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Abstract

This paper studies conjoint measurement models tolerating intransitivities that closely resemble Tversky’s additive difference

model while replacing additivity and subtractivity by mere decomposability requirements. We offer a complete axiomatic

characterisation of these models without having recourse to unnecessary structural assumptions on the set of objects. This shows the

pure consequences of several cancellation conditions that have often been used in the analysis of more traditional conjoint

measurement models. Our models contain as particular cases many aggregation rules that have been proposed in the literature.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper pursues the analysis of conjoint measure-
ment models tolerating intransitivity initiated in Bouys-
sou and Pirlot (2002). We are therefore interested in
numerical representations of a binary relation h on a
product set X ¼ X1 � X2 �?� Xn; the elements of X

are vectors x ¼ ðx1;y; xi;y; xnÞ; xiAXi interpreted
as alternatives evaluated on several attributes. The
models that we study all admit a representation of the
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following type:

ðM2DÞ xhy3Fðj1ðu1ðx1Þ; u1ðy1ÞÞ;y;jnðunðxnÞ;
unðynÞÞÞX0; ð1Þ

where ui are real-valued functions on Xi; ji are real-
valued functions on uiðXiÞ � uiðXiÞ and F is a real-
valued function on U ¼

Qn
i¼1 jiðuiðXiÞ � uiðXiÞÞ: We

refer to model (1) as to model (M–D) for reasons that
will become clear soon.
Variants of this model are obtained by combining

additional properties of F and ji; e.g.

* the functions ji may be supposed to be nondecreas-
ing (resp. nonincreasing) in their first (resp. second)
argument;

* they may be skew-symmetric (jiðvi;wiÞ ¼ �jiðwi; viÞ;
vi;wiAuiðXiÞ);

* F may be supposed nondecreasing (resp. increasing)
in all its arguments;

* F may be odd (FðuÞ ¼ �Fð�uÞ; uAUDRn).

These additional properties are motivated by the
interpretation of the functions. Intuitively, if a preference
can be represented in model (1), the preference of x over
y can be explained as resulting from a positive balance,
obtained through using function F ; of the ‘‘differences of
preference’’, represented by jiðuiðxiÞ; uiðyiÞÞ; between x
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and y on each attribute. The balance is supposed to
improve in favour of x if any of the differences of
preference becomes more favourable to x as compared
with y (hence it is natural to consider the case in which F

is a nondecreasing function of its arguments
jiðuiðxiÞ; uiðyiÞÞ). In the same way, a ‘‘difference of
preference’’ jiðuiðxiÞ; uiðyiÞÞ should not decrease either
when the ‘‘position’’ of x on attribute i (represented by
uiðxiÞ) improves or that of y on the same attribute
(represented by uiðyiÞ) deteriorates (hence the case in
which ji is nondecreasing in its first argument and
nonincreasing in the second is natural). The same
intuition leads to the hypothesis following which ji

would be skew-symmetric (since jiðuiðxiÞ; uiðyiÞÞ could
be interpreted as the opposite of the ‘‘difference of
preference’’ represented by jiðuiðyiÞ; uiðxiÞÞ). Finally, it
is tempting to view the result of the comparison of x to y

as the opposite of the result of the comparison of y to x;
justifying, intuitively, the oddness of F : Despite the
appealing character of this intuition, it should be
observed that models in which only part of the above
properties are fulfilled also deserve attention.
This paper will provide a fairly complete axiomatic

analysis of model (M–D) and its variants. When
compared to the models studied in Bouyssou and Pirlot
(2002) (see model (M) defined by Eq. (6) below),
model (M–D) adds the extra feature of ‘‘well-behaved’’
preferences on the components of the product set
governed by the functions ui’s whereas they
still encompass possibly nontransitive preference rela-
tions h:
Referring to our model by the label (M–D) is a

reminder of model (M) and its variants studied in
Bouyssou and Pirlot (2002). It also evokes the fact that
the easiest way to interpret model (M–D) is to relate it to
Tversky’s Additive Difference model (Tversky, 1969) in
which:

xhy 3
Xn

i¼1
FiðuiðxiÞ � uiðyiÞÞX0; ð2Þ

where Fi are increasing and odd real-valued functions.
The ability of this model to capture nontransitive
preference relations h together with well-behaved
marginal preferences on each attribute and the ‘‘intra-
dimensional’’ information processing strategy that it
suggests have made it quite popular in Psychology (see,
e.g. Aschenbrenner (1981) or Montgomery and Svenson,
1976). In line with the strategy followed in Bouyssou
and Pirlot (2002), going from (2) to (M–D) amounts to
replacing both the addition and the subtraction opera-
tions by mere decomposability1 requirements, hence the
title of this paper. Keeping in mind the analysis in
Bouyssou and Pirlot (2002), this replacement will
1This is another justification for the label (M–D): the letter D evokes

the decomposability of the differences of preference.
drastically simplify the analysis of the model while
allowing to dispense with unnecessary2 structural con-
ditions on the set of objects. In fact, all axiomatic
analyses of the additive difference model (2) known so
far (Fishburn (1980) and Croon (1984) for the n ¼ 2
case, Fishburn (1992) for nX3; the work of Bouyssou
(1986) in the n ¼ 2 case being an exception) use
unnecessary structural conditions on the set of objects,
which, as in traditional models of conjoint measurement
(see Krantz, Luce, Suppes, & Tversky, 1971, Chapter 9,
Furkhen & Richter, 1991) interact with, necessary,
cancellation conditions and therefore somewhat con-
tribute to obscure their interpretation.
On a technical level, we follow the same strategy as in

Bouyssou and Pirlot (2002), i.e., we investigate how far
it is possible to go in terms of numerical representations
without imposing any transitivity requirement on the
preference relations and any unnecessary structural
requirement on the set of objects. We refer to Bouyssou
and Pirlot (2002) for a detailed motivation for such an
approach. Let us simply mention here that in such a
framework numerical representations are quite unlikely
to possess any ‘‘nice’’ uniqueness properties. These
representations are not studied here for their own sake
and our results are not intended to give clues on how to
build them. They are used as a framework allowing to
understand the consequences of a number of require-
ments on h:
It is useful to compare the models studied in this

paper with more classical ones as well as with the one
studied in Bouyssou and Pirlot (2002). The point of
departure of nearly all conjoint measurement models is
the additive utility model (Krantz et al., 1971; Debreu,
1960):

xhy 3
Xn

i¼1
uiðxiÞX

Xn

i¼1
uiðyiÞ ð3Þ

which gives an additive representation of transitive

preferences. This model has been generalised in two
distinct directions. The first one keeps the transitivity
aspect of (3) but relaxes additivity to a mere decom-
posability requirement. The desired representation is
such that:

xh y 3 Gðu1ðx1Þ; u2ðx2Þ;y; unðxnÞÞ
XGðu1ðy1Þ; u2ðy2Þ;y; unðynÞÞ ð4Þ

with G increasing in all its arguments. Such models are
amenable to a very simple axiomatic analysis that
dispenses with unnecessary structural restrictions on X

(see Krantz et al., 1971, Chapter 7). Obviously the
Xi’s that, when combined with the appropriate axioms on h; would

ensure the existence of a representation ofh in a given model, without

being necessary conditions for the existence of such a representation.
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uniqueness results for (4) are much weaker than what
can be obtained with (3).
Another generalisation of (3) consists in looking for

additive representations of nontransitive preferences.
This gives rise to models of the following type:

xhy 3
Xn

i¼1
piðxi; yiÞX0; ð5Þ

where the real-valued functions pi; defined on Xi � Xi;
may have additional properties, e.g. be skew-symmetric.
Such models have received much attention (see Bouys-
sou, 1986; Fishburn, 1990a, b, 1991b; Vind, 1991). Their
additive nature however imposes either the use of a
denumerable scheme of, hardly interpretable, axioms in
the finite case (see, e.g. Fishburn, 1991a); a similar
phenomenon occurs with the axiomatisation of the
additive value model (3), see Fishburn (1970, p. 45) and
Scott and Suppes (1958) or the use of (unnecessary)
structural restrictions on the set of objects (see Vind
(1991); Fishburn (1990b, 1991a)).
The nontransitive decomposable models studied in

Bouyssou and Pirlot (2002) combine these two lines of
generalisation. They are of the following type:

ðMÞ xhy 3 Fðp1ðx1; y1Þ;y; pnðxn; ynÞÞX0; ð6Þ

where F and pi may have several additional properties
(e.g. F odd and increasing in all its arguments and/or pi

skew-symmetric). We refer to it as to the (M) model.
The relations between these models can easily be

understood using the following diagram (taken from
Bouyssou & Pirlot, 2002):
Additive Transi-
tive
2
 Decomposable
Transitive
Model (3)
 Model (4)

z
 z
Additive Non-
transitive
2
 Decomposable
Nontransitive
Models (5)
 Models (M) (6)
in which going from left to right amounts to replacing
additivity by decomposability and going from top to
bottom amounts to abandoning transitivity. We refer to
Bouyssou and Pirlot (2002) for a detailed analysis of the
relations between these various models.
The models at the bottom line of the above diagram

say nothing on the properties of marginal preferences on
each attribute. This is somewhat counter-intuitive since
one would mainly expect intransitivity to occur only
when information is aggregated. The additive difference
model does not have this difficulty; in our diagram, it
lies on the left column in between the fully transitive (3)
and the fully nontransitive (5). Similarly, the models of
type (M–D) studied in this paper lie in between (4) and
(M) on the right column of the diagram, tolerating
intransitivity but imposing well-behaved marginal pre-
ferences. This gives rise to the following picture of the
models:
Additive Transi-
tive
2
 Transitive De-
composable
Model (3)
 Model (4)

z
 z
Additive Differ-
ence (2)
2
 Models (M–D)
(1)
z
 z

Additive Non-
transitive
2
 Decomposable
Nontransitive
Models (5)
 Models (M) (6)
in which as before going from left to right relaxes
additivity and going from top to bottom relaxes
transitivity.
Note that in Bouyssou and Pirlot (2004), we

investigated another line of generalisation of model (4)
that allows for intransitivity but does not generalize the
additive difference model (2). More precisely, we study
relations h on X that admit numerical representations
of the type

xhy 3 Hðu1ðx1Þ;y; unðxnÞ; u1ðy1Þ;y; unðynÞÞX0;ð7Þ

where H is a function of 2n arguments and may enjoy
properties such as nondecreasingness (or increasingness)
in its first n arguments and nonincreasingness (or
decreasingness) in its last n arguments. It is remarkable
that the axioms used in Bouyssou and Pirlot (2004) to
characterise the variants of model (7) are precisely
those that will be needed here, together with the
axioms introduced in Bouyssou and Pirlot (2002) for
model (M).
The rest of the paper is organized in five sections

(numbered from 2 to 6) and an appendix. In Section 2,
we introduce our notation and recall classical defini-
tions. Section 3 shows that it is possible under very mild
hypotheses, to go from model (M) to model (M–D)
whenever F has no special properties. More precisely,
for each of the special cases of model (M) studied in
Bouyssou and Pirlot (2002), we show (Theorem 1) that
piðxi; yiÞ can always be substituted by jiðuiðxiÞ; uiðyiÞÞ
(under a condition that essentially limits the cardinality
of Xi; when Xi is not denumerable). In all the models
considered in this section, ji and ui are not supposed to
enjoy any special property. We then introduce several
variants.
Having in mind the weak orders on X 2

i represented by
the functions piðxi; yiÞ; we start Section 4 by recalling
and adapting general results about weak orders on any
Cartesian product A � A: The axioms that will allow us
to characterise all variants of model (M–D) considered
here are then presented and studied.
The core of the paper is Section 5 in which an

axiomatic characterisation of all our models is provided.
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It is divided into four subsections. Sections 5.1 and 5.2
handle the case in which the sets Xi are finite or
denumerable, while the nondenumerable case is left for
Section 5.3. In Section 5.1, we characterise the models in
which jiðuiðxiÞ; uiðyiÞÞ is nondecreasing in its first
argument and nonincreasing in the second, for all i

(Theorem 2); in Section 5.2, the case in which ji is
increasing in its first argument and decreasing in the
second is examined (Theorem 3). Both cases are dealt with
for nondenumerable sets Xi in Section 5.3 (Theorems 4
and 5). The issues of the equivalence of models and the
independence of axioms is examined systematically, in
Sections 5.1.2, 5.2.2 and 5.3.2. The results obtained are
discussed in Section 5.4. We comment in particular on the
(non-)uniqueness of the representations in our various
models and draw the attention on special representations
that may be called regular. Some connections between our
models and the additive difference model (2) and the
additive conjoint measurement model (5) are also
established in that subsection. Conclusions and perspec-
tives for further research are briefly presented in Section 6.
The more technical proofs are relegated in the appendix as
well as eighteen examples mainly used for showing that
our axioms are independent.
The reader who is less interested in the technicalities

of the nondenumerable case may focus on Sections 5.1,
5.2 and 5.4. Contrary to the case of more classical
models, it should be noticed that the nondenumerable
case brings little new from a conceptual viewpoint. It
mainly draws the attention on the monotonicity (strict
or not) of the relation on ‘‘differences of preference’’
w.r.t. the ‘‘marginal traces’’.
2. Notation and definitions

A binary relation S on a set A is a subset of A � A; we
write aSb for ða; bÞAS: A binary relation S on A is said
to be:

