

High-Power Impulse Magnetron Sputtering (HiPIMS), From plasma analysis to thin film and nanoparticle synthesis

stephanos.konstantinidis@umons.ac.be

Conventional DC magnetron sputter deposition

CATHODE

(Negative potential)

Magnetron sputtering in the (glass) industry

https://invest.dresden.de/

Filling trenches by magnetron sputtering

Hamaguchi and Rossnagel, J. Vac. Sci. Technol. (1995).

The solution: Let's **ionize** the sputtered metal atoms

Advantages brought by the ionization of the sputtered metal atoms

Metal ions (+ negative bias on the substrate) allows :

- 1. Controlling the **trajectory** of the film forming species
- Conformal deposition
- 2. Controlling the **kinetic energy** of the film forming species
- Crystallinity, micro/nanostructure, roughness,... are modified

How can we do that ?

Promote ionization by electron impact « Heat » the electrons of the plasma

Architecture of a HiPIMS generator

The power supply delivers:

- Voltage up to 1 2 kV
- Peak current in the range of 10-100 of Amps

Pulsed discharge to avoid overheating the target/magnets

Typical Current-Voltage-Time waveforms

Evidences of the production of metal ionization

Konstantinidis, J. Appl. Phys. (2006)

Mass Spec. data

Université de Mons

Andersson et al. Appl. Phys. Lett. (2008)

Film – forming species with high kinetic energies

Time-averaged Energy-Resolved Mass spectrometry analysis

DC Magnetron

HiPIMS

Bohlmark et al, Thin Solid Films (2006).

Plasma dynamics

Time-Resolved Ion Energy Distribution Functions by Energy-Resolved Mass Spectrometry analysis

Palmucci et al, J. Phys. D: Appl. Phys. (2013)

Time & space – dependent plasma chemistry

Time-Resolved 2D mapping of plasma species by LASER induced Fluorescence

N. Britun et al, J. Appl. Phys. (2015).

Conformal deposition on complex-shape objects

Substrate surface tilted by 90° vs. target surface

Kouznetsov et al, Surf. Coat. Technol. (1999)

Alami et al, JVST A (2007)

Towards « a definition » of HiPIMS

- 1. Magnetron plasma
 - Glow discharge in ExB fields
- 2. Electric pulses
 - Duty cycle $\leq 1\%$
- 3. High power/peak current
 - 1. $^{kW} / A \text{ cm}^{-2}$
 - 2. $\Rightarrow N_e \simeq 10^{12-13} \text{ cm}^{-3}$

4. High ionization rate of the sputtered material

Sarakinos, Alami, Konstantinidis, Surf. Coat. Technol, 2010.

Some more knobs to tune film properties

- Energy deposition during film growth
- More knobs for tuning the thin film properties
 - Pressure & gas mixture
 - Magnetic & chamber geometry
 - Average power
 - Pulse duration & frequency
 - Pulse voltage

On the synthesis of metal oxide thin films by HiPIMS

- 1. Titanium dioxide
- 2. Aluminum-doped zinc oxide
- 3. Vanadium dioxide

Titanium dioxide

Increased film compactness

Konstantinidis et al, Thin Solid Films (2006)

Growing high-temperature phase of TiO₂ by HiPIMS

Konstantinidis et al, Thin Solid Films (2006)

Increased refractive index of TiO₂ films

Anatase films deposited on glass

Konstantinidis et al, Thin Solid Films (2006)

Al-doped ZnO

Transmittance of Al-doped ZnO

Sputtering from an **alloy target** (Zn+Al) in Ar/O₂ atmosphere

Deposition at **room temperature**

Mickan et al, Sol. Energy Mater. Sol. Cells (2016).

