

SPUTTERING ONTO LIQUIDS FOR NANOPARTICLE SYNTHESIS

<u>Stephanos KONSTANTINIDIS ¹</u>, Amy O'REILLY ¹, Kamakshi PATEL ¹, Adrien CHAUVIN ¹, Julien DE WINTER ¹, David CORNIL ¹, Jérôme CORNIL ¹, Adriano PANEPINTO ², Jozef VESELÝ ³, Halima ALEM-MARCHAND ⁴, Anastasiya SERGIEVSKAYA ¹

¹ University of Mons - Mons (BELGIUM)

² Materia Nova - Mons (BELGIUM)

³ Charles University - Prague (CZECH REPUBLIC)

⁴ Institut Jean Lamour - Nancy (FRANCE)

stephanos.konstantinidis@umons.ac.be

Advantages of sputtering onto liquids

1. Flexibility

Large variety of elements can be sputtered

2. Safety

NP « stored » in the host liquid

3. Purity

Chemical reactants and by-products are avoided

Experimental set-up

Castor oil as a host liquid

Influence of the working parameters on the NP properties

Varying parameters are:

- 1. Sputter power
- 2. Deposition time
- 3. Kind of sputtering discharge (DCMS vs. HiPIMS)
- 4. Viscosity of the host liquid
- 5. Nature of the sputtered metal (Au, Ag, Cu)

TEM and UV-Vis spec. provide info about

- 1. The size of the NP
- 2. The ageing/stability of the NP solutions

DC-MS of gold onto castor oil, a first look

 P_{Ar} = 0.5 mTorr, T-S dist.: 20 cm, 5 min, 80 W → Flux of metal atoms : Φ = (2.5 ± 0.5)·10⁻⁷ mol·cm⁻²·min⁻¹

- NP continue to grow for a few days after sputtering
- NP solutions are stable for a very long time

Effect of sputter time

15 min after sputtering 4 weeks after sputtering 6 6 6 ----2 min 2 min A (505 nm)/ l (cm) 5 5 —3 min 3 min Absorbance (a.u.) —5 min 5 min 4 4 ____7 min 7 min –10 min -10 min 3 Ă 3 2 2 15 min 1 1 1 4 weeks 0 0 0 **Ageing of** 450 550 650 750 10 15 450 550 650 750 5 350 350 0 Sputter Time (min) Wavelength (nm) Wavelength (nm) the NP TEM analysis after 6 months 7 min 10 min 5 min d = 3.2 ± 0.6 nm $d = 2.7 \pm 0.6$ nm solutions $d = 2.8 \pm 0.7$ nm 40 40 Frequency (%) 40 Frequency (%) 30 30 -requency 30

20 nm

20

10

0

2 2.5 3 3.5 4 4.5 5 5.5

Diameter (nm)

20

10

0

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Diameter (nm)

20 nm

1.5 2 2.5 3 3.5 4 4.5 5

Diameter (m)

20

0

nm

Effect of sputter power

Sputter time: 10 min

20 W 40W 60W 80W

Ageing of the NP solutions

DC-MS vs. (unipolar) HiPIMS

P_{Ar} = 5 mTorr, 80 W, 10 min

DC-MS: $\Phi = (1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{minute}$

HiPIMS: $T_{on} = 20 \ \mu s$, $I_{pk} = 0.3 \ A/cm^2$, $f = 800 \ Hz$, $\Phi = (0.9 \pm 0.1) \cdot 10^{-7} \ moles/cm^2 \ min$

Ageing of the NP solutions

13

Effect of host liquid viscosity

0.5 mTorr, 20 cm, 80 W, 10 min, Liquid : **polymerized* rapeseed oil** * Plasma treatment prior sputtering

Viscosities (cP)

- Castor oil = 700 cP (35.1 mJ m⁻²)
- Water = 0.9 cP
- Honey ~ 2000 10 000 cP

Film is obtained like on a solid surface

Effect of host liquid viscosity

No TEM data for high viscosity liquids Impossible to remove the liquid from the TEM grid

1

15

Ageing of the solutions

0.5 mTorr, 20 cm, 80 W, 10 min, substrate : polymerized rapeseed oil

At higher viscosity

- Better definition of the SPR band \rightarrow Bigger NPs ?
- But lower concentration of NP ٠

What if we sputter silver onto castor oil ?

Metal surface – liquid interaction energy

$$E_{\text{int}} = E_{\text{surf/CO}} - [E_{\text{CO}} + E_{\text{surf}}]$$

DC-MS of silver target onto castor oil

0.5 mTorr, 20 cm, 80 W, 3 min $\Phi = (0.6 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{min}$

- SK9 size distribution, cristalinity ? Stéphanos KONSTANTINIDIS; 03-05-21
- Ui16 There is no size distributions for these particlular images due to low quality. I used them to tell that particules aggregate in the castor oil and this is the reason of decrease in absorbance.
 We have a lot of TEM images of silver NPs, including HiPIMS and bipolar HiPIMS with size distribution and data about crystallinity. I will send it to you.
 Utilisateur invité; 07-05-21
- **SK31** If you have the NP size distribution, it woul dbe great. THanks ! Stéphanos KONSTANTINIDIS; 20-05-21

Ageing of the Ag-NP solutions

6 hours

8.1 nm ± 5.0 nm. TEM image 8 months after preparation.

DC-MS vs. Unipolar & Bipolar HiPIMS

 $P_{Ar} = 5 \text{ mTorr}, 80 \text{ W}, 10 \text{ min}$ Flux DC-MS: $(1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}$

Flux HiPIMS: $(0.9 \pm 0.1) \cdot 10^{-7}$ moles/cm² min f = 800 Hz, T_{ON, -} = 20 µs, I_{pk} = 0.3 A/cm²

Flux B-HiPIMS: $(0.2 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}$ f = 800 Hz, T_{ON, -} = 20 µs, I_{pk} = 0.3 A/cm² V₊ = +**300V**, T_{ON, +} = 250 µs, T_{+/-} = 10µs

Number of particles larger than 20 nm

- 0.1% for DC-MS,
- 1.3 % for HiPIMS (B-HiPIMS_0)
- 4.2 % for bipolar HiPIMS (BHiPIMS_300)

What if we sputter Copper onto castor oil ?

Oxidation of Cu-NPs in castor oil

- HiPIMS promotes the formation of bigger NPs
 → Substitute to post-synthesis heating of the liquid ^[1]
- Other parameters don't play a significant role
- Au-NP size typically varies from ~2 (DC-MS) to 5 nm (HiPIMS)
- Same observation was made for Ag-NP ^[2]
- Increased heating rate of the liquid and/or high kin. energy of metallic species might be the reason
- 2. Viscosity changes the way the NP grow
- Too high viscosity promotes the formation of a film, which dissolves partially afterward.
- 3. The nature of the sputtered material/host liquid influences the stability of the NP solutions (see also ^[3])
- 4. After deposition,
- For Gold, secondary growth. Solution is very stable.
- For Silver, aggregation because of the lower stability
- Oxidation happens for Copper.

[1] B. Ingham et al, Chem. Mater. 23, 3312 (2011).

[2] A. Sergievskaya et al, Coll. Surf. A Physicochem. Eng. Asp. 615, 126286 (2021).

[3] X. Carette et al, J. Phys. Chem. C 122, 26605 (2018).