* reflexive if ½aSa�;
* irreflexive if ½Not aSa�;
* complete if ½aSb or bSa�;
* symmetric if ½aSb� ) ½bSa�;
* asymmetric if ½aSb� ) ½Not bSa�;
* transitive if ½aSb and bSc� ) ½aSc�;
* Ferrers if ½aSb and cSd� ) ½aSd or cSb�;
* semi-transitive if ½aSb; bSc� ) ½aSd or dSc�;

for all a; b; c; dAA: A binary relation is:

* a weak order (resp. an equivalence) if it is complete and
transitive (resp. reflexive, symmetric and transitive),

* an interval order if it is complete and Ferrers
(Fishburn, 1970),

* a semi-order if it is a semi-transitive interval order
(Luce, 1956).
For more detail on relations in the context of preference
analysis, the reader is referred to Fishburn (1985),
Roubens and Vincke (1985), Pirlot and Vincke (1997).
If S is an equivalence on A; A=S will denote the set of

equivalence classes of S on A:
A subset BDA is dense in A w.r.t. a relation S if

8a; cAA; aSc ) ½(bAB such that aSbSc�: If S is a weak
order on A; there is a numerical representation of S on
the real numbers (i.e. (f : A-R such that
aSb3f ðaÞXf ðbÞ) iff there is a finite or denumerable
set B that is dense in A w.r.t. S: This condition for the
existence of a numerical representation is called order

density and will be referred to as such in the sequel.
In this paper h will always denote a binary relation

on a set X ¼
Qn

i¼1 Xi with nX2: Elements of X will be
interpreted as alternatives evaluated on a set N ¼
f1; 2;y; ng of attributes and h as an ‘‘at least as good
as’’ preference relation between alternatives (xhy reads
‘‘x is at least as good as y’’). We note g (resp. B) the
asymmetric (resp. symmetric) part of h: A similar
convention holds when h is starred, superscripted and/
or subscripted.
For any nonempty subset J of the set of attributes N;

we denote by XJ (resp. X�J) the set
Q

iAJ Xi (resp.Q
ieJ Xi). With customary abuse of notation, ðxJ ; y�JÞ

will denote the element wAX such that wi ¼ xi if iAJ

and wi ¼ yi otherwise. When J ¼ fig we shall simply
write X�i and ðxi; y�iÞ:
Let J be a nonempty set of attributes. We define the

following two binary relations on XJ :

xJhJyJ iff ðxJ ; z�JÞhðyJ ; z�JÞ;
for all z�JAX�J ; ð8Þ

xJh
�
JyJ iff ðxJ ; z�JÞhðyJ ; z�JÞ;

for some z�JAX�J ; ð9Þ
where xJ ; yJAXJ : We refer to hJ as the marginal

relation or marginal preference induced on XJ by h:
When J ¼ fig we write hi instead of hfig:
If, for all xJ ; yJAXJ ; xJh

�
JyJ implies xJhJyJ ; we say

thath is independent for J: Ifh is independent for all
nonempty subsets of attributes, we say that h is
independent. It is not difficult to see that a binary
relation is independent if and only if it is independent
for N\fig; for all iAN (see, e.g., Wakker, 1989). A
relation is said to be weakly independent if it is
independent for all subsets containing a single attribute;
while independence implies weak independence, it is
clear that the converse is not true (Wakker, 1989).
3. Intra-attribute decomposability

This section is divided into three subsections that play
a preparatory role in the paper. We first show that all
relations admit a representation in model (M–D) as
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soon as quite a natural cardinality condition is fulfilled.
In Section 3.2, we adapt results about inter-attribute
decomposability, previously obtained in Bouyssou and
Pirlot (2002), to the context of (M–D) models. The final
subsection lists the variants of the (M–D) model that
will be analysed in the sequel and states some of their
elementary properties.

3.1. Intra-attribute decomposition of model (M)

In a previous paper (Bouyssou & Pirlot 2002), we
extensively studied model (M) and characterised several
of its specialisations obtained by imposing additional
requirements on F or the pi’s. A possible interpretation
of these models is that the preference can be described as
resulting from a description (by means of the functions
pi) of the differences between alternatives on each
attribute separately; these single attribute descriptions
are combined by means of a function F that carries all
inter-attribute information. In that paper, we referred to
this sort of decomposability of the preference as to inter-

criteria decomposability. What we are examining here is
the possibility of further decomposing model (M) by
specifying a particular functional form jiðuiðxiÞ; uiðyiÞÞ
for the functions piðxi; yiÞ; we call this further step ‘‘intra-
attribute decomposition’’, since it intuitively amounts to
analysing on each attribute the ‘‘difference of preference’’
possibly reflected by piðxi; yiÞ as a function of ‘‘values’’
uiðxiÞ; uiðyiÞ; respectively attached to xi and yi: Substitut-
ing piðxi; yiÞ in model (M) with a function
jiðuiðxiÞ; uiðyiÞÞ leads to model (M–D) presented in the
introduction (ui is a real-valued function defined on Xi and
ji is a real-valued function defined on uiðXiÞ � uiðXiÞ).
As already noted by Goldstein (1991), all binary

relations satisfy model (M) at least when the cardinality
of Xi does not exceed that of R; the set of real numbers.
The same holds for model (M-D); the functions ui and
ji can indeed be constructed as follows. Define the
binary relationsB


i on X 2
i andB7

i on Xi; letting for all
xi; yi; zi;wiAXi;

ðxi; yiÞB

i ðzi;wiÞ iff

½ðxi; a�iÞhðyi; b�iÞ 3 ðzi; a�iÞhðwi; b�iÞ;
for all a�i; b�iAX�i� ð10Þ

and

xiB7
i yi iff

½ðxi; a�iÞhb 3 ðyi; a�iÞhb; for all a�iAX�i; bAX �
and ½chðxi; d�iÞ 3 chðyi; d�iÞ;
for all cAX ; d�iAX�i�: ð11Þ

It is clear that B

i (resp. B

7
i ) is an equivalence on the

set X 2
i (resp. Xi).

Call LCCi (Low Cardinality Condition) the assertion
stating that the set of equivalence classes Xi=B7

i ofB7
i

has at most the cardinality of R: If LCCi is satisfied for
all i ¼ 1;yn; we say that h satisfies property LCC;
LCC will trivially be fulfilled if for instance the
cardinality of all Xi is at most that of R: Under
hypothesis LCC; which, obviously, is necessary for
model (M–D), it is clear that there are real-valued
functions ui on Xi such that, for all xi; yiAXi:

xiB7
i yi 3 uiðxiÞ ¼ uiðyiÞ: ð12Þ

Given a particular representation of h in model (M),
define ji on uiðXiÞ � uiðXiÞ letting, for all xi; yiAXi;

jiðuiðxiÞ; uiðyiÞÞ ¼ piðxi; yiÞ: ð13Þ

The well-definedness of ji easily follows from the
definitions of B


i and B7
i :

Since the intuition behind jiðuiðxiÞ; uiðyiÞÞ is the idea
of a ‘‘difference of preference’’ between the ‘‘values’’
uiðxiÞ and uiðyiÞ; it is natural to impose on ji

monotonicity conditions that will bring it closer to an
algebraic difference; we thus consider imposing on ji

the following conditions:
Property 1: ji is nondecreasing in its first argument

and nonincreasing in the second;
Property 10: ji is increasing in its first argument and

decreasing in the second.
We call (M–D1) (resp. (M–D10)) model (M–D) with the

additional property that ji satisfies Property 1 (resp.
Property 10). As we can see from Lemma 1 below, these
requirements imposed on ji in the absence of any
hypothesis on F do not restrict the generality of the model.

Lemma 1. A relation h on X satisfies model (M–D1) or,
equivalently, model (M–D10) iff property LCC holds.

Proof. We construct a representation ofh according to
model (M–D10).
(a) Choose a function ui :Xi-R; satisfying (12),

which is possible in view of hypothesis LCCi:
(b) Define a real-valued function ji on uiðXiÞ � uiðXiÞ

verifying the following requirements:

* ji assigns different values to different classes of B


i ;

* ji is increasing in its first argument and decreasing in
the second.

Remark that the former condition will be fulfilled if ji

separates all pairs ðxi; yiÞ and ðzi;wiÞ such that
Not ½xiB7

i zi� or Not½yiB7
i wi�: Indeed, if xiB7

i zi and
yiB7

i wi; it is easily checked that ðxi; yiÞB

i ðzi;wiÞ:

Hence, if Not½ðxi; yiÞB

i ðzi;wiÞ�; either Not½xiB7

i zi� or
Not½yiB7

i wi� (or both) and jiðuiðxiÞ; uiðyiÞÞa jiðuiðziÞ;
uiðwiÞÞ:
In case Xi is at most denumerable, there is a

straightforward way of building appropriate ui’s and
ji’s. Choose for ui a function that separates the classes
of B7

i and is valued in the set of positive integers N;
define ji by jiðuiðxiÞ; uiðyiÞÞ ¼ uiðxiÞ þ 1

uiðyiÞ; it is readily
checked that ji fulfills both conditions above.



ARTICLE IN PRESS
D. Bouyssou, M. Pirlot / Journal of Mathematical Psychology ] (]]]]) ]]]–]]]6
The general case, under the LCC hypothesis, is a little
more technical (and may be skipped by the uninterested
reader). The function ui may, without loss of generality,
be chosen to be valued in the open �0; 1½ interval. Each
number aA�0; 1½ can be represented in binary notation as
a sequence ða1; a2;y; ak;yÞ of binary digits 0 or 1.
Using a binary representation3 of the numbers of the �0; 1½
interval, we define a function f1 : �0; 1½-�0; 1½ that maps
any number aA�0; 1½ (with binary representation
ða1; a2;y; ak;yÞ) onto the number the binary represen-
tation of which is ða1; 0; a2; 0;y; ak; 0;yÞ: This function
is increasing and injective. Define similarly the increasing
and injective function f2 : �0; 1½-�0; 1½ mapping the binary
representation of aA�0; 1½ onto ð0; a1; 0; a2;y; 0; ak;yÞ:
A function ji satisfying the required properties may be
defined as jiðuiðxiÞ; uiðyiÞÞ ¼ f1ðuiðxiÞÞ þ f2ð1� uiðyiÞÞ:
This function ji is clearly increasing with uiðxiÞ and
decreasing with uiðyiÞ: It also separates any pair
ðuiðxiÞ; uiðyiÞÞ from any pair ðuiðziÞ; uiðwiÞÞ as soon as
uiðxiÞauiðziÞ or/and uiðyiÞauiðwiÞ:
(c) Finally, define F as follows:

Fðj1ðu1ðx1Þ; u1ðy1ÞÞ;yjnðunðxnÞ; unðynÞÞÞ

¼
1 if xhy

�1 if Not½xhy�:

�

The latter function is well-defined, due to the property
that ji distinguishes the equivalence classes of B



i : it

never occurs that xhy and Not½zhw� while for all i;
jiðuiðxiÞ; uiðyiÞÞ ¼ jiðuiðziÞ; uiðwiÞÞ: The latter equalities
indeed would imply that for all i; ðxi; yiÞB


i ðzi;wiÞ;
which in turn would imply that xhy iff zhw: &

As a corollary, we get that models (M–D), (M–D1)
and (M–D10) all are equivalent and impose no restriction
on the relations (apart from necessary cardinality
conditions). In order to get nontrivial models, we shall
study the combinations of properties 1 and 10 together
with various properties of F and additional requirements
on ji: The latter have been investigated in Bouyssou and
Pirlot (2002) in the context of model (M); for the sake of
completeness, we recall in the next subsection relevant
definitions and results, adapting them to model (M–D).

3.2. Previous results on inter-attribute decomposable

models

3.2.1. Models

Consider model (M). Requiring (M) together with
Fð0ÞX0 (where 0 denotes the vector of Rn all
coordinates of which are equal to 0) and piðxi; xiÞ ¼ 0;
leads to a model labelled (M0) that is not much
3Rational numbers have two binary representations; choose one

way of representing each rational; using one particular representation

or another as described in the rest of the proof may lead to different

functions ji ; but all fullfill the requirements.
constrained since it encompasses all relations that are
reflexive and independent:

ðM0Þ xhy 3 Fðp1ðx1; y1Þ; p2ðx2; y2Þ;y; pnðxn; ynÞÞX0

with piðxi; xiÞ ¼ 0 for all xiAXi and Fð0ÞX0: ð14Þ
Provided we suppose that LCC is in force, we may

proceed as we did with model (M) in Section 3.1, i.e.
defining functions ui and substituting piðxi; yiÞ with
jiðuiðxiÞ; uiðyiÞÞ: The constructed functions ji inherit
the property of pi; namely, jiðuiðxiÞ; uiðxiÞÞ ¼ 0; leading
to model (M0–D):

ðM02DÞ xhy 3 Fðj1ðu1ðx1Þ; u1ðy1ÞÞ;y;jnðunðxnÞ;
unðynÞÞÞX0 with

jiðuiðxiÞ; uiðxiÞÞ ¼ 0 for all xiAXi and Fð0ÞX0:

ð15Þ
In view of bringing model (M) ‘‘closer’’ to an addition

operation, like in model (5), additional properties on F

have been considered. A natural requirement is to
impose that F be nondecreasing or increasing in all its
arguments. This respectively leads to models (M1) and
ðM10Þ: An additional requirement is the skew symmetry
of each function pi; i.e. piðxi; yiÞ ¼ �piðyi; xiÞ; for all
xi; yiAXi: Adding this condition to (M1) and ðM10Þ
leads to (M2) and ðM20Þ: Going one step further in the
direction of an addition operation, we add to models
(M2) and ðM20Þ the requirement that F should be odd;
this defines models (M3) and ðM30Þ:The definition of
these various models is recalled in Table 1.
These models combine in different ways the increas-

ingness of F ; its oddness and the skew symmetry of the
functions pi; defining functions ui and substituting
piðxi; yiÞ with jiðuiðxiÞ; uiðyiÞÞ is again possible under
the assumption that LCC holds. The properties of pi are
inherited by ji; the resulting models are denoted by
suffixing their initial label by ‘‘–D’’.

