exist in this model for sufficiently large gravitational coupling and sufficiently
small electromagnetic coupling. The novel scalar hair has the form of a spatially
oscillating ‘wave packet’ and back-reacts on the space-time such that both the
Ricci and the Kretschmann scalar, respectively, possess qualitatively similar
oscillations.
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1. Introduction

It is well known for some decades now that black holes can carry scalar field hair if the scalar
field model is non-linear. The first example of this type was given within the Skyrme model
minimally coupled to gravity [1]. While the Skyrme model is often considered as an effective
model in the context of nuclear physics, black holes that carry scalar hair can also be con-
structed in models inspired by high energy physics. The SU(2) Yang–Mills–Higgs model with
the Higgs field in the adjoint representation (and hence being real) possesses hairy black holes
[2, 3] which can be thought of as black holes residing inside the core of magnetic monopoles.
However, diverse no-hair conjectures (see [4] for a recent review) seem to prevent the existence
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of black holes with scalar hair charged under an abelian group. In recent years and motivated
by an increased interest in the phenomenon of superradiance [5], it was realized that black
holes can carry complex valued scalar hair under certain conditions. The first (and best-known)
example was put forward in the context of rotating, uncharged black holes [6, 7]. The no-hair
conjecture can be circumvented in this case because of the harmonic dependence on the time
and azimuth coordinates and assuming the scalar field frequency to be fine-tuned to the horizon
angular frequency of the black hole. This so-called synchronization condition appears exactly
at the threshold of superradiance and allows for so-called scalar Q-clouds to exist on and close
to the black hole horizon.

Now, returning to models that contain U(1) gauge fields, a similar construction is possi-
ble—even when the black hole is non-rotating and spherically symmetric [8, 9]. In this case,
the frequency of the complex valued scalar field needs to be fine-tuned to the electric poten-
tial on the horizon. It was then realized that when sufficiently strong back-reaction of the
scalar cloud is taken into account that next to the expected extremal black holes with diverging
scalar field derivative on the horizon, a new type of solution exists that represents a black
hole with an inflating exterior [10]. On a shell of given thickness outside the horizon, the
scalar field becomes constant and non-vanishing such that the scalar field potential energy
corresponds to a positive cosmological constant. Moreover, the charge of these black holes
gets screened.

In this paper, we point out that additional solutions to the model studied in [8, 10] exist
which have not been noticed so far and which have a novel type of scalar hair. These solu-
tions exist at large gravitational coupling and small gauge field coupling and possess ‘wavy’
scalar hair in the sense that the scalar field constitutes spatial oscillations outside the black
hole horizon. These oscillations lead to qualitatively similar oscillations in the curvature of
the space-time. We will discuss these solutions and their properties in the following and
point out that the phenomenon is independent of the choice of the self-interaction potential of
the scalar field.

2. The model

We study a simple (3 + 1)-dimensional model in which Einstein gravity is minimally coupled
to an electromagnetic field as well as to a complex valued, self-interacting scalar field. The
Lagrangian density reads

L =
1

16πG
R − 1

4
FμνFμν − DμΨ

†DμΨ− U(|Ψ|), (1)

where R is the Ricci scalar, Fμν denotes the field strength tensor of the electromagnetic poten-
tial Aμ and DμΨ =

(
∂μ − igAμ

)
Ψ denotes the covariant derivative of the scalar field Ψ. The

important point in our construction is that the scalar field is self-interacting. In the following,
we will study two different potentials U(|Ψ|). These read, respectively:

polynomial : U1(|Ψ|) = μ2|Ψ|2 − λ|Ψ|4 + ν|Ψ|6 (2)

and

exponential : U2(|Ψ|) = μ2η2

[
1 − exp

(
−|Ψ|2

η2

)]
. (3)

The parameter μ represents the rest mass of the scalar field. The potential U1 is motivated by
studies of scalar fields in flat space-time and proves essential in the construction of scalar hair
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on charged black holes [8]. The potential U2 appears in models describing gauge-mediated
supersymmetry breaking [11, 12]. Of course, the polynomial potential U1 is an approxima-
tion to the exponential potential U2 for small scalar fields. Note, however, that the potential
U1 depends a priori on the independent parameters λ and ν that can be freely chosen, while
the potential U2 is fully fixed by choosing the mass of the scalar field as well as the energy
scale η.

