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We review the recent developements in the stability problem and phase diagram for

asymptotically locally AdS black strings. First, we quickly review the case of locally flat

black string before turning to the case of locally AdS spacetimes.
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1. Introduction

This decade has witnessed a growing interest for solutions of general relativity in

AdS spaces. This is due to the celebrated AdS/CFT correspondance conjecture1,

relating solutions of general relativity in asymptotically AdS spaces to conformal

field theories defined on the conformal boundary of the AdS space. In this context,

black hole solutions play an important role2.

In more than four dimensional spacetime, the uniqueness theorem on black holes,

garantying that the horizon topology of a black object is always S2 is no longer true.

Various black objects have been constructed in higher dimensions, such as black

strings with horizon topology Sd−3 × S1 in contrast with black holes with horizon

topology Sd−2.

On the other hand, in 1993, R. Gregory and R. Laflamme have shown that

black strings and branes are unstable towards long wavelength perturbations3. The

Gregory-Laflamme instability was originally discovered in the framework of asymp-

totically locally flat spacetimes but it is believed to be a generic feature of black

extended objects. In particular, it will be argued that this instability persists in

asymptotically locally AdS spacetimes, where a black string solution has been found

recently by R. Mann, E. Radu and C. Stelea4.

This proceeding is organised as follows: we review the black string instability and

phase diagram in asymptotically locally flat spacetimes in section 2 before turning

to asumptotically locally AdS spacetimes in section 3.
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2. Asymptotically locally flat space

Thoughout this section, we consider the d-dimensional Einstein-Hilbert action

S =
1

16πG

∫

M

√
−gRddx +

1

8πG

∫

∂M

√
−hKdd−1x, (1)

where G is the d-dimensional Newton constant which we set to one, M is the

spacetime manifold, g is the determinent of the metric, R is the scalar curvature

and K is the extrinsic curvature of the boundary manifold ∂M. The equation of

motion resulting form the variation of the Einstein-Hilbert action is given by

RMN = 0, M, N = 0, . . . , d − 1, (2)

where RMN is the Ricci tensor.

The black string solution to equation (2) is given by

ds2 = −
(

1 −
(r0

r

)d−4
)

dt2 +
dr2

(

1 −
(

r0

r

)d−4
) + r2dΩ2

d−3 + dz2, z ∈ [0, L], (3)

where L is the length of the coordinate z, r0 is the horizon radius and dΩd−3 is the

line element of the unit (d − 3)-sphere.

The black string (3) is characterised by thermodynamical quantities, namely

the mass M , associated to the time translation, the tension T , associated with z-

translation invariance, the temperature TH , which can be obtained by demanding

regularity at the horizon in the euclidean section, the entropy S, defined as one

quarter of the horizon area and the length in the extradimension L.

These thermodynamical quantities can be used to define a thermodynamical

phase diagram in temperature-entropy coordinates (TH , S/L) or in a mass-tension

diagram (µ, n), with the dimensionless quantities µ = M/Ld−3, n = T L/M5.

The uniform black string solution is subject to a dynamical instability which

manifests itself already at the linearised level3. The equations for the perturbations

admit unstable solutions with small wavenumber k in the extradirection as well as

stable solutions with a large wavenumber. The wavelengths of the various modes

are given by λ = 2π/k. There is a static solution between these two regimes for

k = kc, where kc is called the critical wavenumber.

This dynamical instability is related to the thermodynamical stability of the

black string: long black strings are unstable while short black strings are stable We

refer the reader to the original paper3 for more details.

Initially, it was widely believed that the unstable black string should decay to an

array of localised black holes but it has been shown that this decay would take an

infinite proper time at the horizon6. This suggested the existance of another phase,

the non uniform black string. Non uniform black strings were first constructed in a

perturbative way then by solving numerically the full system of non-linear partial

differential equations7. All these three phases, the black string, non uniform black

string and the localised black hole are static solution; these static solutions should

be the equilibrium configurations since they don’t evolve by definition.
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A possible way to have an idea of the endpoint of the black string instability

consists in comparing the thermodynamical properties of the three phases in a phase

diagram5.