3.2.2. Axioms

The characterisations of models ðMkÞ; for k ¼
0; 1; 2; 3; and ðMk0Þ; for k ¼ 1; 2; 3; obtained in Bouys-
sou and Pirlot (2002) obviously remain true for the
‘‘suffixed’’ models (Mk–D) or (Mk0–D), provided LCC

is in force. For studying these models, three conditions
have proved useful. Let h be a binary relation on a set
X ¼

Qn
i¼1 Xi: This relation is said to satisfy:

RC1i if

ðxi; a�iÞhðyi; b�iÞ
and

ðzi; c�iÞhðwi; d�iÞ

9>=
>; )

ðxi; c�iÞhðyi; d�iÞ
or

ðzi; a�iÞhðwi; b�iÞ;

8><
>:

RC2i if

ðxi; a�iÞhðyi; b�iÞ
and

ðyi; c�iÞhðxi; d�iÞ

9>=
>; )

ðzi; a�iÞhðwi; b�iÞ
or

ðwi; c�iÞhðzi; d�iÞ;

8><
>:
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Table 1

Model (M–D) and its variants

(M–D) xhy 3 Fðj1ðu1ðx1Þ; u1ðy1ÞÞ;y;jnðunðxnÞ; unðynÞÞÞX0

(M0–D) (M–D) with jiðuiðxiÞ; uiðxiÞÞ ¼ 0 and Fð0ÞX0

(M1–D) (M0–D) with F nondecreasing in all its arguments

(M10–D) (M0–D) with F increasing in all its arguments

(M2–D) (M1–D) with ji skew-symmetric

ðM20–D) (M10–D) with ji skew symmetric

(M3–D) (M2–D) with F odd

(M30–D) (M20–D) with F odd
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TCi if

ðxi; a�iÞhðyi; b�iÞ
and

ðzi; b�iÞhðwi; a�iÞ
and

ðwi; c�iÞhðzi; d�iÞ

9>>>>>>=
>>>>>>;

) ðxi; c�iÞhðyi; d�iÞ;

for all xi; yi; zi;wiAXi and all a�i; b�i; c�i; d�iAX�i:
We say that h satisfies RC1 (resp. RC2; TC) if it

satisfies RC1i (resp. RC2i; TCi) for all iAN; RC12 (resp.
RC12i) is short for RC1 and RC2 (resp. RC1i and
RC2i).
Condition RC1i (inteR-attribute Cancellation) sug-

gests that h induces on X 2
i a relation that compares

‘‘preference differences’’ in a well-behaved way: if ðxi; yiÞ
is a ‘‘larger preference difference’’ than ðzi;wiÞ and
ðzi; c�iÞhðwi; d�iÞ then we should have ðxi; c�iÞh
ðyi; d�iÞ and vice versa. This relation, which we denote
by h



i ; is formally defined as

ðxi; yiÞh

i ðzi;wiÞ iff ½for all c�i; d�iAX�i; ðzi; c�iÞ

hðwi; d�iÞ ) ðxi; c�iÞhðyi; d�iÞ� ð16Þ

for all xi; yi; zi;wiAXi: Relation h


i is transitive by

construction and RC1i exactly amounts to asking that it
is complete, hence a weak order. The equivalence
relation B


i defined in (10) is the symmetric part ofh


i :

Condition RC2i suggests that the ‘‘preference differ-
ence’’ ðxi; yiÞ is linked to the ‘‘opposite’’ preference
difference ðyi; xiÞ: Again, RC1i and RC2i are equivalent
to requiring that the relation h




i ; defined on X 2

i by

ðxi; yiÞh


i ðzi;wiÞ iff ½ðxi; yiÞh


i ðzi;wiÞ
and ðwi; ziÞh


i ðyi; xiÞ�; ð17Þ

be complete (it is transitive by construction) and thus a
weak order.
Condition TCi (Triple Cancellation) is a classical

cancellation condition that has been often used in the
analysis of the additive value model (see e.g. Wakker
(1989) or Bouyssou and Pirlot (2002), for interpreta-
tions).
No other condition is required in order to characterise

models (M0), (M1), ðM10Þ; (M2), ðM20Þ; (M3) and
ðM30Þ as long as the sets Xi are finite or denumerable.
When the latter hypothesis is not fulfilled, restrictions
must be imposed in order to ensure that either B

i ; h



i

or h


i have a numerical representation. These will be

needed also for the characterisation of the suffixed
models. Property LCC ensures that each equivalence
class of B7

i can be unambiguously identified by a real
number (which is realised by the functions ui); we have
seen in the proof of Lemma 1 that this implies that there
are enough real numbers to label the equivalence classes
of B


i ; thus LCC; that is necessary for guaranteeing the
existence of the ui functions in the D-suffixed models,
can substitute the (weaker) hypothesis used in the
characterisation of the initial models (condition C
 in
Bouyssou and Pirlot, 2002). The condition used for
ensuring the representability of weak orders remains
necessary. This condition can be formulated as follows.
We say that h satisfies OD


i if there is a finite or
countably infinite subset of X 2

i that is dense in X 2
i for

h


i : In caseh



i is a weak order, OD


i ensures that it has
a numerical representation, i.e. there exists a real-valued
function pi on X 2

i such that, for all ðxi; yiÞ; ðzi;wiÞAX 2
i ;

ðxi; yiÞh

i ðzi;wiÞ iff piðxi; yiÞXpiðzi;wiÞ: Condition OD


is said to hold if condition OD

i holds for i ¼ 1; 2;y; n:

3.2.3. Results

The theorem below describes all ‘‘–D’’ suffixed
models listed in Table 1.

Theorem 1. Let h be a binary relation on a set X ¼Qn
i¼1 Xi: If X is at most denumerable, then:
(1)
 the relation h satisfies model (M–D),

(2)
 h satisfies model (M0–D) iff h is reflexive and

independent,

(3)
 h satisfies model (M1–D) iff h satisfies model (M10–

D) iff h is reflexive, independent and satisfies RC1;

(4)
 h satisfies model (M2–D) iff h satisfies model

(M20–D) iff h is reflexive and satisfies RC12;

(5)
 h satisfies model (M3–D) iff h is complete and

satisfies RC12;

(6)
 h satisfies model ðM30–D) iff h is complete and

satisfies TC:

(7)
 If X is not denumerable, parts (1) and (2) remain valid

iff the requirement that h satisfies condition LCC is

added; parts (3)–(6) remain valid iff the requirement

that h satisfies conditions LCC and OD
 is added.
The above results constitute a straightforward adap-
tation of Theorems 1 and 2 in Bouyssou and Pirlot
(2002); the characterisation of models (M) to (M30)
extends immediately to that of the corresponding
‘‘M–D’’ model if X is denumerable since we have seen
that, in such a case, piðxi; yiÞ decomposes without
further condition into jiðuiðxiÞ; uiðyiÞÞ: Part (7) deserves
a word of explanation. Condition LCC obviously is
necessary to guarantee the existence of ui in all models
and OD
 is necessary in all models in which F is
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required to be at least nondecreasing (the latter was
shown in Bouyssou and Pirlot (2002, Theorem 2)). It
should be noted that condition LCC may not be
dispensed of, even in the presence of OD
; in part (7)
of the theorem, as shown by Example 18 in Appendix B.
Bouyssou and Pirlot (2002) showed that the conditions
used in this theorem are independent.

3.3. Variants of intra- and inter-attribute decomposable

models

Lemma 1 shows that imposing monotonicity proper-
ties on ji without requirements on F does not lead to
new models; in the same way, as we have seen in
Theorem 1, the conditions previously considered in
model (M) and imported in model (M–D) without
imposing monotonicity properties on ji do not generate
new models either (as long as the cardinality of Xi is not
strictly larger than that of R). It thus remains to
examine, the possible effect of properties imposed
correlatively both on the ‘‘inter’’ and the ‘‘intra’’
components of the model; doing this will achieve our
main goal that is to study the variants of model (M–D)
as was stated in the introduction.
For each of the eight models described in Table 1, we

consider two specialisations in which property 1 (respec-
tively 10) is imposed on the functions ji: They are various
instances of ‘‘nontransitive decomposable models’’ with
which the intra-attribute decomposability requirements
combine without implying however the full force of
additivity and subtractivity. These variants will be
identified by replacing the suffix ‘‘–D’’ either by ‘‘–D1’’
or by ‘‘2D10’’ depending on the fact that property 1 or 10

is respectively added. For each model in Table 1, we shall
thus consider a version in which, for all i ¼ 1;y; n;
jiðuiðxiÞ; uiðyiÞÞ is nondecreasing in uiðxiÞ and nonin-
creasing in uiðyiÞ (property 1) and a version in which it is
increasing in uiðxiÞ and decreasing in uiðyiÞ (property 10).
The –D1 or 2D10 variants of model (M–D) have been

analysed in Section 3.1 and proven equivalent to the
unconstrained model (M–D). The same is true for the –
D1 or 2D10 variants of model (M0–D) that are
equivalent to (M0–D1), because (M0) does not impose
any monotonicity on F : We state this result in the
following lemma; its proof—a slight modification of that
of Lemma 1—is relegated in Appendix A.1.

Lemma 2. A relation h on X satisfies model (M0–D1)
or, equivalently, model (M0–D10) iff it is reflexive,
independent and satisfies property LCC: These conditions

are independent.

Remarks
(1)
 The preliminary study done so far leaves us with
twelve models to analyse, namely, for k ¼ 1; 2; 3;
(Mk–D1), (Mk0–D1), (Mk–D10) and ðMk0–D10).
Some of these will turn out to be equivalent; their
characterisation requires axioms that will be intro-
duced in Section 4.2 below. Fig. 1 shows the
implications between those models; for the sake of
readability, only direct implications are drawn.
Note that we have also:

�
 ðMk2D1Þ ) ðMkÞ; for k ¼ 1; 2; 3;

�
 ðMk02D1Þ ) ðMk0Þ; for k ¼ 1; 2; 3:
(2)
 It is interesting to observe and easy to prove that
the various properties imposed on F ; ji and ui in
our models induce properties of the marginal
preferences hJ ; JDN; and links between hJ and
h that become closer and closer to what is
obtained with the additive value function model
(3). For the reader’s convenience, we recall in the
next proposition three consequences that were
established in Bouyssou and Pirlot (2002) and that
we adapt to the ‘‘(M–D)’’ context. We add two new
consequences that reveal possible effects of interac-
tion between monotonicity conditions imposed
both on F and ji:
Proposition 1. Let h be a binary relation on X ¼Qn
i¼1 Xi:
(1)
 If h satisfies model (M1–D) or (M10–D) then, for all

JDN:

½xigiyi; for all iAJ� ) Not½yJhJxJ �:
(2)
 If h satisfies model (M2–D) or (M20–D) then:

�
 hi is complete,

�
 for all JDN; ½xigiyi for all iAJ� ) ½xJgJyJ �:
(3)
 If h satisfies model (M30–D) then, for all JDN:

�
 ½xihiyi for all iAJ� ) ½xJhJyJ �;

�
 ½xihiyi for all iAJ; xjgjyj; for some jAJ� )

½xJgJyJ �:

(4)
 If h satisfies model (M1–D1) then hi is a semi-

order.

(5)
 If h satisfies model (M30–D10) then hi is a weak

order.
Proof. For the proof of parts (1)–(3), see Bouyssou and
Pirlot (2002, proposition 1).
(4) We first prove that hi has the Ferrers property,

i.e., if xihiyi and zihiwi; then at least one of the
following holds: zihiyi or xihiwi: From the premise,
using obvious notation, we get FðjiðuiðxiÞ; uiðyiÞÞ; 0�iÞX0
and FðjiðuiðziÞ; uiðwiÞÞ; 0�iÞX0: We have either
uiðyiÞXuiðwiÞ or uiðyiÞouiðwiÞ: In the former case, due
to the monotonicity properties of F and ji; we get
FðjiðuiðxiÞ; uiðwiÞÞ; 0�iÞX0; hence xihiwi; in the latter
case, FðjiðuiðziÞ; uiðyiÞÞ; 0�iÞX0 and thus zihiyi: The
Ferrers property ofhi is thus established. It is well-known
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Fig. 1. Graph of implications.
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(and easy to prove4) that the Ferrers property implies
completeness provided the relation is reflexive, which is the
case of hi in (M1–D1).
The semi-transitivity property results from showing,

in a similar manner, that xihiyi and yihizi entail either
xihiwi or wihizi; for any wiAXi:
(5) Since we already know that hi is a semi-order, it

remains to prove that the marginal indifference Bi is
transitive5. Due to the skew-symmetry of ji and the
increasingness of F in model (M30), it is readily seen that
xiBiyi if and only if jiðuiðxiÞ; uiðyiÞÞ ¼ 0: In model
(M30–D10), since ji is decreasing in its second argument
and since jiðuiðxiÞ; uiðxiÞÞ ¼ 0; we have xiBiyi if and
only if uiðxiÞ ¼ uiðyiÞ: From this, one clearly obtains
that xiBiyi and yiBizi imply xiBizi: &
4 Just apply the Ferrers property to derive aSb or bSa from aSa and

bSb:
5The asymmetric parts of an interval order or a semi-order S is

transitive (see Roubens & Vincke, 1985, p. 22) and a weak order is a

complete relation the symmetric and asymmetric part of which are

transitive (see Roubens & Vincke, 1985, p. 18).
Remarks
(1)
 Obviously, any property of hi; valid in a model,
is inherited by any of the more constrained model
(see the implications between models in Fig. 1). In
particular, the semi-order property (Proposition
1.4) is valid in models (M2–D1) and (M3–D1).
(2)
 Pure (M) models, without intra-attribute decom-
posability, confer little structure to the marginal
preferences hi: It is only with (M2) that hi

becomes a complete relation. On the contrary, in
the intra-decomposable models, from (M1–D1) on,
hi is a semi-order.
(3)
 It is only in the more restrictive model (M30–D10)
that hi is a weak order. In such a model, two
elements of Xi that are marginally indifferent must
have equal ui values, as results from the proof of
Proposition 1.5.
4. Axioms

This section has two subsections. The first one states
and proves an auxiliary result on relations defined on a
Cartesian product of a set with itself. In the second
subsection, we present the axioms that will help us to
analyse the models introduced in Section 3.2; we prove
some elementary consequences of these axioms.