In the following, we will discuss the simplest possible solution that can be constructed in
this model: a static, spherically symmetric, electrically charged black hole. The symmetries in
the space-time as well as the U(1) gauge symmetry allow the following ansatz for the metric,
gauge field and scalar field, respectively:

ds2 = −(σ(r))2N(r)dt2 +
1

N(r)
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
,

Aμ dxμ = V(r)dt,Ψ = ψ(r) exp(iωt), (4)

where ω is a real-valued constant.
As is usual in systems with a U(1) gauge symmetry, the phase of the scalar field can

be gauged away. Stating it differently, the resulting equations depend only the combination
Ω :=ω − gV(r = ∞). Now, it is well known that a charged black hole does not per se pos-
sess scalar hair, but that a so-called synchronization condition has to be fulfilled in order for
the black hole to carry a Q-cloud of scalar fields. This condition follows from the regular-
ity of the matter fields on the horizon and reads ω − gV(rh) = 0. In the following, we will
choose the gauge ω = 0 and hence the boundary condition for the electric potential reads:
V(rh) = 0.

The equations of motion following from the variation of the action have been given in other
publications (see e.g. [8, 10]) and we refer the reader to these papers. These equations depend
on a number of dimensionless coupling constants that result from appropriate rescalings. These
are:

• For the potential U1 we use rescalings r → r/μ, v =
√
λ
μ

V , ψ =
√
λ
μ
Ψ such that the

dimensionless couplings read

α =
4πGμ2

λ
, β2 =

νμ2

λ2
, e =

g√
λ
. (5)

• For the potential U2 we use the same rescaling for the radial coordinate as above, but now
v = V

η
, ψ = Ψ

η
which results in the dimensionless coupling constants

α =
8πGη4

μ2
, e =

η

μ
g. (6)

We have chosen to use the same letters for the dimensionless couplings to demonstrate the
qualitative similarily of our results for both potential.

From the equations of motion we can infer the asymptotic behaviour of the functions, which
reads

N(r � 1) = 1 − 2M
r

+
αQ2

e

r2
+ . . . .., σ(r � 1) = 1 − αc2

0

μeff,∞
,

exp(−2μeff,∞r)
r

, (7)

v(r � 1) = Φ− Qe

r
+ . . . .,ψ(r � 1) = c0

exp(−μeff,∞r)
r

+ . . . .,
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where the parameters M and Qe denote the (dimensionless) mass and electric charge of the
solution, respectively and c0 is a constant. Moreover, μeff,∞ is the effective mass of the scalar
field which is given by the bare mass (rescaled to unity with our choice of rescalings) and

the asymptotic value of v(r) denoted by Φ, i.e. reads μeff,∞ =
√

1 − Ω2, Ω ≡ eΦ. Hence,
increasing (decreasing) Ω will decrease (increase) the effective mass of the scalar field. Note
that the larger the effective mass of the scalar field, the stronger the scalar field will be
localised.

The scalar cloud (Q-cloud) surrounding the charged black hole can be thought of as made
up of QN scalar bosons, where QN is the globally conserved Noether charge:

QN =

∫
dr

2r2 evψ2

Nσ
. (8)

Through the coupling to the electromagnetic field each of the scalar bosons carries a charge e.
The total electric charge Qe of the solution is then a sum of the electric charge in the cloud given
by eQN and the horizon electric charge QH of the black hole given by QH = v′(rh)r2

h/σ(rh) [8].
Next to the electric charge, we can also attribute a mass to the cloud. This is given by [8]:

MQ =
1

4π

∫
d3x

√
−g

(
Ti

i − Tt
t

)
, i = 1, 2, 3. (9)

Finally, the Hawking temperature of the black hole is given by

TH = (4π)−1σ(rh)N′|r=rh (10)

and is related to the masses M and MQ via the Smarr relation [8]:

2THS = M − αMQ, S = πr2
h, (11)

where S is the black hole entropy.

