BMS-Iike symmetries in field theory

Andrea Campoleoni

ETH Zürich

A.C., D. Francia and C. Heissenberg, arXiv:1703.01351 \& 1712.09591

5th SwissMAP General Meeting, Grindelwald, 10/9/2018

Gravitational scattering: two perspectives

Goal: describe scattering in flat space including gravity

Gravitational scattering: two perspectives

Goal: describe scattering in flat space including gravity

Field theory perspective

- compute the (tree-level) S-matrix
- Universal result: Weinberg's factorisation theorem

Gravitational scattering: two perspectives

Goal: describe scattering in flat space including gravity

Field theory perspective

- compute the (tree-level) S-matrix
- Universal result: Weinberg's factorisation theorem
- General relativity perspective
- identify asymptotically flat manifolds and learn how to distinguish them
- Universal result: BMS symmetry

Gravitational scattering: two perspectives

Goal: describe scattering in flat space including gravity

a precise link between the two setups has been proposed recently'

- General relativity perspective

- identify asymptotically flat manifolds and learn how to distinguish them
- Universal result: BMS symmetry

Soft theorems \& BMS symmetries

- Results that have been linked:
- 1962: Bondi, van der Burg, Metzner, Sachs (BMS) infinitedimensional group of asymptotic symmetries in general relativity
- 1964: Weinberg's soft theorems

Weinberg's soft graviton theorem

Ward identity for BMS symmetry

Soft theorems \& BMS symmetries

- Results that have been linked:
- 1962: Bondi, van der Burg, Metzner, Sachs (BMS) infinitedimensional group of asymptotic symmetries in general relativity
- 1964: Weinberg's soft theorems

Soft theorems \& BMS symmetries

- Results that have been linked:
- 1962: Bondi, van der Burg, Metzner, Sachs (BMS) infinitedimensional group of asymptotic symmetries in general relativity
- 1964: Weinberg's soft theorems

Weinberg's soft theorem(s)

- Amplitude for $\mathrm{N}-1$ scalars and one "soft" particle
Weinberg (1964)

- In the limit $q \rightarrow 0$ the amplitude factorises:

$$
A_{t o t}(1, \ldots, N) \sim A(1, \ldots, N-1) \times \sum_{i=1}^{N-1} g_{i} \frac{p_{i}^{\mu} p_{i}^{\nu} h_{\mu \nu}(q)}{2 p_{i} \cdot q}
$$

Weinberg's soft theorem(s)

- Amplitude for $\mathrm{N}-1$ scalars and one "soft" particle
Weinberg (1964)

- In the limit $q \rightarrow 0$ the amplitude factorises:

$$
A_{\text {tot }}(1, \ldots, N) \sim A(1, \ldots, N-1) \times \sum_{i=1}^{N-1} g_{i} \frac{p_{i}^{\mu} p_{p^{\nu}} h_{\mu \nu}(q)}{2 p_{i} \cdot q}
$$

- On-shell gauge transformations $h_{\mu \nu}(q) \rightarrow h_{\mu \nu}(q)+i q_{(\mu} \Lambda_{\nu)}(q)$
- QED: $\sum_{i=1}^{N-1} g_{i}=0 \quad$ (charge conservation)
- Gravity: $g_{i}=g_{j} \forall i, j \Rightarrow \sum_{i=1}^{N-1} p_{i}^{\mu}=0 \quad$ (equivalence principle)

BMS symmetry in a nutshell

- (Retarded) Bondi coordinates
- start from Minkowski space: $\quad d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$,
- change coord.: $\quad r \equiv\left[x^{i} x^{i}\right]^{1 / 2}, \quad z \equiv \frac{x^{1}+i x^{2}}{r+x^{3}}, \quad u \equiv x^{0}-r$.
- Minkowski metric in the new coordinates:

$$
d s^{2}=-d u^{2}-2 d u d r+\frac{4 r^{2} d z d \bar{z}}{(1+z \bar{z})^{2}}
$$

BMS symmetry in a nutshell

- Boundary conditions
- Minkowski: $\quad d s^{2}=-d u^{2}-2 d u d r+\frac{4 r^{2} d z d \bar{z}}{(1+z \bar{z})^{2}}$
- Asymptotically flat:

Bondi, van der Burg, Metzner; Sachs (1962);
see also Barnich, Troessaert (2010);
He, Lysov, Mitra, Strominger (2014)

$$
d s^{2}=-d u^{2}-2 d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z}
$$

$$
+\frac{2 m_{B}}{r} d u^{2}+r C_{z z} d z^{2}+r C_{\bar{z} \bar{z}} d \bar{z}^{2}-2 U_{z} d u d z-2 U_{\bar{z}} d u d \bar{z}
$$

Bondi mass aspects
Outgoing Bondi news: $\quad N_{z z} \equiv \partial_{u} C_{z z}$

- Next task: classify diffeos preserving the asymptotic form of the metric (aka asymptotic symmetries)

How to link the two approaches?