3. Asymptotically AdS space

In this section, we present the recent results obtained in the stability problem for

black strings in AdS spacetime. We consider the d-dimensional Einstein-Hilbet ac-

tion with a negative cosmological constant,

S =
1

16πG

∫

M

√
−g

(

R +
(d − 1)(d − 2)

ℓ2

)

ddx +
1

8πG

∫

∂M

√
−hKdd−1x, (4)

with the same convention as in the previous section and where ℓ is the AdS radius,

related to the cosmological constant Λ by Λ = −(d − 1)(d − 2)/2ℓ2.

The uniform black string solution is obtained by using the spherically symmetric

ansatz

ds2 = −b(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−3 + a(r)dz2 (5)

and solving numerically the equations of motion resulting from the variation of

(4)4. The asymptotic behaviour of the metric fields is given by a, b, f ≈ r2/ℓ2 at

the leading order.

The thermodynamical quantities characterising the solution (5) are the same

as in the asymptotically locally flat case, but have to be computed in a regularised

version of the action which diverges because of the AdS asymptotic. The regularised

action is obtained by adding appropriate boundary counterterms8.

However, there is a new lengthscale in the theory, namely the AdS radius which

affects the thermodynamical properties of the black string. In particular, it allows a

new phase of thermodynamically stable black string, namely big AdS black strings,

characterised by a large horizon radius r0 - AdS length ratio. Small AdS black

strings, with r0/ℓ << 1, are thermodynamically unstable.

We investigated the existance of a Gregory-Laflamme instability by considering

non uniform black strings within the ansatz

ds2 = −b(r)e2A(r,z) + e2B(r,z)

(

dr2

f(r)
+ a(r)dz2

)

+ e2C(r,z)dΩ2
d−3, z ∈ [0, L], (6)

where a, b, f is the solution of Mann, Radu and Stelea and A, B, C are smooth func-

tions of r and z. In the perturbative approach, we develop the non uniformity in

a Fourier series of the variable z and in term of a small parameter ǫ according to

X(r, z) = ǫX1(r) cos(kz)+ǫ2(X0(r)+X2(r) cos(2kz))+O(ǫ)2, X generically denot-

ing A, B, C. Then we solve at each order in ǫ the corresponding equations of motion.

Order ǫ0 is just the uniform solution while order ǫ gives access to the linear stabil-

ity problem. The modes X1 correspond to the static perturbation in the Gregory-

Laflamme picture. The equations for these modes form an eigenvalue problem, where
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the eigenvalue is the square of the Gregory-Laflamme critical wavenumber. If the

eigenvalue is real, there exists a Gregory-Laflamme instability, if it is imaginary, the

solution is always stable9. It turns out that small AdS thermodynamically unsta-

ble black strings are dynamically unstable while big AdS thermodynamically stable

black strings are dynamically stable, confirming the Gubser-Mitra conjecture11 in

this case.

The order ǫ2 contains two independant modes: the backreactions, X0 and mas-

sive modes X2. Thermodynamical corrections for the non uniform phase arise at

this order where only the backreactions contribute10. We investigated the non uni-

form solutions emanating from the unstable modes at the order ǫ2 for small AdS

black strings. The new lengthscale provided by ℓ implies a new dimensionless quan-

tity, µ2 = L/ℓ characterising the non uniform solutions. It turns out that for small

value of µ2, the picture is essentially similiar to the case of asymptotically locally

flat spacetimes while for large µ2 enough, the small AdS phase becomes thermo-

dynamically stable. In other words, the length L plays an important role in the

thermodynamical stability of non uniform black strings, just like r0 does for uni-

form black strings; small (r0/ℓ << 1) and short (L/ℓ << 1) AdS non uniform black

string are thus thermodynamically unstable while small and long (L/ℓ ≈ 1) non

uniform black strings are thermodynamically stable10.
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