3. Black holes with novel scalar hair

Charged black hole solutions with scalar hair of the type that we are suggesting here have been
discussed previously in [8, 10], respectively. The system of equations has to be solved subject to
regularity conditions on the horizon where N(rh) = 0 as well as the requirement of asymptotic
flatness and finite energy, respectively. While v(rh) = 0 is required for regularity, we have
the choice to either fix the value of the electric field on the horizon ∝v′(rh) or the effective
mass of the scalar field by setting Φ. In this paper, we will assume the former approach and
show that when fixing the gravitational back-reaction α we find that up to three branches of
solutions exist when varying v′(rh). The third branch, which has very peculiar new features as
compared to the solutions on the other two branches, had not been noticed before. We will also
demonstrate in the following that this phenomenon appears for both the polynomial as well as
for the exponential potential, respectively.

3.1. Potential U1

In order to understand the pattern of solutions, we have first decoupled the matter fields from
the space-time geometry, i.e. we have studied the case α = 0 and fixed β, rh and e > 0. When
varying the electric field on the horizon ∝v′h, we find the well known result that two branches
of solutions of scalar Q-clouds exist in Ω ∈ [Ωmin, 1], where the upper value of the interval
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Figure 1. Left: the dependence of the mass MQ on the parameter Ω for different values
of α with e = 0.08, rh = 0.15, β = 9/32. Right: the dependence of MQ on v′(rh) for the
same set of solutions.

results from the choice of potential parameters, while the value of Ωmin depends on the choice
of β, rh and e > 0. This is shown in figure 1 for β = 9/32, rh = 0.15 and e = 0.08, where our
numerical results indicate that Ωmin ≈ 0.668. The two solutions with equal values of β, rh, e
and Ω differ in the mass MQ and Noether charge QN. The branch of solutions with lower (resp.
higher) value of mass MQ is labelled ‘A’ (resp. ‘B’) and the two branches join at Ω = Ωmin.
On branch A, the mass of the scalar cloud is increased by adding scalar bosons. The Noether
charge QN (not given here) shows a qualitatively very similar behaviour to MQ. Now, scalar
bosons can be added up to a maximal effective mass of the scalar bosons, corresponding to a
minimal Ω. Then, adding more scalar bosons requires a decrease of the effective mass (branch
B) and the maximum possible mass of the cloud is reached at Ω = 1 on branch B. It is also
interesting to note that the increase in the number of scalar bosons making up the cloud leads
to a decrease in value of the electric field on the horizon, see figure 1 (right). We find that
v′(rh) ≈ 81.1 for a solution on branch A close to Ω = 1, while it decreases to v′(rh) ≈ 15.7 for
the cloud with the largest possible MQ and QN.

Now, letting the scalar cloud back-react on the space-time, we find that the branches A and B
exist on modified intervals ofΩ, see figure 1 (left). This is well understood and has been studied
in [8, 10], respectively. The new feature in the back-reacting case that has not been noticed so
far is that a third branch of solutions in Ω exists (labelled ‘C’ in the following). On this branch,
the mass MQ as well as the Noether charge QN increase further, but now decreasing Ω. At the
same time, the value of v′(rh) decreases to very small values, eventually reaching value zero
at the end of branch C (see figure 1 (right)). To state it differently: at the end of branch C
the horizon electric charge QH of the black hole becomes very small. This is shown in figure 2
(left). This means that all the electric charge is now in the cloud and the black hole is essentially
‘discharged’.

Interestingly, the Hawking temperature TH of the black holes on this branch C shows a
qualitatively different dependence on Ω than branch A and B. This is shown in figure 2 (right),
where we give TH in function of Ω. Obviously, on branch A and B, the black hole temperature
increases when decreasing Ω, while on branch C, the temperature of the black hole decreases
with decreasing Ω. Now, remembering that along the branches from A to C, we increase the
mass MQ and Noether charge QN, this means that while on branch A the addition of scalar
bosons to the cloud (and hence the increase of mass MQ) leads to an increase of the temperature,
the (further) addition of scalar bosons to the cloud leads to a decrease in temperature on branch
B and C. On branch B this happens for decreasing effective mass of the scalar field, while on
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Figure 2. Left: the dependence of the horizon electric charge QH on Ω for the solutions
shown in figure 1. Right: the dependence of the Hawking temperature TH on Ω for the
solutions shown in figure 1 for α > 0.

Figure 3. Left: the profiles of ψ, v′ and N for a solution on branch A with α = 0.09,
e = 0.08, rh = 0.15 and v′(rh) ≈ 60.0. Right: the profiles of ψ, v′ and N for a solution
on branch C with the same values of α, e and rh, but v′(rh) = 0.1.

branch C the temperature decreases with increasing MQ and increasing effective scalar boson
mass.