Gravity as a field theory in Minkowski space:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

$$
I \sim \int d^{4} x\left\{h^{\mu \nu}\left(\square h_{\mu \nu}-2 \partial_{\mu} \partial \cdot h_{\nu}\right)-h^{\prime}\left(\square h^{\prime}-2 \partial \cdot \partial \cdot h\right)\right\}+\mathcal{O}\left(h^{3}\right)
$$

- Right language to compare with Weinberg's soft theorems!

How to link the two approaches?

- Gravity as a field theory in Minkowski space:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

$$
I \sim \int d^{4} x\left\{h^{\mu \nu}\left(\square h_{\mu \nu}-2 \partial_{\mu} \partial \cdot h_{\nu}\right)-h^{\prime}\left(\square h^{\prime}-2 \partial \cdot \partial \cdot h\right)\right\}+\mathcal{O}\left(h^{3}\right)
$$

- The geometry of spacetime is not manifest anymore, but asymptotic symmetries are still visible
- Extra bonus: the same analysis applies to other relativistic field theories, like QED, Yang-Mills, sugra and... more!

BMS symmetry in
 Ifnearised gravity

Asymptotic symmetries of linearised gravity

- Boundary conditions in the linearised theory $\left(g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\right)$

$$
h_{\mu \nu} d x^{\mu} d x^{\nu}=\frac{2 m_{B}}{r} d u^{2}-2 U_{z} d u d z-2 U_{\bar{z}} d u d \bar{z}+r C_{z z} d z^{2}+r C_{\bar{z} \bar{z}} d \bar{z}^{2}
$$

- Look for linearised diffeomorphisms that preserve them

$$
\delta h_{\mu \nu}=\partial_{(\mu} \epsilon_{\nu)}:=\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}
$$

- Idea: asymptotically the gravitational field is weak
- Observation: soft theorems can be recovered within the linearised theory

Supertranslations

- u-independent linearised diffeos preserving the bnd conds

$$
\epsilon^{\mu} \partial_{\mu}=T \partial_{u}+D^{z} D_{z} T \partial_{r}-\frac{1}{r}\left(D^{z} T \partial_{z}+D^{\bar{z}} T \partial_{\bar{z}}\right)
$$

Supertranslations

- u-independent linearised diffeos preserving the bnd conds

$$
\epsilon^{\mu} \partial_{\mu}=T \partial_{u}-D^{z} D_{z} T \partial_{r}-\frac{1}{r}\left(D^{z} T \partial_{z}+D^{\bar{z}} T \partial_{\bar{z}}\right)
$$

Symmetries generated by an arbitrary function $T(z, \bar{z})$ on the celestial sphere

Supertranslations

- u-independent linearised diffeos preserving the bnd conds

$$
\left.\epsilon^{\mu} \partial_{\mu}=T \partial_{u}\right) D^{z} D_{z} T \partial_{r}-\frac{1}{r}\left(D^{z} T \partial_{z}+D^{\bar{z}} T \partial_{\bar{z}}\right)
$$

Symmetries generated by an arbitrary function $T(z, \bar{z})$ on the celestial sphere

- Poincaré translations generated by special T

$$
\text { 1, } \quad \frac{1-z \bar{z}}{1+z \bar{z}}, \quad \frac{z+\bar{z}}{1+z \bar{z}}, \quad \frac{i(z-\bar{z})}{1+z \bar{z}} .
$$

$D_{z}=$ covariant derivative on the celestial sphere with metric $\gamma_{z \bar{z}}$

Supertranslations

- u-independent linearised diffeos preserving the band cords

$$
\left.\epsilon^{\mu} \partial_{\mu}=T \partial_{u}\right) D^{z} D_{z} T \partial_{r}-\frac{1}{r}\left(D^{z} T \partial_{z}+D^{\bar{z}} T \partial_{\bar{z}}\right)
$$

Symmetries generated by an arbitrary function $T(z, \bar{z})$ on the celestial sphere

- Poincare translations generated by special T

$$
\text { 1, } \quad \frac{1-z \bar{z}}{1+z \bar{z}}, \quad \frac{z+\bar{z}}{1+z \bar{z}}, \quad \frac{i(z-\bar{z})}{1+z \bar{z}} .
$$

Supertranstations: infinite-dimensional enhancement of the translation symmetry!