Electric properties of ZnO:Al

HiPIMS leads to:

- Low resistivity $(10^{-4} \Omega \text{ cm})$
- Spatial homogeneity

Table S2: Hall effect measurement results of the AZO film deposited using HiPIMS at $570\,\mathrm{V}$

Position	Resistivity	Mobility	Charge carrier con-
(cm)	$(\Omega { m cm})$	$({ m cm^2/Vs})$	centration (cm^{-3})
3	2.05×10^{-3}	4.09	7.47×10^{20}
4	7.50×10^{-4}	7.38	$1.13{ imes}10^{21}$
5	7.21×10^{-4}	10.5	$8.24{ imes}10^{20}$
6	8.17×10^{-4}	7.07	$1.09{\times}10^{21}$
7	1.23×10^{-3}	8.84	5.76×10^{20}

Mickan et al, Sol. En. Mater. Sol. Cells (2016).

Vanadium dioxide

Synthesis of thermochromic VO₂ at lower temperature

S. Loquai et al, Sol. Energy Mater. Sol. Cells (2016).

Similar results were obtained by

- A. Aijaz et al, Sol. Energy Mater. Sol. Cells (2016).
- J. Houska et al, Thin Solid Films (2018).

Recent development in HiPIMS technology: Bipolar HiPIMS

Ion energy is controlled by the positive voltage

Keraudy et al Surf. Coat. Technol. 2018

Michiels et al, J. Phys. D. Appl. Phys. 2021

Comparison of the XRD data

Michiels et al, J. Phys. D. Appl. Phys. 2021

Positive pulse on cathode has the same effect as applying a negative bias on the substrate

Konstantinidis et al, Thin Solid Films (2006)

Topography and cross-section

Ar/Ti+O ~ 2,5%

Low resistivity Si substrates

Michiels et al, J. Phys. D. Appl. Phys. 2021

Sputtering onto liquid substrates for the synthesis of nanoparticles

Experimental set-up

DC - Sputtering of Gold on castor oil : Effect of sputter time

Sergievskaya et al, Front. Nanotechnol. 3, (2021).

TEM observation of the NP

NP size ~2.7 - 3.2 ± 0.6 nm

Effect of DC sputter power

Sputter time: 10 min

20 W

60W

TEM observation of the NP

NP size ~2.7 - 3.2 ± 0.5 nm

DC-MS vs. (unipolar) HiPIMS

P_{Ar} = 5 mTorr, 80 W, 10 min

DC-MS: $\Phi = (1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{min}$

HiPIMS: $T_{on} = 20 \ \mu s$, $I_{pk} = 0.3 \ A/cm^2$, $f = 800 \ Hz$, $\Phi = (0.9 \pm 0.1) \cdot 10^{-7} \ moles/cm^2 \ min$ DC-MS HiPIMS

DC-MS HiPIMS

TEM analysis of the NP

NP size is increased when produced by HiPIMS plasma

Silver onto castor oil : DC-MS vs. Unipolar & Bipolar HiPIMS

 $P_{Ar} = 5 \text{ mTorr}, 80 \text{ W}, 10 \text{ min}$ Flux DC-MS: $(1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}$

Flux HiPIMS: $(0.9 \pm 0.1) \cdot 10^{-7}$ moles/cm² min f = 800 Hz, T_{ON, -} = 20 µs, I_{pk} = 0.3 A/cm²

Flux B-HiPIMS: $(0.2 \pm 0.1) \cdot 10^{-7}$ moles/cm² min f = 800 Hz, T_{ON, -} = 20 µs, I_{pk} = 0.3 A/cm² V₊ = +300V, T_{ON, +} = 250 µs, T_{+/-} = 10µs

Number of particles larger than 20 nm

- 0.1% for DC-MS,
- 1.3 % for HiPIMS (B-HiPIMS_0)
- 4.2 % for bipolar HiPIMS (BHiPIMS_300)

Sergievskaya et al, Colloids Surf. A 615, 126286 (2021).

Summary

- 1. HiPIMS modifies the growth process and film properties
 - Increased density
 - Modified crystallinity (high-temp. phase, texture, crystallite size)
 - Lower roughness
- 2. HiPIMS may facilitate the deposition of functional films onto temperature sensitive materials like polymers
- 3. Recent developments e.g., bipolar HiPIMS, aim at providing even more control on the film growth process
- 4. Sputtering can be carried out onto selected liquids to produce colloidal solutions.
 - HiPIMS mimics in situ annealing procedure of the NPs