Considering these physical parameters, the question is what distinguishes the solutions on
branch C from solutions on branch A and B. This is indicated in figure 3, where we show the
profiles of the scalar field function ψ(r), the electric field ∼v′(r) as well as the metric function
N(r) for a solution on branch A (left) and a solution on branch C (right). For both solutions, we
have chosen α = 0.09, e = 0.08 and rh = 0.15, but the solution on branch A has v′(rh) ≈ 60,
while the solution on branch C has v′(rh) ≈ 0.1.

Obviously, for the solution on branch A (similarly for a solution on branch B) the scalar
function ψ(r) is a monotonic function of the radial variable: ψ(r) decreases from its maximal
value ψ(rh) to zero at infinity, where the fall-off is determined by the effective mass, i.e. by Ω
(see discussion above). Similarly, the function v′(r) determining the electric field of the solution
decreases monotonically and N(r) increases monotonically from its value zero on the horizon
to unity asymptotically. This is very different for a solution on branch C. Here, the scalar field is
nearly constant (and non-vanishing), while v′(r) is very close to zero on an interval r ∈ [rh, rc].
The value rc > rh denotes the approximate value of the radial coordinate at which the metric
function N(r) attains very small (but non-vanishing) values. Interestingly, instead of forming
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Figure 4. Left: functions v′(r) and σ(r) for a solution on branch C with α = 0.09, e =
0.08, rh = 0.15. Right: the corresponding Ricci scalar R for this solution.

an extremely charged black hole (which is a solution to the model for ψ ≡ 0), the non-linear
interaction between the curvature of space-time, the electric field and the scalar field now leads
to spatial oscillations in the scalar field around zero on a finite interval of the radial coordinate.
These spatial oscillations are smaller in the other fields, but are present, as can been seen for
an amplified v′(r) and the metric function σ(r), respectively, in figure 4 (left). In particular, the
solutions have significant amplitude in the scalar curvature as given by the Ricci scalar R, see
figure 4 (right). We do not give the Kretschmann scalar K = RμνρσRμνρσ here, but would like
to state that the oscillations are also present for K. This makes us believe that these are genuine
oscillations that are not an artefact of the choice of coordinates.

After a finite number of oscillations which decrease in amplitude for increasing r, the scalar
field becomes identically zero for r > ra. The solution for r ∈ (ra : ∞) clearly correspond to
a Reissner–Nordström solution: σ ≡ 1 and the Ricci scalar R ≡ 0, while the electric field
∼Q/r2. We hence find a novel black hole solution which possesses

• An inflating exterior for r ∈ [rh : rc]—a phenomenon that was already noticed and
discussed in [10],

• ‘Wavy’ scalar hair on an intermediate interval r ∈ (rc : ra] with metric function N(r) close
to zero, and

• Vanishing scalar field with the electric and metric fields showing a Reissner–Nordström
behaviour for r ∈ (ra : ∞).

Let us insist here that the oscillations in the fields are not a numerical artefact. We did
perform several checks in this direction, e.g. we verified the independence of the solution on
the interval of integration and/or the given tolerance. Note that since our numerical integrator
[13] uses an adaptive grid scheme, changing the interval of integration implies also the change
of the discrete points at which the equations are evaluated. Moreover, we find full branches of
solutions that show a continuous dependence on the parameters. Also, because the new branch
of solutions is connected to the already known branches, we do not think that these solutions
are radially excited solutions similar to those observed in many non-linear models that possess
soliton and/or black hole solutions. These latter type of solutions typically would appear as
new, disconnected branches with physical parameters very different in value.

In order to understand these new solutions further, we have also studied the case of varying
back-reaction and found up to three branches—consistent with the above analysis. An example
is shown in figure 5 for fixed rh = 0.15, e = 0.08 and Ω = 0.8 (corresponding to Φ = 10).
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Figure 5. Left: we show the temperature of the black holes, TH, in dependence on α for
rh = 0.15, e = 0.08 and Ω = 0.8 (corresponding to Φ = 10). Right: the α-dependence
of the electric field on the horizon ∼v′(rh) for the same family of solutions.