Superrotations

Generic asymptotic symmetry

$$
\begin{aligned}
\epsilon & =\left(T+\frac{u}{2} D \cdot Y\right) \partial_{u}+\left(D_{z} D^{z} T-\frac{1}{2}(u+r) D \cdot Y\right) \partial_{r} \\
& +\left(Y^{z}-\frac{1}{r} D^{z} Y-\frac{u}{2 r} D^{z} D \cdot Y\right) \partial_{z}+\left(Y^{\bar{z}}-\frac{1}{r} D^{\bar{z}} Y-\frac{u}{2 r} D^{\bar{z}} D \cdot Y\right) \partial_{\bar{z}}
\end{aligned}
$$

Superrotations

- Generic asymptotic symmetry

$$
\begin{aligned}
\epsilon & \left.=(T) \frac{u}{2} D \cdot Y\right) \partial_{u}+\left(D_{z} D^{z} T-\frac{1}{2}(u+r) D \cdot Y\right) \partial_{r} \\
& \left.\left.+\left(Y^{z}\right)-\frac{1}{r} D^{z} Y-\frac{u}{2 r} D^{z} D \cdot Y\right) \partial_{z}+\left(Y^{\bar{z}}\right)-\frac{1}{r} D^{\bar{z}} Y-\frac{u}{2 r} D^{\bar{z}} D \cdot Y\right) \partial_{\bar{z}}
\end{aligned}
$$

- Additional symmetries generated by

$$
\begin{array}{l|l}
Y^{i} & \text { satisfying } \\
D^{(i} Y^{j)}-\eta^{i j} D \cdot Y=0
\end{array}
$$

- When $\mathrm{D}=4$ (i.e. when the celestial sphere is S^{2}) locally the conformal Killing equation is solved by $Y^{z}(z)$ and $Y^{\bar{z}}(\bar{z})$

Spin-s Weinberg theorem \& ... and what?

- Weinberg's soft theorem extends to particles of all spin
- Universal formula relating S-matrix elements with and without a soft higher-spin massless particle

Is it possible to recover Weinberg's formula from the Ward identity of a proper asymptotic symmetry?

Spin-s Weinberg theorem \& ... and what?

- Weinberg's soft theorem extends to particles of all spin
- Universal formula relating S-matrix elements with and without a soft higher-spin massless particle

Is it possible to recover Weinberg's formula from the Ward identity of a proper asymptotic symmetry?

- Gauge theories in flat space display infinite dimensional asymptotic symmetry algebras (at least when $\mathrm{D}=3$ and 4)

Massless particles of any spin and their asymptotic symmetries

Free massless particles of arbitrary spin

- Example I: Maxwell
- Field equations: $\quad \partial^{\lambda} F_{\lambda \mu}=0 \quad \Rightarrow \quad \square A_{\mu}-\partial_{\mu} \partial \cdot A=0$
- Gauge symmetry: $\delta A_{\mu}=\partial_{\mu} \xi$

Free massless particles of arbitrary spin

- Example I: Maxwell
- Field equations: $\quad \partial^{\lambda} F_{\lambda \mu}=0 \quad \Rightarrow \quad \square A_{\mu}-\partial_{\mu} \partial \cdot A=0$
- Gauge symmetry: $\delta A_{\mu}=\partial_{\mu} \xi$
- Example II: linearised gravity
- Field equations:

$$
\square h_{\mu \nu}-\partial_{\mu} \partial \cdot h_{\nu}-\partial_{\nu} \partial \cdot h_{\mu}+\partial_{\mu} \partial_{\nu} h_{\lambda}^{\lambda}=0
$$

- Gauge symmetry: $\quad \delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

Free massless particles of arbitrary spin

- Example II: linearised gravity
- Field equations:

$$
\square h_{\mu \nu}-\partial_{\mu} \partial \cdot h_{\nu}-\partial_{\nu} \partial \cdot h_{\mu}+\partial_{\mu} \partial_{\nu} h_{\lambda}^{\lambda}=0
$$