4.1. Properties of weak orders on X 2
i

In view of setting down the axioms that govern intra-
attribute decomposability in our models, we first pay
attention to the weak order hpi on X 2

i represented by
the function piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ; i.e. ðxi; yiÞhpi

ðzi;wiÞ3piðxi; yiÞXpiðzi;wiÞ: Note that pi need not be a
numerical representation of h



i or h




i (it may be

‘‘finer’’ in the sense that it may discriminate between
pairs that are in the indifference relationB


i orB



i ) and

hence, hpi is not necessarily h


i or h




i (but it must

satisfy (32) or (33), see Lemma 5 in Section 5.2.1).
What will be of particular interest is linking properties

of ji to those of h
pi : In order to reduce notational

burden and since the following definitions and results
are fairly general and may be interesting in their own, we
formulate them in terms of a set A (instead of Xi) and a
function f (instead of pi).
To any binary relation h

A defined on a cartesian
product A2; can be associated the relations E and T

defined on A letting, for all a; bAA:

aEb 3 ða; cÞBAðb; cÞ and ðc; bÞBAðc; aÞ;
for all cAA: ð18Þ

and

aTb 3 ða; cÞhAðb; cÞ and ðc; bÞhAðc; aÞ
for all cAA: ð19Þ
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Relation T is usually called the trace ofhA and E is the
symmetric part of T : Following mainly Monjardet
(1984) and Doignon, Monjardet, Roubens, and Vincke
(1988), we say that:

* h
A is strongly linear iff

½Notððb; cÞhAða; cÞÞ or Notððc; aÞhAðc; bÞÞ� )
½ða; dÞhAðb; dÞ and ðd; bÞhAðd; aÞ�;

* h
A is strongly independent iff

[ða; cÞhAðb; cÞÞ or ðc; bÞhAðc; aÞÞ� ) ½ða; dÞhAðb; dÞ
and ðd; bÞhAðd; aÞ�;

* h
A is reversible iff ½ða; bÞhAðc; dÞ ) ðd; cÞhAðb; aÞ�;

for all a; b; c; dAA:
We note a few simple and useful observations in the

following lemma (its proof is left to the reader).

Lemma 3. Let h
A be a relation on A2; BA; its

symmetric part, T ; its trace and E; the symmetric part

of T : We have:
(1)
 If BA is an equivalence, then E is an equivalence.

(2)
 If hA is transitive, then T is transitive.

(3)
 h

A is strongly linear iff T is complete.
As an elementary consequence of these properties, we
have that the trace T of a strongly linear weak orderhA

is a weak order.
The following result studies the situation in which

h
A is a weak order induced on A2 by a function

f :A2-R: The case in which A is not denumerable
raises technical problems of representability on the real
numbers. In addition to the condition LCCi introduced
in Section 3.1 (the relation B7

i corresponds exactly to
E), we need the classical order density condition
(see Section 2) to ensure that the trace T is representable
on R:

Proposition 2. Let f :A2-R and h
f be the weak order

induced on A2 by f ; i.e. ða; bÞhf ðc; dÞ iff f ða; bÞXf ðc; dÞ;
for all a; b; c; dAA:
(1)
 h
f is reversible iff there is a function f 0 such that

f 0ða; bÞ ¼ �f 0ðb; aÞ and ða; bÞhf ðc; dÞ iff f 0ða; bÞX
f 0ðc; dÞ:
(2)
 Suppose that A is at most denumerable. There are a

function u :A-R and a function j : uðAÞ � uðAÞ-R

such that f ða; bÞ ¼ jðuðaÞ; uðbÞÞ: Furthermore,

(a)
 the function j can be taken to be nondecreasing

in its first argument and nonincreasing in its

second argument iff hf is strongly linear;

(b)
 the function j can be taken to be increasing in its

first argument and decreasing in its second

argument iff hf is strongly independent.

(3)
 In case A is not a denumerable set, there exist a

function u :A-R and a function j : uðAÞ � uðAÞ-R

such that f ða; bÞ ¼ jðuðaÞ; uðbÞÞ iff the number of

equivalence classes of the relation E is not larger than
the cardinality of R: Properties 2(a) and 2(b) hold iff

there is a finite or denumerable subset of A that is

dense in A for T :
Proof. 1) Sufficiency is obvious. We prove necessity.
Suppose that h

f is reversible. Define f 0ða; bÞ ¼
f ða; bÞ � f ðb; aÞ; f 0 obviously is skew-symmetric. We
show that f 0 provides another representation of h

f :
Since h

f is reversible, we have ða; bÞhf ðc; dÞ iff
ðd; cÞhf ðb; aÞ: Hence, f ða; bÞXf ðc; dÞ and
f ðd; cÞXf ðb; aÞ and finally, f 0ða; bÞXf 0ðc; dÞ: Conver-
sely, if f 0ða; bÞXf 0ðc; dÞ; we have that f ða; bÞXf ðc; dÞ:
Suppose, on the contrary, that f ða; bÞof ðc; dÞ: Since
f 0ða; bÞXf 0ðc; dÞ; it must be that f ðb; aÞof ðd; cÞ imply-
ing ðd; cÞhf ðb; aÞ and, since h

f is reversible,
ða; bÞhf ðc; dÞ; a contradiction.
2) The existence of ui and ji has been established in

Section 3.1, around (13); this proof transposes immedi-
ately for establishing the existence of u and j (B


i

corresponds to Bf and B7
i to E).

Part (2)(a) ½)�: Suppose that Not½ðb; cÞhf ða; cÞ� or
Not½ðc; aÞhf ðc; bÞ�; for some a; b; cAA: This is equiva-
lent to f ðb; cÞof ða; cÞ or f ðc; aÞof ðc; bÞ: Using the
monotonicity properties of j; we obtain from both
inequalities that uðaÞ4uðbÞ and that jðuðaÞ; uðdÞÞX
jðuðbÞ; uðdÞÞ and jðuðdÞ; uðbÞÞX jðuðdÞ; uðaÞÞ; for all
dAA: This establishes that hf is strongly linear.
Part (2)(a) ½(�: Since h

f is a strongly linear weak
order, T is a weak order (Lemma 3, parts (2) and (3)).
Let u be a numerical representation of T ; i.e. aTb iff
uðaÞXuðbÞ; such a representation exists since A is finite
or denumerable. Define j by jðuðaÞ; uðbÞÞ ¼ f ða; bÞ: j is
well-defined since uðcÞ ¼ uðdÞ iff cðT-T�1Þd; i.e. cEd;
the reasoning made just after formula (13) thus holds.
Moreover j is nondecreasing in its fist argument and
nonincreasing in the second. To prove the former,
suppose that uðaÞ4uðbÞ; this implies aTb: We have for
all cAA; ða; cÞhf ðb; cÞ and hence f ða; cÞXf ðb; cÞ:
Nonincreasingness in the second argument is similarly
proven.
Part (2)(b) ½)�: Suppose, on the contrary, that hf is

not strongly independent. Among the four possible
cases, we have, for instance, that ða; cÞhf ðb; cÞ and
Not½ða; dÞhf ðb; dÞ�; for some a; b; c; dAA: This is
tantamount to jðuðaÞ; uðcÞÞXjðuðbÞ; uðcÞÞ and jðuðaÞ;
uðdÞÞojðuðbÞ; uðdÞÞ; which imply respectively, due to
increasingness of j in its first argument, uðaÞXuðbÞ and
uðaÞouðbÞ; a contradiction. The other cases can be dealt
with similarly.
Part (2)(b) ½(�: We define u and j as in part (2)(a).

Let a; bAA be such that uðaÞ4uðbÞ: Since u is a
numerical representation of T ; we have aTb and
Not½bTa�; strong independence implies that, for all
cAA; Not½ðb; cÞhf ða; cÞ� and Not½ðc; aÞhf ðc; bÞ�; i.e.
f ða; cÞ4f ðb; cÞ and f ðc; bÞ4f ðc; aÞ: Suppose, for in-
stance, that j is not increasing in its first argument. This
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would imply that, for some a; b; dAA; with uðaÞ4uðbÞ;
f ða; dÞpf ðb; dÞ; a contradiction. A similar argument
proves that j is decreasing in its second argument.
3) In case A is not denumerable, the condition on E is

clearly necessary and sufficient for being able to
represent each equivalence class of that relation by a
real number. The order density condition makes it
possible to consider a numerical representation of the
weak order T by means of a real-valued function u; this
condition is thus sufficient. To show it is also necessary,
it suffices to observe that any function u in a
representation of hf with j monotonic is a representa-
tion of a weak order that is at least as fine as T : In other
words, if aTb and Not½bTa�; then uðaÞ4uðbÞ: &

Remarks
(1)
 Proposition 2 reformulates in our framework
classical results that may essentially be found in
Doignon et al. (1988), Tversky and Russo (1969)
(see also Pirlot and Vincke (1997) for a synthesis).
Take any numerical representation of h

A: This
representation may be seen as a valued relation on
A2: In the terminology of Doignon et al. (1988,
Section 4.4) the valued relation obtained when h

A

is strongly linear is a coherently biordered valued
relation. The families of binary relations obtained
by considering all the cuts of these valued relations
have been well studied (Doignon et al., 1988). To
our knowledge the valued relations obtained when
replacing linearity by independence have received
no particular name in the literature.
(2)
 Doignon et al. (1988) distinguish three less restric-
tive versions of linearity, namely, left-linearity,
right-linearity and linearity. We do not investigate
these notions for the sake of conciseness; the reader
should note that distinguishing left and right
linearity (or independence) has strong connections
with a slightly more general model where piðxi; yiÞ is
decomposed as jiðuiðxiÞ; viðyiÞÞ with ui not neces-
sarily equal to vi: These variants can easily be dealt
with using our methods.
(3)
 The results in Doignon et al. (1988) are expressed
for finite sets. They extend, at least those we
consider, to denumerable sets, without further
condition. In view of obtaining the results in
Section 5.3.1 below, we need further extension to
nondenumerable sets and we obtain it under rather
straightforward necessary and sufficient conditions,
as shown in part (3) of Proposition 2.
(4)
 It is important to note that in case f has particular
features—for instance if f vanishes on the diagonal
(f ða; aÞ ¼ 0; for all a) or f is skew-symmetric—these
are inherited by j: This will be of importance in our
models when f ¼ pi and h

f possibly is the relation
h



i or the relation h




i :
4.2. Axioms for intra-criteria decomposability

In view of Propositions 2.2 and 2.3, and the
construction of numerical representations for models
of type (M) (see Bouyssou & Pirlot, 2002), obtaining
intra-decomposable models boils down to imposing
linearity conditions on h



i and h




i : In order to do so,

we introduce a number of intrA-attribute Cancellation
(AC) conditions and of Triple intrA-attribute Cancella-
tion (TAC) conditions. We say that h satisfies:

AC1i if

ðxi; a�iÞhy

and

ðzi; c�iÞhw

9>=
>; )

ðzi; a�iÞhy

or

ðxi; c�iÞhw;

8><
>:

AC2i if

xhðyi; b�iÞ
and

zhðwi; d�iÞ

9>=
>; )

xhðwi; b�iÞ
or

zhðyi; d�iÞ;

8><
>:

AC3i if

ðxi; a�iÞhy

and

zhðxi; d�iÞ

9>=
>; )

ðwi; a�iÞhy

or

zhðwi; d�iÞ

8><
>:

for all x; y; z;wAX and all a�i; b�i; c�i; d�iAX�i:
We say that h satisfies AC1 (resp. AC2; AC3) if it

satisfies AC1i (resp. AC2i; AC3i), for i ¼ 1; 2;y; n: We
shall also use AC123 (resp. AC123i) as a short form
for the conjunction of conditions AC1; AC2 and AC3
(resp. AC1i; AC2i and AC3i).
Condition AC1i suggests that the elements of Xi can

be linearly ordered considering ‘‘upward dominance’’: if
xi ‘‘upward dominates’’ zi then ðzi; c�iÞhw entails
ðxi; c�iÞhw: Condition AC2i has a similar interpreta-
tion considering now ‘‘downward dominance’’. More
formally, let hþ

i (resp. h�
i ) denote the left (resp. right)

trace induced by h on Xi; i.e.