Here, we give the temperature TH (left) as well as the electric field on the horizon ∼v′(rh)
(right) in dependence on α. As is obvious from this figure, branch C is an extension of branch
B, but—as mentioned above—has different properties. E.g. while on branch B, the temperature
decreases with α, it increases with α on branch C. Branch A and B are connected to each other
at α = 0, while branch A and C seem to start, respectively end more or less at TH = 0. Hence,
we find a (nearly) closed curve in the α–TH-plane. Figure 5 (right) also demonstrates that there
exists a gap in v′(rh) for which no black hole solutions with scalar field exist at all. Increasing
α, this gap increases slightly.

3.2. Potential U2

Studying the potential U2, which is a priori better motivated physically as it appears in certain
gauge-mediated supersymmetry breaking models, we find that the qualitative phenomenon of
a third branch of solutions consisting of black hole solutions with wavy scalar hair persists.
In the following (and not to repeat ourselves), we will put the emphasis on additional features
of the solutions, in particular, we want to emphasize the role of the gauge coupling e here.
For that we have fixed α and varied e. Our results are given in figure 6 for α = 0.0012 and
rh = 0.15. This figure demonstrates that the phenomenon described above appears only for
values of e sufficiently small. For large e, branch B extends all the way back to Ω = 1, where
it terminates. In this latter case, the black hole has temperature significantly larger than zero
and v′(rh) > 0. Only when e is small enough are we able to find branch C. For our choice of
parameters, only e = 0.02 (in comparison to e = 0.03 and e = 0.04) allows the existence of
this new branch.

Knowing the qualitative behaviour of the solutions on branch C, we have then checked how
the solutions evolve along this branch C. So, in figure 7, we show the profiles of the functions
as well as the Ricci scalar R in the interval of r where oscillations appear for α = 0.0012,
e = 0.02 and three values of v′(rh). As is obvious from figure 6 (right) decreasing v′(rh) leads
to a decrease in Ω and hence an increase in the effective mass of the scalar field. So, not
surprisingly, we see that the scalar field function oscillations (which are more or less equal in
amplitude) appear on a smaller interval of the radial coordinate r, i.e. are stronger localized
when moving along the branch C. At the same time, the minimal value of N(r) decreases and
gets closer to zero and accordingly, the amplitude of the Ricci scalar R increases. Hence, the
solution has a stronger spatial variation in the scalar curvature when moving along the branch.

8



Class. Quantum Grav. 39 (2022) 015010 Y Brihaye and B Hartmann

Figure 6. Left: we show the dependence of the temperature TH of the black holes on Ω
for α = 0.0012, rh = 0.15 and different values of e. Right: same as left for the electric
field on the horizon ∼v′(rh).

Figure 7. We show the evolution of solutions on branch C for α = 0.0012, e = 0.02
when varying v′(rh): profile of ψ(r) (top left), profile of v′(r) (top right), profile of N(r)
(bottom left) and profile of the Ricci scalar R (bottom right). Note that we are only
showing the interval of r where oscillations of the respective profiles appear.

4. Conclusions

In this paper, we have studied a novel type of scalar hair which appears for spherically symmet-
ric black hole solutions coupled minimally to a U(1) gauge field and a self-interacting complex
valued scalar field. This scalar hair appears for sufficiently large gravitational coupling and
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sufficiently small gauge coupling. The subtle non-linear interaction between the curvature of
space-time, the scalar field and the electric field than leads to spatial oscillations of the scalar
field. Considering our results, it appears that the solution is a result of the existence of a black
hole horizon and a ‘barrier’ at spatial infinity which comes from the effective mass of the scalar
field. The decrease of the horizon electric field pushes the electric charge into the Q-cloud out-
side the horizon such that at the end of the branch the horizon electric charge of the black hole
is essentially zero. The electrically charged and gravitating cloud then forms a shell outside
the horizon that gets ‘squeezed’ between the horizon and the barrier due to the scalar field
effective mass and consequently develops oscillations. These oscillations are also present in
the curvature scalars such as the Ricci scalar and the Kretschmann scalar, respectively, and
since they appear well outside the horizon they might have observational consequences such
as influencing the motion of objects in the vicinity of the black hole. This is currently under
investigation and will be discussed elsewhere. As a final note, let us remark that due to the
similarity of the effects of a U(1) gauge field and rotation in the context of the synchronization
condition, it would be interesting to see whether the scalar field oscillations are also present for
the solutions studied in [7]. If so, there might be a new observational ansatz to observe black
holes with scalar hair.
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