- Gauge symmetry:

$$
\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}
$$

Particle of arbitrary spin s:

$$
\mathcal{F}_{\mu_{1} \cdots \mu_{s}} \equiv \square \varphi_{\mu_{1} \cdots \mu_{s}}-\partial_{\left(\mu_{1}\right.} \partial \cdot \varphi_{\left.\mu_{2} \cdots \mu_{s}\right)}+\partial_{\left(\mu_{1}\right.} \partial_{\mu_{2}} \varphi_{\left.\mu_{3} \cdots \mu_{s}\right) \lambda}{ }^{\lambda}=0
$$

- Gauge symmetry: $\delta \varphi_{\mu_{1} \cdots \mu_{s}}=\partial_{\left(\mu_{1}\right.} \xi_{\left.\mu_{2} \cdots \mu_{s}\right)}$
- Gauge invariance requires: $\quad \xi_{\mu_{1} \cdots \mu_{s-3} \lambda}{ }^{\lambda}=0$

Massless higher-spin (s > 2) particles

- Weinberg (1964): no long-range interactions mediated by higher-spin particles (vanishing couplings in the soft limit)

$$
A_{s}(1, \ldots, N) \sim A(1, \ldots, N-1) \times \sum_{i=1}^{N-1} g_{i}^{(s)} \frac{p_{i}^{\mu_{1}} \cdots p_{i}^{\mu_{s}} \varphi_{\mu_{1} \cdots \mu_{s}}(q)}{2 p_{i} \cdot q}
$$

On shell gauge symmetry $\rightarrow \sum_{i=1}^{N-1} p_{i}^{\mu_{1}} \cdots p_{i}^{\mu_{s-1}}=0$

Massless higher-spin (s > 2) particles

- Weinberg (1964): no long-range interactions mediated by higher-spin particles (vanishing couplings in the soft limit)

No interacting higher-spin gauge
theories in flat space

Massless higher-spin (s > 2) particles

- Weinberg (1964): no long-range interactions mediated by higher-spin particles (vanishing couplings in the soft limit)

No interacting higher-spin gauge theories in flat space

- Gross \& Mende (1987): higher-spin symmetry relating string scattering amplitudes in a suitable high-energy limit

> String theory may be a broken phase of a higher-spin gauge theory

Massless higher-spin (s > 2) particles

- Weinberg (1964): no long-range interactions mediated by higher-spin particles (vanishing couplings in the soft limit)

No interacting higher-spin gauge
theories in flat space

- Gross \& Mende (1987): higher-spin symmetry relating string scattering amplitudes in a suitable high-energy limit

String theory may be a broken phase of a higher-spin gauge theory

Higher-spin (HS) theories: the status quo

- Weinberg's results apply to massless particles in flat space
- Two known examples of interacting HS theories:
- String (field) theory: massive HS excitations in flat space
- Vasiliev's equations: massless HS fields in (A)dS

Fradkin,Vasiliev (1987); Vasiliev (1990)

- Support for HS gauge theories from AdS/CFT

Sundborg (200I); Sezgin, Sundell
(2002); Klebanov, Polyakov (2002);

Giombi,Yin (2009) etc.

- Higher-spin interactions seem to require an infrared regulator (mass or cosmological constant)
- Difficulties emerge when one tries to remove the regulator

Spin-3 supertranslations...

- Linearised gauge transformations: $\varphi_{\mu \nu \rho} \sim \varphi_{\mu \nu \rho}+\partial_{(\mu} \epsilon_{\nu \rho)}$
- Boundary conditions on the Fronsdal field A.C., Franci, Heissenberg (2017)

$$
\varphi_{u u u}=\frac{B}{r}, \quad \varphi_{u u z}=U_{z}, \quad \varphi_{u z z}=r C_{z z}, \quad \varphi_{z z z}=r^{2} B_{z z z}
$$

Spin-3 supertranslations...

- Linearised gauge transformations: $\varphi_{\mu \nu \rho} \sim \varphi_{\mu \nu \rho}+\partial_{(\mu} \epsilon_{\nu \rho)}$
- Boundary conditions on the Fronsdal field A.C., Franci, Heisenberg (2017)

$$
\varphi_{u u u}=\frac{B}{r}, \quad \varphi_{u u z}=U_{z}, \quad \varphi_{u z z}=r C_{z z}, \quad \varphi_{z z z}=r^{2} B_{z z z}
$$