xih
þ
i zi iff 8c�iAX�i;wAX ;

½ðzi; c�iÞhw ) ðxi; c�iÞhw� ð20Þ

yih
�
i wi iff 8a�iAX�i; zAX ;

½zhðyi; a�iÞ ) zhðwi; a�iÞ�: ð21Þ

It was shown in Bouyssou and Pirlot (2004, Lemma 3)
that AC1i (resp. AC2i) is equivalent to imposing that
h

þ
i (resp. h�

i ) is a complete relation, hence a weak
order (since it is transitive by definition).
Condition AC3i ensures that the linear arrangements

of the elements of Xi obtained considering upward and
downward dominance are not incompatible. In other
terms, the trace h

7
i that is the intersection of h

þ
i
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and h
�
i ; i.e.

xih
7
i zi iff ½xih

þ
i zi and xih

�
i zi�; ð22Þ

is also a complete relation, hence a weak order.
It is also quite important to note that h7

i is also the
trace of h



i and h




i (defined by formulae (16) and

(17)). Indeed, we can easily check that we have:

xih
7
i yi iff 8ziAXi; ðxi; ziÞh


i ðyi; ziÞ
and 8wiAXi; ðwi; yiÞh


i ðwi; xiÞ: ð23Þ

The latter expression implies that h7
i is the trace both

of h

i and h




i : Remark that the relation B7

i ; defined
in (11), is the symmetric part of h7

i :
The Triple intrA-attribute Cancellation (TAC) con-

ditions read as follows. We say that h satisfies
TAC1i if

ðxi; a�iÞhy

and

yhðzi; a�iÞ
and

ðzi; b�iÞhw

9>>>>>>=
>>>>>>;

) ðxi; b�iÞhw

TAC2i if

ðxi; a�iÞhy

and

yhðzi; a�iÞ
and

whðxi; b�iÞ

9>>>>>>=
>>>>>>;

) whðzi; b�iÞ

for all y;wAX ; all xi; ziAXi and all a�i; b�iAX�i:
We say that h satisfies TAC1 (resp. TAC2) if it

satisfies TAC1i (resp. TAC2i), for i ¼ 1; 2;y; n: We
shall also use TAC12 (resp. TAC12i) for the conjunction
of conditions TAC1 and TAC2 (resp. TAC1i and
TAC2i).
The TAC1i; TAC2i conditions are variants of the

classical triple cancellation condition, like TCi in Section
3.2. As soon as h is complete, TAC1 and TAC2
become powerful conditions (as was the case of TC in
models (M)) that imply AC123; they will help to make
sure, in certain models, that ties can be broken just by
using ‘‘upward’’ or ‘‘downward dominance’’.
The above axioms and their consequences have been

studied in detail in Bouyssou and Pirlot (2004). The
following lemma recalls results that will be needed in the
sequel and establishes new ones showing that some of
the axioms are intimately related to strong linearity of
h



i and h




i :

Lemma 4. We have:
(1)
 Model (M1–D1) implies AC123:

(2)
 Model (M30–D10) implies TAC12:

(3)
 h

þ
i is complete iff AC1i holds.
(4)
 h
�
i is complete iff AC2i holds.
(5)
 h
7
i is complete iff AC123i holds.
(6)
 AC123i iff h


i is strongly linear iff h



i is strongly

linear.

(7)
 If h is complete, TAC12i implies AC123i and if one

of the alternatives in the consequent of any of AC1i;
AC2i or AC3i is false, then the preference in the

other branch of the alternative is strict.

(8)
 If h is complete, TAC1i is equivalent to the

completeness of hþ
i and the following condition:

½xhy and zig
þ
i xi� ) ðzi; x�iÞgy: ð24Þ
(9)
 If h is complete, TAC2i is equivalent to the

completeness of h�
i and the following condition:

½xhy and yig
�
i wi� ) xgðwi; y�iÞ: ð25Þ
Proof. (1) The premise of AC1i yields in terms of model
(M1–D1):

FðjiðuiðxiÞ; uiðyiÞÞ; ðjjðujðajÞ; ujðyjÞÞÞjaiÞX0

and

FðjiðuiðziÞ; uiðwiÞÞ; ðjjðujðcjÞ; ujðwjÞÞÞjaiÞX0:

Due to the monotonicity of F and ji; either
uiðziÞXuiðxiÞ and
FðjiðuiðziÞ; uiðyiÞÞ; ðjjðujðajÞ; ujðyjÞÞÞjaiÞÞX0;

or uiðxiÞ4uiðziÞ and
FðjiðuiðxiÞ; uiðwiÞÞ; ðjjðujðcjÞ; ujðwjÞÞÞjaiÞX0;

which implies that AC1i is satisfied. The proof for AC2i

and AC3i is similar.
(2) The premise of TAC1i; interpreted in terms of

model (M30–D10), yields three inequalities:

FðjiðuiðxiÞ; uiðyiÞÞ; ðjjðujðajÞ; ujðyjÞÞÞjaiÞX0; ð26Þ

FðjiðuiðyiÞ; uiðziÞÞ; ðjjðujðyjÞ; ujðajÞÞÞjaiÞX0; ð27Þ

FðjiðuiðziÞ; uiðwiÞÞ; ðjjðujðbjÞ; ujðwjÞÞÞjaiÞX0: ð28Þ

Due to skew-symmetry of ji and oddness of F ; Eq. (27)
may be rewritten as:

FðjiðuiðziÞ; uiðyiÞÞ; ðjjðujðajÞ; ujðyjÞÞÞjaiÞp0: ð29Þ

We deduce from Eqs. (26) and (29), using the increas-
ingness of F (resp. ji) in its ith (resp. first) argument,
that uiðxiÞXuiðziÞ; substituting uiðziÞ by uiðxiÞ in
Eq. (28) yields:

FðjiðuiðxiÞ; uiðwiÞÞ; ðjjðujðbjÞ; ujðwjÞÞÞjaiÞX0;

which establishes TAC1i: The proof for TAC2i is
similar.
Parts (3)–(5) were respectively proven as Lemma 3,

parts 1, 2 and 4 in Bouyssou and Pirlot (2004).
(6) Using (23), we observed above that h

7
i is not

only the trace of h but also of both h


i and h




i :

Applying Lemma 3.3, with A ¼ Xi and h
A ¼ h



i or
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h



i ; we get thath


i andh



i are strongly linear iffh7

i

is complete, which, in turn, is equivalent to AC123i (by
part (5) of the present lemma).
(7) We prove that, if h is complete, TAC1i implies

AC1i and AC3i: Suppose that AC1i is violated so that
ðxi; a�iÞhy; ðzi; b�iÞhw; Not½ðzi; a�iÞhy� and
Not½ðxi; b�iÞhw�; for some xi; ziAXi; a�i; b�iAX�i and
y;wAX : Sinceh is complete, we know that yhðzi; a�iÞ:
Using TAC1i; ðxi; a�iÞhy; yhðzi; a�iÞ and ðzi; b�iÞhw

imply ðxi; b�iÞhw; a contradiction.
Similarly, suppose that AC3i is violated so that

ðxi; a�iÞhy;whðxi; b�iÞ;Not½ðzi; a�iÞhy� and
Not½whðzi; b�iÞ�; for some xi; ziAXi; a�i; b�iAX�i and
y;wAX : Since h is complete, we have: ðzi; b�iÞhw:
Using TAC1i; ðzi; b�iÞhw; whðxi; b�iÞ and ðxi; a�iÞhy

imply ðzi; a�iÞhy; a contradiction.
One proves similarly that TAC2i implies AC2i and

AC3i:
For proving the second part of the thesis, we need

using TAC1i (resp. TAC2i) for the statement concerned
with AC1i (resp. AC2i) and both TAC1i and TAC2i for
the statement concerned with AC3i: Let us prove the
result for AC1i (the proof is similar in the two other
cases). Suppose that the premise of AC1i is verified, i.e.
ðxi; a�iÞhy and ðzi; c�iÞhw; while the first alternative
of the consequent is false, i.e. Not½ðzi; a�iÞhy�; suppose
eventually that the second branch of the alternative is
not a strict preference, which means that ðxi; c�iÞBw:
Applying TAC1i to the premise [ðzi; c�iÞhw;
whðxi; c�iÞ and ðxi; a�iÞhy] yields ðzi; a�iÞhy; a
contradiction. If, on the contrary, the second branch
of the alternative is false, i.e. Not½ðxi; c�iÞhw�; and
supposing that the first branch of the alternative is
ðzi; a�iÞBy; we get, applying TAC1i to [ðxi; a�iÞhy;
yhðzi; a�iÞ and ðzi; c�iÞhw], the fact that ðxi; c�iÞhw; a
contradiction.
Parts (8) and (9) were respectively shown as Lemma 4,

parts (4) and (5) in Bouyssou and Pirlot (2004).
5. Main results

We are now in a position to provide a characterisation
of all intra- and inter-decomposable models defined in
Section 3.3, using in particular the ‘‘AC’’ and ‘‘TAC’’
conditions introduced in the previous section. For ease
of reading and in order to concentrate first on the core
arguments, we start with the case in which the Xi’s are at
most denumerable, postponing to Section 5.3, the
technicalities inherent to sets of arbitrary cardinality.
In the denumerable case, we deal separately (respectively
in Sections 5.1 and 5.2) with the ‘‘–D1’’ and the ‘‘2D10’’
models, finally showing that all pairs of models differing
only by –D1 or 2D10 are equivalent except for (M30–
D1) and (M30–D10). For the sake of completeness, we
include in our theorems, results about models (M–D1),
(M–D10), (M0–D1) and (M0–D10) that were already
included in Lemmas 1 and 2.

5.1. Nonstrictly monotonic decomposable models in the

denumerable case

In this section, we consider the models studied in
Theorem 1, with the additional property that they admit
a representation in which ji is nondecreasing in its first
argument and nonincreasing in the second.

5.1.1. Characterisation results

The monotonicity property of j (nondecreasing in its
first argument and nonincreasing in the second) is
obtained for all models (except for M and M0) as soon
as conditions AC123 are added to the axioms stated in
Theorem 1.

Theorem 2. Let h be a binary relation on a finite or

countably infinite set X ¼
Qn

i¼1 Xi: Then:
(1)
 h satisfies model (M–D1);

(2)
 h satisfies model (M0–D1) iff h is reflexive and

independent;

(3)
 h satisfies model (M10–D1) iff h is reflexive,

independent and satisfies RC1 and AC123;

(4)
 h satisfies model (M20–D1) iff h is reflexive and

satisfies RC12 and AC123;

(5)
 h satisfies model (M3–D1) iff h is complete and

satisfies RC12 and AC123;

(6)
 h satisfies model (M30–D1) iff h is complete and

satisfies TC and AC123:
Proof. Parts (1) and (2) are consequences of Lemmas 1
and 2. For all parts from (3) to (6), necessity results from
Theorem 1 and Lemma 4.1. It remains to prove
sufficiency.
(3) We have to recall how a reflexive, independent

relation satisfying RC1 can be represented in model
(M10). Detailed justification of such a construction can
be found in Bouyssou and Pirlot (2002). Due to RC1;
h



i is a weak order on X 2

i ; since X 2
i is denumerable, we

may choose for pi :X
2
i -R; a numerical representation

ofh

i : Sinceh is independent, we have ðxi; xiÞB


i ðyi; yiÞ;
for all xi; yiAXi; we may thus impose that piðxi; xiÞ ¼ 0
for all xiAXi: We then define F for instance as

Fðp1ðx1; y1Þ; p2ðx2; y2Þ;y; pnðxn; ynÞÞ ¼
expð

Pn
i¼1 piðxi; yiÞÞ if xhy;

�expð�
Pn

i¼1 piðxi; yiÞÞ otherwise:

�
ð30Þ

Under AC123; h

i is strongly linear (Lemma 4.6); by

Proposition 2.2, there are functions ui and ji such that
the numerical representation pi ofh



i may be written as

piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ with ji nondecreasing in its
first argument and nonincreasing in the second.
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Table 2

Properties of Examples 1–8 in Appendix B

R C RC1 RC2 I TC AC1 AC2 AC3

Ex1 0 0 1 1 1 1 1 1 1

Ex2 1 1 1 1 1 0 1 1 1

Ex3 1 1 1 1 1 1 0 1 1

Ex4 1 1 1 1 1 1 1 0 1

Ex5 1 1 1 1 1 1 1 1 0

Ex5 1 1 1 1 1 1 1 1 1

Ex6 1 1 1 0 0 0 1 1 1

Ex7 1 1 1 0 1 0 1 1 1

Ex8 1 1 0 1 1 0 1 1 1

Meaning of the abbreviations: ‘‘R’’ for ‘‘reflexive’’; ‘‘C’’ for

‘‘complete’’; ‘‘I ’’ for ‘‘independent’’.
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(4) The construction of F for a relation that satisfies
model (M20) is almost the same; the only difference lies
in the fact that we may choose pi a numerical
representation of the weak order h



i (instead of h

i )

and in addition impose that piðxi; yiÞ ¼ �piðyi; xiÞ
(skew-symmetry). The skew-symmetric pi functions
may then be decomposed as in the previous case since
by Lemma 4, part 6, h



i is strongly linear.
(5) and (6) For models (M3) and (M30), which are

distinct, we have to modify slightly the definition of F :
Take for pi a skew-symmetric numerical representation
of h



i ; like in model (M20), and define F as follows:

Fðp1ðx1; y1Þ; p2ðx2; y2Þ;y; pnðxn; ynÞÞ ¼
expð

Pn
i¼1 piðxi; yiÞÞ if xgy;

0 if xBy;

�expð�
Pn

i¼1 piðxi; yiÞÞ otherwise:

8><
>: ð31Þ

F again is well-defined (see Bouyssou and Pirlot (2002)
for details); it is odd in view of the definition of F and
the fact that the relation h is complete. In model (M3),
F is nondecreasing in all pi but not necessarily strictly
increasing; in this model we may not exclude indeed
that xBy; ðzi;wiÞg



i ðxi; yiÞ and ðzi; x�iÞBðwi; y�iÞ;
for some x; yAX and zi;wiAXi: In model (M30),
when axiom TC is in force, such a situation never
occurs and, with the same construction, F is strictly
increasing. Due to Lemma 4, part (6), h



i is strongly
linear and in both models, pi may thus be decomposed
as in case (3). &

5.1.2. Equivalence of models and independence of axioms

The equivalence of two pairs of models directly results
from Theorem 2 and the previous results. We note them
in the following corollary.

