

# DIFFERENTIAL EFFICACY OF A NEW MG-BASED BIORESORBABLE STENT IN CHRONIC AND ACUTE CORONARY SYNDROMES

Carlier S<sup>1,2</sup>, Ghafari C<sup>1,2</sup>, Delmotte P<sup>1,2</sup>, Brassart N<sup>3</sup>, Tanaka K<sup>4</sup>, Thayse K<sup>1,2</sup>, Brunner P<sup>1</sup>



<sup>1</sup>Department of Cardiology, CHU Ambroise Paré, Mons, Belgium; <sup>2</sup>Department of Cardiology, Université de Mons (UMONS), Mons, Belgium; <sup>3</sup>Department of Radiology, CHU Ambroise Paré, Mons, Belgium; <sup>4</sup>Department of Cardiology, UZ Brussel, Brussels, Belgium.

## **Background**

Despite the advances in coronary artery stents' structure and design, a foreign metallic body is left within the vessel imposing physical restraints and altering vessel physiology. The first generation bioresorbable scaffolds made of poly-L-lactic acid were designed to overcome such metal caging but presented a higher thrombosis rate. A second generation bioresorbable stent (MgBVS) made from a magnesium backbone coated by a biodegradable polymer eluting sirolimus was introduced on the market. CE-mark was obtained after the promising results of the BIOSOLVE studies. More recently, the MAGSTEMI randomized controlled trial showed a higher rate of indevice endothelium-independent and -dependent vasomotor response than the SES implant but was associated with a higher late lumen loss, higher rate of target lesion revascularization, without thrombotic safety concerns in this thrombogenic setting.

## **Objectives**

We sought to present long-term clinical outcome of real-life patients treated at our institution with at least one MgBVS for a coronary stenosis.

### **Methods**

In this retrospective observational study, between January 2017 and March 2020, MgBVS were deliberately chosen and implanted for younger patients with de novo lesions after pre-dilatation. Post-dilatation was performed with a non-compliant (NC) balloon. Procedural and clinical data at hospital discharge and 6-month follow-up were collected. MACE was defined as cardiovascular death, target vessel myocardial infarction (TV-MI) and clinically driven target lesion revascularization (CD-TLR). Need for CD-TLR was confirmed by FFR. Assessment of stent patency, vessel size and minimal in-stent lumen area were measured during follow-up with coronary computed tomography angiography (CCTA) scans. Patients were screened for residual ischemia when indicated.

### Results

44 MgBVS (mean diameter:  $3.2 \pm 0.2$  mm, length  $20.6 \pm 4.2$  mm) were successfully implanted to treat 43 coronary lesions in 38 patients. IVUS was used in 13% (n=5) and bifurcating lesions treated in 41% (n=18). Calcifications on angiography were found in 16 patients (36%). Post-dilatation with a NC balloon with a mean diameter of  $3.4 \pm 0.3$  mm inflated at  $18.4 \pm 2.4$  atm was performed in 93% of the lesions (n=41).

| n=38                       |                    |  |
|----------------------------|--------------------|--|
| 55.9 ± 8.1                 |                    |  |
| 30                         | 78.9%              |  |
| 21                         | 55.3%              |  |
| 24                         | 63.2%              |  |
| 15                         | 39.5%              |  |
| 25                         | 65.8%              |  |
|                            |                    |  |
| 24                         | 63.1%              |  |
| €                          | 23.7%              |  |
| 10                         | 26.3%              |  |
| 5                          | 13.2%              |  |
| 14                         | 36.8%              |  |
|                            |                    |  |
| 25                         | 56.8%              |  |
| 6                          | 13.6%              |  |
| 2                          | 4.5%               |  |
| 10                         | 22.7%              |  |
| 1                          | 2.3%               |  |
| 3<br>2<br>1<br>2<br>1<br>3 | 25<br>6<br>2<br>10 |  |

**Table**: Patients and lesions characteristics

| Overall TLF in 38 patients / 44 lesions |                                            | 35 reached 6-mo<br>f-up |    |
|-----------------------------------------|--------------------------------------------|-------------------------|----|
| TL                                      | F                                          | 4                       | 9% |
|                                         | Cardiac death (tamponade)                  | 1                       |    |
|                                         | TV MI (in-stent thrombosis @ 1 mo.)        | 1                       |    |
|                                         | CD-TLR (in-stent restenosis @ 1 and 8 mo.) | 2                       |    |
|                                         | CABG                                       | 0                       |    |

On CCTA, one more in-stent restenosis was noted in an initial ACS patient who remained asymptomatic with a negative dobutamine echocardiography, although the minimal lumen area by CCTA was 1.1 mm<sup>2</sup>.

#### **Discussion and Conclusion**

These 4 MACE occurred in the 24 ACS patients (17%), with 0% for the others, a difference not statistically significant (Fisher exact test, p=0.14) because of the small sample size. In BIOSOLVE II-III studies where ACS patients were excluded, TLF at 1-year was 3.3%. In BIOSOLVE-IV that included only 16% of nonSTEMI, TLF was 4.3%. On the contrary, our data are more in line with the recently presented MAGSTEMI trial reporting a TLR of 16% among 100% of ACS by design. Despite careful optimal stent implantation technique, our results call for a word of caution in using MgBVS in ACS, with a need to further improve its design and radial force. Meanwhile, a question still arises: bioabsorbable stents, are we out of the shadows yet?

#### References

- 1. Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: The emerging reality and future directions. Circ Res. 2017;120(8):1341-1352. doi:10.1161/CIRCRESAHA.117.310275
- 2. Bangalore S, Bezerra HG, Rizik DG, et al. The State of the Absorb Bioresorbable Scaffold: Consensus From an Expert Panel. JACC Cardiovasc Interv. 2017;10(23):2349-2359 doi:10.1016/j.icin.2017.09.041
- doi:10.1016/j.cm.2017.09.041
  3. Haude M, Ince H, Kische S, et al. TCT-63 Safety and Clinical Performance of the Drug Eluting Absorbable Metal Scaffold in the Treatment of Subjects with de Novo Lesions in Native Coronary Arteries at 24-month follow-up BIOSOLVE-II and BIOSOLVE-III. J Am Coll Cardiol. 2018;72(13):827-828. doi:10.1016/j.iacc.2018.08.1152
- in Native Coronary Arteries at 24-month follow-up BIOSOLVE-III and BIOSOLVE-III. J Am Coll Cardiol. 2018;72(13):827-828. doi:10.1016/j.jacc.2018.08.1152
  4. Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-nove coronary artery
- X
  5. Verheye S, Wlodarczak A, Montorsi P, et al. Safety and performance of a resorbable magnesium scaffold under real-world conditions: 12-month outcomes of the first 400
- patients enrolled in the BIOSOLVE-IV registry. EuroIntervention. 2019. doi:10.424/EII-D-18-01058
  6. GalliS, Verheye S, Widokrazak A, et al. 500.01 Safety and Performance of the Resorbable Magnesium Scaffold, Magmaris in a Real-World Setting 12-Month Follow-Up First 500.0 Subsicts in Biosolve-IV Resistry. JACC Confidence Interv. 2019;12(4):539. doi:10.1016/j.inia.2019.01.140
- 7. Sabaté M, Alfonso F, Cequier A, et al. Magnesium-Based Resorbable Scoffold versus Permanent Metallis Calibration Stent in Patients with ST-Segment Elevati