- u-independent residual "gauge" symmetry

$$
\begin{aligned}
& \epsilon_{\mu \nu} d x^{\mu} d x^{\nu}=-\left(\frac{3}{4} T+D^{z} D_{z} T+\frac{1}{4}\left(D^{z} D_{z}\right)^{2} T\right) d u^{2}-2\left(\frac{3}{4} T+\frac{1}{4} D^{z} D_{z} T\right) d u d r \\
& -2 r\left(\frac{3}{4} D_{z} T+\frac{1}{4} D_{z}^{2} D^{z} T\right) d u d z-2 r\left(\frac{3}{4} D_{\bar{z}} T+\frac{1}{4} D_{\bar{z}}^{2} D^{\bar{z}} T\right) d u d \bar{z}-T d r^{2} \\
& -r\left(D_{z} T d z+D_{\bar{z}} T d \bar{z}\right) d r-\frac{r^{2}}{2}\left(D_{z}^{2} T d z^{2}+D_{\bar{z}}^{2} T d \bar{z}^{2}\right)-\frac{r^{2}}{2} \gamma_{z \bar{z}}\left(T+D^{z} D_{z} T\right) d z d \bar{z}
\end{aligned}
$$

Spin-3 supertranslations...

- Linearised gauge transformations: $\varphi_{\mu \nu \rho} \sim \varphi_{\mu \nu \rho}+\partial_{(\mu} \epsilon_{\nu \rho)}$
- Boundary conditions on the Fronsdal field A.C., Franci, Heisenberg (2017)

$$
\varphi_{u u u}=\frac{B}{r}, \quad \varphi_{u u z}=U_{z}, \quad \varphi_{u z z}=r C_{z z}, \quad \varphi_{z z z}=r^{2} B_{z z z}
$$

- u-independent residual "gauge" symmetry gen. by $T(z, \bar{z})$

$$
\begin{aligned}
& \epsilon_{\mu \nu} d x^{\mu} d x^{\nu}=-\left(\left(\frac{-}{4} T-D^{z} D_{z} T+\frac{1}{4}\left(D^{z} D_{z}\right)^{2} T\right) d u^{2}-2\left(\frac{3}{4} T+\frac{1}{4} D^{z} D_{z} T\right) d u d r\right. \\
& -2 r\left(\frac{3}{4} D_{z} T+\frac{1}{4} D_{z}^{2} D^{z} T\right) d u d z-2 r\left(\frac{3}{4} D_{\bar{z}} T+\frac{1}{4} D_{\bar{z}}^{2} D^{\bar{z}} T\right) d u d \bar{z}-T d r^{2} \\
& -r\left(D_{z} T d z+D_{\bar{z}} T d \bar{z}\right) d r-\frac{r^{2}}{2}\left(D_{z}^{2} T d z^{2}+D_{\bar{z}}^{2} T d \bar{z}^{2}\right)-\frac{r^{2}}{2} \gamma_{z \bar{z}}\left(T+D^{z} D_{z} T\right) d z d \bar{z}
\end{aligned}
$$

...and higher-spin superrotations!

- Full residual "gauge" symmetry

$$
\begin{aligned}
\epsilon^{i j} & =\left[K^{i j}+\frac{u}{r} \mathcal{T}_{2}^{i j}(K)+\left(\frac{u}{r}\right)^{2} \mathcal{T}_{4}^{i j}(K)\right]+\frac{1}{r}\left[\mathcal{U}_{1}^{i j}(\rho)+\frac{u}{r} \mathcal{U}_{3}^{i j}(\rho)\right]+\frac{1}{r^{2}} \mathcal{V}_{2}^{i j}(T) \\
\epsilon^{u i} & =\frac{u}{n+2}\left[D \cdot K^{i}-\frac{u r^{-1}}{2(n+1)} D^{i} D \cdot D \cdot K\right]-\left[\rho^{i}-\frac{u r^{-1}}{n+1} D^{i} D \cdot \rho\right]+\frac{1}{2 r} D^{i} T \\
\epsilon^{u u} & =\frac{u^{2}}{(n+1)(n+2)} D \cdot D \cdot K-\frac{2 u}{n+1} D \cdot \rho-T
\end{aligned}
$$

and similar expressions for $\epsilon^{r i}, \epsilon^{r u}$ and $\epsilon^{r r}$

Asymptotic symmetries generated by T, ρ^{j} and $K^{i j}$

...and higher-spin superrotations!