Corollary 1. If X is at most denumerable,
(1)
 models (M1–D1) and (M10–D1) are equivalent;

(2)
 models (M2–D1) and (M20–D1) are equivalent.
The proof is immediate since by Theorem 1 and
Lemma 4.1, the weaker model (M1–D1) (resp. (M2–
D1)) satisfies all the properties that characterise the
stronger (M10–D1) (resp. (M20–D1)), according to
Theorem 2.
In Appendix B we provide examples showing that

none of the axioms characterising the models described
in Theorem 2, parts (3)–(6) is a consequence of the
others (for part (1) there is nothing to prove and proving
the independence of the axioms for part (2) is left to
the reader). Table 2 summarises the properties of the
Examples 1–8 in Appendix B; properties that are
fulfilled (resp. violated) by an example are encoded by
‘‘1’’ (resp. ‘‘0’’) in that table. The nonredundancy of the
properties used for characterising the various models in
Theorem 2 is established

* for part (3), by Examples 1, 6, 8, 3, 4, 5;
* for parts (4) and (5), by Examples 1, 8, 7, 3, 4, 5;
* for part (6), by Examples 1, 2, 3, 4, 5.

The order in which the examples are listed corresponds
to the order in which the properties characterising the
models appear in parts (3)–(6) of Theorem 2: for each
model, each example violates the corresponding prop-
erty in the characterisation of the model while it satisfies
all the others.

5.2. Strictly monotonic decomposable models in the

denumerable case

In this section we extend our analysis to ‘‘strictly
monotonically’’ decomposable models, i.e. we deal with
all models suffixed by 2D10:

5.2.1. Characterisation results

The following theorem shows that –D1 and 2D10

models cannot be distinguished except in the more
constrained (M30) case.

Theorem 3. Let h be a binary relation on a finite or

countably infinite set X ¼
Qn

i¼1 Xi: Then:
(1)
 parts (1)–(5) of Theorem 2 remain true when D1 is

substituted by D10 in the labels of the models;

(2)
 h satisfies model (M30–D10) iff h is complete and

satisfies TC and TAC12:
Except for the first two models (corresponding to parts
(1) and (2) of Theorem 2, which have been proved in
Lemmas 1 and 2 respectively), the proof of Theorem 3 is
rather technical. It develops the following idea. For each
of the models characterised in Theorem 2, with the
exception of the sixth one, we show that the functions ji

that appear in the representation and are nondecreasing
in their first argument and nonincreasing in their second,
can be substituted by functions that are strictly
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increasing in their first argument and strictly decreasing
in their second. The proof of the theorem relies on
Lemmas 5 and 6 stated below; the proof of these lemmas
is deferred to Appendix A.2 and A.3.
Since we are planning to transform the functions ji

that appear in the representation of h in our models,
we need knowing how much freedom we have for doing
so. It is important to keep in mind that the functions pi

appearing in the various ðMkÞ and (Mk0) models need
not be a numerical representation ofh


i (in model (M1)
or (M10)) or of h



i (in models (M2), (M20), (M3) or
(M30)). Our first lemma states the precise (necessary and
sufficient) conditions that pi has to fulfil in the numerical
representations of the various models.

Lemma 5.
(1)
 Let h satisfy model (M1) or (M10). A function

pi :X
2
i -R; with piðxi; xiÞ ¼ 0; for all xiAXi; can be

used in a representation of h according to model

(M1) or (M10) iff

ðzi;wiÞg

i ðxi; yiÞ ) piðzi;wiÞ4piðxi; yiÞ: ð32Þ
(2)
 Let h satisfy model (M2), (M20) or (M3). A

function pi :X
2
i -R; with piðxi; yiÞ ¼ �piðyi; xiÞ; for

all xi; yiAXi; can be used in a representation of h

according to model (M2), (M20) or (M3) iff

ðzi;wiÞg


i ðxi; yiÞ ) piðzi;wiÞ4piðxi; yiÞ: ð33Þ
(3)
 Let h satisfy model (M30).A function pi :X
2
i -R; with

piðxi; yiÞ ¼ �piðyi; xiÞ; for all xi; yiAXi; can be used in

a representation of h according to model (M30) iff

ðzi;wiÞg


i ðxi; yiÞ ) piðzi;wiÞ4piðxi; yiÞ

and

ðzi;wiÞB


i ðxi; yiÞ and

(a�i; b�iAX�i

s:t: ðxi; a�iÞBðyi; b�iÞ

9>=
>; ) piðzi;wiÞ ¼ piðxi; yiÞ:

ð34Þ
The next lemma states, in a fairly general framework,
the conditions under which a function j of two variables
that is nondecreasing in its first argument and nonincreas-
ing in the second can be transformed into a strictly
monotonic function c while preserving the ordering
induced by j on its domain of definition. Consider a
function j :U � U-R; with U ; a subset of R; and
suppose that j is nondecreasing in its first argument and
nonincreasing in the second. There are two types of
situations that may cause the lack of strict monotonicity
of j in its variables; we denote by S; the set of values r of
j for which either there are a; b; cAU such that:

jða; cÞ ¼ jðb; cÞ ¼ r with a4b ð35Þ
or there are a; c; dAU such that:

jða; cÞ ¼ jða; dÞ ¼ r with c4d: ð36Þ
Clearly, j is strictly monotonic iff S is empty. The role
played by the set S is crucial as we can see in the next
lemma.

Lemma 6. Let U be a subset of the �0; 1½ interval and

j :U � U-R that vanishes on the diagonal (jðu; uÞ ¼ 0;
for all uAU) and is nondecreasing in its first argument and

nonincreasing in the second.
(1)
 If S is at most denumerable, there exists a function

c :U � U-R that vanishes on the diagonal, is

increasing in its first argument and decreasing in

the second and satisfies the following properties: for

all u; v; u0; v0AU ;

½jðu; vÞ4jðu0; v0Þ� ) ½cðu; vÞÞ4cðu0; v0Þ�: ð37Þ
and

½jðu; vÞ ¼ jðu0; v0Þ� ) ½cðu; vÞÞ ¼ cðu0; v0Þ�
iff jðu; vÞeS: ð38Þ
If, in addition, j is skew-symmetric, there exists a

skew-symmetric c with the same properties as above.

(2)
 If S is not denumerable, there is no function c that is

increasing in its first argument, decreasing in the

second and satisfies (37).
We are now in a position to prove Theorem 3.

Proof of Theorem 3. (1) The assertion about models
(M–D10) and (M0–D10) are established respectively by
Lemmas 1 and 2.
Model (M10–D10). We know from Theorem 2.3 that

the conditions are necessary and that they enable to
build a representation of h within model (M10–D1).
Following the construction process outlined in the proof
of Theorem 2.3, we have ðzi;wiÞh


i ðxi; yiÞ iff piðzi;wiÞX
piðxi; yiÞ and piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ; for all
xi; yi; zi;wiAXi: Use Lemma 6.1 and substitute j by a
strictly monotonic function ci ðUÞ ¼ uiðXiÞ may w.l.o.g.
be supposed to be included in the �0; 1½ interval and the
set S associated with j by (35) and (36) is denumerable,
since Xi is at most denumerable. According to Eq. (37),
the function p0

iðxi; yiÞ ¼ ciðuiðxiÞ; uiðyiÞÞ satisfies the
necessary and sufficient condition (32) so that it can be
used in a representation ofh within model (M10). Since
p0

iðxi; yiÞ decomposes (by definition) as a function
ciðuiðxiÞ; uiðyiÞÞ that is increasing in its first argument
and decreasing in the second, we thus have a representa-
tion of h in model (M10–D10).
Models (M20–D10) and (M3–D10). The proof is

similar to that for model (M10–D10) except that pi is a
skew-symmetric representation ofh



i ; parts (4) and (5)
of Theorem 2 are used together with Lemmas 6.1
and 5.2. (2) The conditions have already proven to be
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necessary (Theorem 1.2 and Lemma 4.2). Assuming that
the axioms are satisfied implies thath has a representa-
tion in model (M30–D1) with piðxi; yiÞ ¼ jiðuiðxiÞ;
uiðyiÞÞ representing h




i : By construction, ji; is

nondecreasing in its first argument and nonincreasing
in the second and skew-symmetric. Applying Lemma 6.1
yields a function ci; letting pi

0ðxi; yiÞ ¼ ciðuiðxiÞ; uiðyiÞÞ;
we have to check whether the additional condition (34)
of Lemma 5.3 is fulfilled. Let YDXi � Xi be an
equivalence class of the relation B



i containing a pair
ðxi; yiÞ such that (a�i; b�iAX�i with ðxi; a�iÞBðyi; b�iÞ:
We claim that Y contains neither pairs ðxi

0; yi
0Þ; ðx00

i ; yi
0Þ

such that uiðxi
0Þ4uiðx00

i Þ nor pairs ðxi
0; yi

0Þ; ðxi
0; y00

i Þ such
that uiðyi

0Þ4uiðy00
i Þ: This means that the value

piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ associated to all pairs in
the class Y does not belong to the set S associated to ji:
If true, all pairs in Y will be assigned the same number
by ci (according to (38)).
To prove the assertion, suppose, on the contrary, that

there are pairs ðxi
0; yi

0Þ; ðx00
i ; yi

0ÞAY such that
uiðxi

0Þ4uiðx00
i Þ (the other case is treated similarly).

Notice that since ðxi; a�iÞBðyi; b�iÞ; for all ðui; viÞ such
that ðui; viÞB



i ðxi; yiÞ; one has ðui; a�iÞBðvi; b�iÞ; we
would thus have here ðxi

0; a�iÞBðyi
0; b�iÞ and ðx00

i ; a�iÞB
ðyi

0; b�iÞ: We may assume that ui represents the trace of
h




i (as is done in the proof of Theorem 2);

uiðxi
0Þ4uiðx00

i Þ consequently means that either (wi such
that ðxi

0;wiÞg


i ðx00

i ;wiÞ or (zi such that ðzi; x00
i Þg



i

ðzi; xi
0Þ; which in turn means respectively that

(c�i; d�iAX�i such that:

ðxi
0; c�iÞhðwi; d�iÞ and Not ½ðx00

i ; c�iÞhðwi; d�iÞ� ð39Þ

or

ðzi; c�iÞhðx00
i ; d�iÞ and Not ½ðzi; c�iÞhðxi

0; d�iÞ� ð40Þ

In case ðxi
0; c�iÞhðwi; d�iÞ holds in (39), applying

TAC1i to ðx00
i ; a�iÞhðyi

0; b�iÞ; ðyi
0; b�iÞhðxi

0; a�iÞ and
ðxi

0; c�iÞhðwi; d�iÞ yields ðx00
i ; c�iÞhðwi; d�iÞ; contrary

to (39).
Similarly, in case ðzi; c�iÞhðx00

i ; d�iÞ holds in (40),
applying TAC2i to ðx00

i ; a�iÞhðyi
0; b�iÞ; ðyi

0; b�iÞh
ðxi

0; a�iÞ and ðzi; c�iÞhðx00
i ; d�iÞ yields ðzi; c�iÞh

ðxi
0; d�iÞ; contrary to (40). &

5.2.2. Equivalence of models and independence of axioms

We list in the next corollary the equivalences of
models that result from Theorems 2 and 3.