- Full residual "gauge" symmetry

$$
\begin{aligned}
& \left.\epsilon^{i j}=K^{i j}+\frac{u}{r} \mathcal{T}_{2}^{i j}(K)+\left(\frac{u}{r}\right)^{2} \mathcal{T}_{4}^{i j}(K)\right]+\frac{1}{r}\left[\mathcal{U}_{1}^{i j}(\rho)+\frac{u}{r} \mathcal{U}_{3}^{i j}(\rho)\right]+\frac{1}{r^{2}} \mathcal{V}_{2}^{i j}(T) \\
& \left.\epsilon^{u i}=\frac{u}{n+2}\left[D \cdot K^{i}-\frac{u r^{-1}}{2(n+1)} D^{i} D \cdot D \cdot K\right]-\rho^{i}-\frac{u r^{-1}}{n+1} D^{i} D \cdot \rho\right]+\frac{1}{2 r} D^{i} T \\
& \epsilon^{u u}=\frac{u^{2}}{(n+1)(n+2)} D \cdot D \cdot K-\frac{2 u}{n+1} D \cdot \rho
\end{aligned}
$$

and similar expressions for $\epsilon^{r i}, \epsilon^{r u}$ and $\epsilon^{r r}$

Asymptotic symmetries generated by T, ρ^{j} and $K^{i j}$

...and higher-spin superrotations!

- Full residual "gauge" symmetry

$$
\begin{aligned}
& \left.\epsilon^{i j}=K^{i j}+\frac{u}{r} \mathcal{T}_{2}^{i j}(K)+\left(\frac{u}{r}\right)^{2} \mathcal{T}_{4}^{i j}(K)\right]+\frac{1}{r}\left[\mathcal{U}_{1}^{i j}(\rho)+\frac{u}{r} \mathcal{U}_{3}^{i j}(\rho)\right]+\frac{1}{r^{2}} \mathcal{V}_{2}^{i j}(T) \\
& \epsilon^{u i}=\frac{u}{n+2}\left[D \cdot K^{i}-\frac{u r^{-1}}{2(n+1)} D^{i} D \cdot D \cdot K-\rho^{i}-\frac{u r^{-1}}{n+1} D^{i} D \cdot \rho\right]+\frac{1}{2 r} D^{i} T \\
& \epsilon^{u u}=\frac{u^{2}}{(n+1)(n+2)} D \cdot D \cdot K-\frac{2 u}{n+1} D \cdot \rho
\end{aligned}
$$

and similar expressions for $\epsilon^{r i}, \epsilon^{r u}$ and $\epsilon^{r r}$

- $T(z, \bar{z})$
- $\rho^{z}=\alpha(z) \partial_{z} k(z, \bar{z})+\beta(z), \quad \rho^{\bar{z}}=\tilde{\alpha}(\bar{z}) \partial_{\bar{z}} k(z, \bar{z})+\tilde{\beta}(\bar{z})$,
- $K^{z z}=K(z), \quad K^{\bar{z} \bar{z}}=\tilde{K}(\bar{z}), \quad K^{z \bar{z}}=0$.

Summary and outlook

- HS theories in 4D Minkowski space admit an ∞-dimensional algebra of asymptotic symmetries
- Generalisations of gravitational super-translations and -rotations
- Weinberg's theorem \Longleftrightarrow supertranslation Ward identity
- Further research directions
- Non-abelian extension of BMS-like HS symmetries?
- Relics of HS symmetries in string amplitudes? Flat-space holography?
- Higher-dimensional gravity; modified theories of gravity

Interpretation of the new symmetries

- Global solutions are in one to one correspondence with
- Gravity: $T \rightarrow \square \simeq P_{a} \quad v^{i} \rightarrow \square \simeq J_{a b}$
- HS: $\quad T \rightarrow \square \simeq P_{(a} P_{b)} \quad \rho^{i} \rightarrow \square \simeq P_{(a, ~} J_{b) c} \quad K^{i j} \rightarrow 母 \simeq J_{a(c} J_{d) b}$
- Same structure as in AdS Vasiliev's algebra!
- Gravity: $\mathcal{A}=e^{a} P_{a}+\omega^{a b} J_{a b}=\omega^{A B} M_{A B}, \quad M_{A B}$ span $\mathfrak{s o}(2, D-1)$
- HS: $\mathcal{A}=\sum_{s=0}^{\infty} \Omega^{A_{1} \cdots A_{s-1} \mid B_{1} \cdots B_{s-1}} M_{A_{1} \cdots A_{s-1} \mid B_{1} \cdots B_{s-1}}$
- Hints of a Carrollian Vasiliev's algebra