Corollary 2. If X is at most denumerable, there are seven

classes of distinct models, which are:
C TC TAC1 TAC2
(1)
 models (M–D1), (M–D10), that are equivalent;
Ex1 0 1 1 1
(2)
 models (M0–D1), (M0–D10), that are equivalent;

Ex12 1 0 1 1
(3)

Ex3 1 1 0 1
models (M1–D1), (M1–D10), (M10–D1) and (M10–
D10), that are equivalent;
Ex4 1 1 1 0
(4)
‘‘C’’ stands for ‘‘complete’’.
models (M2–D1), (M2–D10), (M20–D1) and (M20–
D10), that are equivalent;
(5)
 model (M3–D1) and (M3–D10), that are equivalent;

(6)
 model (M30–D1);

(7)
 model (M30–D10).
Proof. The equivalences of models listed above result

from Corollary 1 and the fact that the characterisations
of the first five models are the same in Theorems 2 and 3.
The first two equivalences were already noted in
Lemmas 1 and 2.
The distinctness of the seven classes of models can be

shown by exhibiting appropriate examples. Since not all
relations are reflexive and independent, the first two
classes are distinct. Example 8 in Appendix A proves
that there are models satisfying (M0–D1) and not (M10–
D1); by Example 7 we know that it is possible to satisfy
(M10–D1) without satisfying (M20–D1). Example 9
verifies (M20–D1) but not (M3–D1) and Example 10,
(M3–D1) but not (M30–D1). Example 13 shows that
models (M30–D1) and (M30–D10) are not equivalent
since the relation in this example is complete and
satisfies TC and AC123 but neither TAC1 nor TAC2;
therefore it can be represented in model (M30–D1) but
not in model (M30–D10). The classical additive utility
model (Eq. (3)) shows that the axioms characterising
model (M30–D10) are not inconsistent. &

Independence of the axioms characterising models
(M–D10), (M0–D10), (M10–D10), (M20–D10) and
(M3–D10) has been established in Section 5.1.2. Table 3
refers to examples showing that each of the axioms
characterising model (M30–D10) is independent of the
others.
Finally, in view of Bouyssou and Pirlot (2002) (where

axioms RC1;RC2 and TC are studied) and of Bouyssou
and Pirlot (2004) (where the scrutinized axioms are
AC1;AC2;AC3;TAC1 and TAC2), it may be interest-
ing to point out that there are no logical interactions
between those two families of axioms. Example 11 in
Appendix B shows that there are reflexive, independent
and complete relations satisfying TC (and, hence,
RC1;RC2) but none of AC1; AC2; AC3 (and a fortiori
none of TAC1; TAC2). Conversely, as shown by
Example 12, there are reflexive, independent and
complete relations satisfying TAC1 and TAC2 (hence
AC1; AC2 and AC3) but neither RC1 nor RC2 (and a
fortiori not TC).
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5.3. The nondenumerable case

Extending Theorems 2 and 3 to the case in which the
Xi’s are not supposed to be denumerable raises problems
of numerical representability. Since the case of models
(M–D1), (M–D10), (M0–D1) and (M0–D10) has been
dealt with above using only LCC (Lemma 2), we
concentrate on models at least as constrained as
(M1–D1). Suppose that h satisfies the axioms for
model (M1–D1) (or a more constrained model) as stated
in Theorem 2; in case some (or all) of the Xi’s are not
denumerable, we observe that:

* the weak orders h


i (or h




i ) may not have a

numerical representation;
* the weak orders h

7
i may not have a numerical

representation and
* the functions ji (resp. ui) that appear in the model
may fail to be representations ofh


i orh



i (resp. of

h
7
i ; see (19)).

5.3.1. Characterisation results

We start by showing that the representability of h

i

(or h


i ) and their traces is a necessary condition in the

nondenumerable case. Theorem 1.7 indicates that
models (Mk–D) and (Mk0–D), for k ¼ 1; 2; 3; require
property OD
 ensuring thath


i orh



i be representable

on R: OD
 is a fortiori necessary for all the models we
consider, (M1–D1) and more constrained.
Lemma 5 states conditions that functions pi must

satisfy (and that are also sufficient) for being used in a
representation of h in models (Mk) or (Mk0); from
that, conditions on the functions ji can be derived. In
the same spirit, the next lemma states a condition that ui

has to fulfil if used in model (M1–D1) or a more
constrained one.

Lemma 7. Let h satisfy model (M1–D1) or a more

constrained one. If a function ui :Xi-R appears in a

representation of h according to model (M1–D1) or a

more constrained model, then, for all xi; yiAXi;

xig
7
i yi ) uiðxiÞ4uiðyiÞ ð41Þ

Proof. Suppose, on the contrary, that for some

xi; yiAXi; we have xig

7
i yi and uiðxiÞpuiðyiÞ: From

xig
7
i yi and using the completeness of both h

7
i and

h


i in (M1–D1), we get that there is ziAXi such that

ðxi; ziÞg

i ðyi; ziÞ or there is wiAXi such that

ðwi; yiÞg

i ðwi; xiÞ: In the former case, using Lemma

5.1, yields jiðuiðxiÞ; uiðziÞÞ4jiðuiðyiÞ; uiðziÞÞ; which is
not compatible with uiðxiÞpuiðyiÞ as long as ji is
nondecreasing in its first argument. A similar contra-
diction can be derived from the other branch of the
alternative. The same type of reasoning, using Lemma 5,
enables to show the necessity of condition (41) for all
models from (M1–D1) on. &
Condition (41) states that the weak order represented by
ui must be at least as fine ash

7
i : Since an order finer (i.e.

more discriminating) than an order that is not represen-
table on the reals does not admit a numerical representa-
tion either, we have established that the following order-
density condition is necessary. We say that h satisfies
OD7

i if there is a finite or countably infinite subset of Xi

that is dense in Xi forh
7
i : ConditionOD7 is said to hold

if condition OD7
i is in force for all iAN:

Conditions OD
 and OD7 are sufficient to extend the
results of Theorem 2 to the uncountable case. Reconsi-
dering the proof of parts (3)–(6) of Theorem 2, we see
that the construction of a representation in the respective
models can be worked out as soon as are available:

* a representation pi of the weak order h


i (for all

iAN) in models (M1–D1) and (M10–D1) or ofh


i in

model (M2–D1) and more constrained ones,
* and a representation of the trace of h


i (which, in
view of (23) is also the trace of h



i ).

This is precisely what OD
 and OD7 guarantee. Note
that in models (M2–D1) and more constrained, OD


implies thath


i is representable (see Bouyssou & Pirlot,

2002). We thus have the following extension of Theorem
2. The first two parts are consequences of Lemmas 1 and
2; they are stated here for the sake of completeness.

Theorem 4. Let h be a binary relation on a product set

X ¼
Qn

i¼1 Xi: Then:
(1)
 h satisfies model (M–D1) iff h satisfies property

LCC;

(2)
 h satisfies model (M0–D1) iff h is reflexive,

independent and satisfies property LCC;

(3)
 h satisfies model (M1–D1) or (M10–D1) iff h is

reflexive, independent and satisfies RC1; AC123;
OD
 and OD7;
(4)
 h satisfies model (M2–D1) or (M20–D1) iff h is

reflexive and satisfies RC12; AC123; OD
 and OD7;

(5)
 h satisfies model (M3–D1) iff h is complete and

satisfies RC12; AC123; OD
 and OD7;

(6)
 h satisfies model (M30–D1) iff h is complete and

satisfies TC; AC123; OD
 and OD7:
In order to extend Theorem 3, we need another axiom
that is closely linked with the set S described in Eqs. (35),
(36) and that will enable us to adapt the proof of
Theorem 3, i.e. to modify function ji into a function ci

that is strictly monotonic in both its arguments. Let S

i

(resp. S


i ) denote the set of equivalence classes s of the

relation h


i (resp. h




i ) that verify the following:

(ðxi; ziÞ; ðyi; ziÞAs or (ðwi; xiÞ; ðwi; yiÞAs

such that Not½xiB7
i yi�: ð42Þ

In view of Lemma 6 and the correspondence between S

i

(or S


i ) and the set S; it is no wonder that the cardinality
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of those sets does matter. We denote by S

i (resp. S




i ),

the property stating that S

i (resp. S



i ) is denumerable;
S
 (resp. S

) stands for S


i (resp. S



i ) holding for all

iAN: The necessity of S
 or S

 in the various models is
established in the next lemma.

Lemma 8.
(1)
 [(M1–D10), ðM102D10Þ� ) S
;

(2)
 [(M2–D10), (M20–D10), (M3–D10), ðM302D10Þ� )

S

 ) S
:
Proof. (1) Leth belong to one of the models ðMk–D10)
or (Mk0–D10) for k ¼ 1; 2; 3: Since all these models are
more constrained than (M1–D10), h has a representa-
tion in the latter. Let F ;ji; ui; for iAN; provide a
representation ofh in model (M1–D10); ji is increasing
in its first argument and decreasing in the second for all
i: Let s denote an equivalence class of h


i containing a
pair ðxi; ziÞ; ðyi; ziÞ with xig

7
i yi: Suppose the set of

classes such as s is not denumerable. Using Lemma 7
and the increasingness of ji in its first argument,
xig

7
i yi entails uiðxiÞ4uiðyiÞ and jiðuiðxiÞ; uiðziÞÞ4

jiðuiðyiÞ; uiðziÞÞ: Intervals ðjiðuiðyiÞ; uiðziÞÞ , jiðuiðxiÞ;
uiðziÞÞÞ corresponding to different classes s and s0 are
disjoint (in view of Lemma 5.1); they form a non-
denumerable family of disjoint nonempty intervals of R;
which does not exist since each interval contains a
distinct rational number. One similarly proves the
denumerability of the set of equivalence classes s0 of
h



i containing a pair ðwi; xiÞ; ðwi; yiÞ with xig

7
i yi

(using the decreasingness of ji in its second argument).
This establishes that S
 holds in all models at least as
constrained as (M1–D10).
(2) Turning to S

; considerh; a relation that satisfies

model (M2–D10) or a more constrained model. Such a
relation has a representation in (M2–D10) using some
functions F ;ji; ui; for iAN; with ji increasing in its first
argument and decreasing in the second. Reasoning as
above but about equivalence classes s or s0 of h



i ; we
can prove that S

 must hold. Moreover, it is clear, in
general, that S

 implies S
 since the equivalence classes
of h



i are subdivisions of those of h

i : &

The extension of Theorem 3 to sets of arbitrary
cardinality is now at hand.

Theorem 5. Let h be a binary relation on a set X ¼Qn
i¼1 Xi: Then:
(1)
 h satisfies model (M–D10) iff h satisfies property

LCC;

(2)
 h satisfies model (M0–D10) iff h is reflexive,

independent and satisfies property LCC;

(3)
 h satisfies model (M1–D10) or (M10–D10) iff h is

reflexive, independent and satisfies RC1; AC123;
OD
; OD7 and S
;
(4)
 h satisfies model (M2–D10) or (M20–D10) iff h is

reflexive and satisfies RC12; AC123; OD
; OD7 and

S

;

(5)
 h satisfies model (M3–D10) iff h is complete and

satisfies RC12; AC123; OD
; OD7 and S

;

(6)
 h satisfies model (M30–D10) iff h is complete and

satisfies TC; TAC12; OD
; OD7 and S

:
Proof. Parts (1) and (2) are consequences of Lemmas 1
and 2.
(3) In view of Lemma 8.1, it only remains to prove

that the conditions are sufficient to guarantee the
existence of a representation of h in model (M10–
D10). Since the hypotheses of Theorem 4.3 are in force,
we may construct a representation of h just as
described in the proof of Theorem 4.3. According to
that construction, piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ is a re-
presentation of the weak order h



i and ui is a

representation of h
7
i : Starting from that point, we

may transform ji into a function ci increasing in its first
argument and decreasing in the second as done in the
proof of Theorem 3.1. Such a transformation is made
possible since S
 together with the fact that
jiðuiðxiÞ; uiðyiÞÞ is a numerical representation of h



i

imply that the set Si; defined by (35) and (36), applied to
ji instead of j; is denumerable; the conditions required
for applying Lemma 6.1 are thus fulfilled. The conclu-
sion, i.e. the fact that the transformed representation is a
representation of h in model (M10–D10), follows as in
part 1 of Theorem 3.
(4)–(6) Necessity is a consequence of Lemma 8.2. The

proof of sufficiency follows the same lines as in part (3)
above; there is only one difference: piðxi; yiÞ ¼
jiðuiðxiÞ; uiðyiÞÞ is a representation of the weak order
h




i (instead of h


i ) and hypothesis S


 is thus needed

in order to transform ji into a function ci that is
increasing in its first argument and decreasing in the
second. The proof that the transformed representation
yields a representation of h in model (M20–D10)
(resp. (M3–D10), (M30–D10)) is the same as for part (4)
(resp. 5, 6) of Theorem 4. &

5.3.2. Independence of the axioms (final)

The independence of LCC in models (M–D10) and
(M0–D10) is obvious. Nonredundancy of the axioms has
been established for the denumerable case in the
previous sections; in that case, order density conditions
as well as S
 and S

 are trivially fulfilled. None of these
conditions can be dispensed of in the nondenumerable
case. Examples 14–16 in Appendix B (see a summary of
their properties in Table 4) establish the independence of
these conditions in all the models. More specifically, for
models (M1–D10) or (M10–D10) in part (3) of Theorem
5, they respectively show that none of OD
; OD7 and S


is redundant. For the models in parts (4)–(6) the same
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examples respectively show that none of OD
; OD7 and
S

 is redundant. In case X is not a denumerable set, the
equivalences of models in parts (3)–(5) of Corollary 2
break into two parts; we describe the resulting equiv-
alences in the next corollary.

Corollary 3. If X is not denumerable, there are ten classes

of distinct models, which are:
(1)
Table

Prope

Ex14

Ex15

Ex16

Mean

‘‘comp

Table

Summ

M

M0

M1, M

M2, M

M3

M30

Mean
models (M–D1) and (M–D10), that are equivalent;

(2)
 models (M0–D1) and (M0–D10), that are equivalent;

(3)
 models (M1–D1), (M10–D1), that are equivalent;

(4)
 models (M1–D10) and (M10–D10), that are equiva-

lent;

(5)
 models (M2–D1), (M20–D1), that are equivalent;

(6)
 models (M2–D10) and (M20–D10), that are equiva-

lent;

(7)
 model (M3–D1);

(8)
 model (M3–D10);

(9)
 model (M30–D1);

(10)
 model (M30–D10).
Proof. The equivalences stated in the corollary result
from Theorems 4 and 5. In view of the proof of
Corollary 2 and the examples used therein, we only have
to justify that the subclasses of the equivalence classes
that split in the nondenumerable case are distinct. A
single example suffices to prove the latter. Example 16 is
representable in model (M30–D1) (and hence in models
(M20–D1) and (M10–D1)) but in none of (M30–D10),
4

rties of Examples 14–16 in Appendix B

R C I TC TAC OD
 OD7 S
 S



1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 0 0

ing of the abbreviations: ‘‘R’’ stands for ‘‘reflexive’’, ‘‘C’’ for

lete’’, ‘‘I ’’ for ‘‘independent’’; TAC stands for TAC1 and TAC2

5

ary of the results in Theorems 2–5

Denumerable

�D1 �D10

refl., indep.

10 refl., indep.

RC1; AC123

20 refl., RC12; AC123

compl., RC12; AC123

compl., TC compl., T

AC123 TAC12

ing of the abbreviations: ‘‘refl.’’ for ‘‘reflexive’’, ‘‘indep.’’ for ‘‘indepen
(M20–D10) or (M10–D10) since the relation in the
example satisfies neither S
 nor S

: &

5.4. Discussion of the results

We summarise in Table 5 the results obtained in
Theorems 2–5. This table offers a synthetic view of all
the models studied together with their characterisation.
The axioms that appear in the columns headed by
the label ‘‘Nondenumerable’’ have to be added to
those characterising the corresponding models in the
denumerable case in order to get a characterisation valid
for the nondenumerable case.
The relations between models are shown in graphical

form in Fig. 2, which represents the same information as
Corollary 3; this figure both shows which models are
equivalent and which classes are contained in others.
This picture is valid for the most general nondenumer-
able case. It simplifies in the denumerable case as
indicated by Corollary 2: all models (M1) and (M10)
are equivalent as well as all models (M2) and (M20); at
the upper level, three distinct classes remain: one formed
by (M3–D1) and (M3–D10) and two classes each
containing a single model, namely (M30–D1) and
(M30–D10).

5.4.1. Relationship between h
7
i and h



i or h




i

The inter-relations between h


i or h




i and h have

been investigated in Bouyssou and Pirlot (2004) (see
Lemma 3, p. 689). Similarly, those between h

7
i andh

are studied in Bouyssou and Pirlot (2004) (see Lemmas 2
and 4). We have the opportunity to examine here the
relationships between h

7
i and h



i or h




i : We

observed through (23), that h
7
i is the trace of h



i

and h



i ; which amounts saying that h



i and h




i

respond positively to h
7
i ; i.e. xih

7
i yi ) ðxi; ziÞh


i

ðyi; ziÞ and ðzi; yiÞh

i ðzi; xiÞ; 8zi (and similarly for h




i ).

The ‘‘response’’ may however fail to be ‘‘strictly
positive’’ even in the more constrained model (M30–
D10); it may happen indeed that xig

7
i yi and for some
Nondenumerable

�D1 �D10

LCC

LCC

OD
; OD7 OD
; OD7

S


OD
; OD7 OD
; OD7

S



OD
; OD7 OD
; OD7

S



C OD
; OD7

S



dent’’, ‘‘compl.’’ for ‘‘complete’’.
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zi; ðxi; ziÞB


i ðyi; ziÞ or for some wi; ðwi; yiÞB



i ðwi; xiÞ
(this is the case for a denumerable set of equivalence
classes in Example 17). In this respect, the set S


i (resp.
S



i ) defined by formula (42) plays a crucial role. The
response ofh


i (resp.h



i ) is strictly positive if and only

if the set S

i (resp. S



i ) is empty. If this is not the case, as
long as S


i (resp. S


i ) is finite or denumerable, the

response is not always strictly positive, but there is a
representation in a model of type �D10; in case S


i (resp.
S



i ) is not denumerable, representingh in such a model
is no longer possible.

5.4.2. Uniqueness issues and regular representations

In this section, we only consider models from
(M1–D1) and more constrained; in all these models,
h

7
i and h



i (and h




i in models (M2–D1) and more

constrained) are weak orders for all i: As noted in
Bouyssou and Pirlot (2002), uniqueness results for the
numerical representations of these models are very
weak. Lemmas 5 and 7 give however indications on
necessary conditions that ji and ui have to fulfil if used
in a numerical representation of one of our models.
These conditions amount saying that ji represents a
relation that is at least as fine ash


i (orh



i for models

from (M2–D1) and more constrained); similarly, ui must
represent a relation that is finer than h

7
i : The
discussion in Section 5.4.1 has shown that it is not
possible in all models to have representations in which:

* ui is a numerical representation of the weak order
h

7
i and

* piðxi; yiÞ ¼ jiðuiðxiÞ; uiðyiÞÞ is a numerical representa-
tion of the weak order h



i (for models (M1–D1)

and more constrained) or of the weak order h



i

(for models (M2–D1) and more constrained).

We call regular a representation in which this is the case
(see Roberts, 1979 about regularisation of a scale of
measurement; see also the considerations on regularity
in relation with uniqueness of the representation in
Bouyssou & Pirlot, 2002, Remark 4, p. 695).
In the proofs of Theorems 2 and 4, we built regular

representations for the models (M10–D1), (M20–D1),
(M30–D1), which proves that regular representations
always exist (even in the nondenumerable case) for all
our �D1 models. Is it the case for the �D10 models? In
the proofs of Theorems 3 and 5 where the �D10 models
are studied, we start from regular representations in the
corresponding �D1 model and change the functions ji

into functions ci that are increasing in their first
argument and decreasing in the second. These altera-
tions of the representations of h



i (or h




i ) respect

conditions (37) and (38) of Lemma 6. If the representa-
tion with ui and ji is regular, all pairs in any equivalence
class of h


i (or h



i ) are associated the same value by

ji: Due to (38), this is still the case after ji has been
transformed into ci unless the equivalence class belongs
to S


i (or S


i ). Hence, if S


i (or S


i ) is empty, there is a

regular representation in the �D10 model. Thus, starting
from a regular representation in a �D1 model, we have
proven that a sufficient condition for a regular
representation in the corresponding �D10 model to
exist is that S


i (or S


i ) be empty. This condition is also

clearly necessary. We thus have proven the following
proposition.

Proposition 3.
(1)
 A relation h that satisfies the hypotheses of any

model (Mk–D1) or (Mk0–D1) for k ¼ 1; 2 or 3; has

a regular representation in that model;

(2)
 A relation h that satisfies the hypotheses of model

(M1–D10) or (M10–D10) has a regular representation

in that model iff S

i is empty for all iAN;
(3)
 A relation h that satisfies the hypotheses of model

(M2–D10), (M20–D10), (M3–D10) or (M30–D10) has

a regular representation in that model iff S


i is

empty for all iAN:
As a direct consequence of the above proposition, we
get a condition under which h



i is not only strongly

linear but also strongly independent (see Section 4.1 for
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the definition of strong independence). This result is
formalised in the following corollary.

Corollary 4.
(1)
 If h satisfies model (M1–D10) or (M10–D10), h

i is

strongly independent iff S

i ¼ | for all iAN:
(2)
 If h satisfies model (M2–D10), (M20–D10),
(M3–D10) or (M30–D10),h



i is strongly independent

iff S


i ¼ | for all iAN:
Proof. (1) Leth be a relation that can be represented in
model (M1–D10) (resp. (M10–D10)). According to
Proposition 3, part (2), S


i ¼ | is a necessary and
sufficient condition for such a relation h to admit a
representation in model (M1–D10) (resp. (M10–D10))
with ciðuiðxiÞ; uiðyiÞÞ a representation of h



i that is

increasing in its first argument and decreasing in the
second and ui a representation of h

7
i : In view of

Proposition 2, part 2(b), this is equivalent to saying that
h



i is strongly independent .
(2) A similar result holds forh



i iff S


i ¼ | in model

(M2–D10) and more constrained �D10 models. This
establishes part (2). &

5.4.3. Variants left aside

For the sake of conciseness, not all variants of intra-
attribute decomposable models have been investigated
here. For instance, instead of using Eq. (13), we might
have chosen to decompose pi as piðxi; yiÞ ¼
jiðuiðxiÞ; viðyiÞÞ; with a function ui possibly different
from the function vi: In models (M–D) and (M0–D), this
apparently more general decomposition has no inci-
dence but, when combined with monotonicity properties
of ji; the decomposition leads to models in which the
‘‘difference of preference’’ pi may be understood via two
possibly different linear orderings of Xi (for instance,
those represented by ui and vi; respectively). It is rather
straightforward—we leave it to the reader—to adapt the
reasonings we made in the case ui ¼ vi to the case in
which uiavi (mainly omitting AC3).

5.4.4. Relationships with models studied in the literature

Our intention, as stated in the introduction,
was to develop the axiomatisation of models (M–D)
in order to come as close as possible to Tversky’s
additive difference model (2), without making use of
unnecessary structural assumptions or hardly interpre-
table conditions.
Let h be representable in model (2), i.e. xhy iffPn
i¼1 FiðuiðxiÞ � uiðyiÞÞX0; for some functions ui and

some functions Fi that are increasing and odd. Such a
representation is a particular case of a representation of
h in model (M30–D10) with, e.g. Fða1;y; anÞ ¼Pn

i¼1 FiðaiÞ and jiðuiðxiÞ; uiðyiÞÞ ¼ uiðxiÞ � uiðyiÞ: F is
indeed increasing in all its arguments and odd and ji
increasing in its first argument, decreasing in the second
and skew-symmetric. A relation that is representable in
model (2) is thus complete and satisfies TC; TAC12;
OD
; OD7 and S

 (Theorem 5, part (6)). For a relation
h that satisfies model (2), ui is necessarily a numerical
representation of the marginal preference hi since
½ðxi; a�iÞhðyi; a�iÞ; 8a�iAXi� iff ½FiðuiðxiÞ � uiðyiÞÞX0�
iff uiðxiÞ � uiðyiÞX0�: We know (Bouyssou & Pirlot,
2004, Lemma 4, part (3)) that for a complete relationh

that satisfies TAC12; the marginal preference hi and
the marginal trace h

7
i are identical. Thus ui also

represents h7
i : It is not hard to convince oneself that

uiðxiÞ � uiðyiÞ is a numerical representation of a relation
on X 2

i that is at least as fine ash



i (as is true in general

of the functions ji involved in the representation of a
relation that belongs to model (M30–D10)). It cannot be
excluded for a relation belonging to model (2) that the
relation represented by uiðxiÞ � uiðyiÞ be strictly finer
than h




i : It is even possible that no regular representa-

tion ofh exist, i.e. that one cannot find a representation
ofh in model (2) in which uiðxiÞ � uiðyiÞ is a numerical
representation of h




i (this is the case if S



i a|; as
stated in Proposition 3.3).
Of all the models studied in this paper, (M30–D10) is

the one closest to model (2) and the latter is a special
case of the former. Coming closer to Tversky’s model
without using unnecessary and noninterpretable addi-
tional conditions is an interesting challenge for a further
study.
Another type of model alluded to in the introduction

is the nontransitive additive preference model (5).
Model (5) is a particular case of model (M10) (since
Fða1;y; anÞ ¼

Pn
i¼1 ai is increasing in all its arguments)

and of model (M30), as soon as the pi functions are
assumed to be skew-symmetric. We assume in the sequel
that the pi’s are skew-symmetric, which thus implies that
h fulfills TC and OD
: If h verifies model (5), the
function piðxi; yiÞ can be decomposed, as we shall see, into
a function jiðuiðxiÞ; uiðyiÞÞ that is nondecreasing in its
first argument and nonincreasing in the second, as soon as
h verifies AC123 and OD7: In such a case, we have:

xhy 3
Xn

i¼1
jiðuiðxiÞ; uiðyiÞÞX0: ð43Þ

To prove this assertion, it suffices to apply the strategy of
proof of Theorem 2, part (6) and Theorem 4, part (6). In
the denumerable case (Theorem 2, part (6)), we started
with a representation of h in model (M30), where pi

representsh


i ; since we know thath



i is strongly linear
for all i as soon as AC123 is in force, we get, by applying
Lemma 4, part (6), a decomposition of piðxi; yiÞ into
jiðuiðxiÞ; uiðyiÞÞ; in this representation, ji is nondecreas-
ing in its first argument and nonincreasing in the second
and ui is a representation ofh

7
i : In the nondenumerable

case, the same can be done provided OD7 holds.
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The only additional difficulty that appears when
starting with a representation in model (5) is that the pi’s
do not necessarily representh



i : It is easily shown that
the relation on X 2

i represented by piðxi; yiÞ is at least as
fine as h




i ; i.e. ½piðxi; yiÞXpiðzi;wiÞ� ) ½ðxi; yiÞh



i

ðzi;wiÞ�: In other words, using the completeness of
h




i ; ½ðxi; yiÞg



i ðzi;wiÞ� ) ½piðxi; yiÞ4piðzi;wiÞ�: If pi

fails to be a representation of h



i ; it is because it

assigns distinct values to some equivalent pairs
ðxi; yiÞB



i ðzi;wiÞ: Since such pairs are perfectly sub-
stitutable without any change in the preference h; we
may well transform pi into a representation pi

0 of h


i

just by selecting a particular representative pair in each
equivalence class ofh



i and assigning to all pairs in the
same class, the value assigned by pi to the selected pair.
In other terms, letting ðzi;wiÞ be the pair selected in an
equivalence class ofh



i ; we define pi
0ðxi; yiÞ ¼ piðzi;wiÞ

for all ðxi; yiÞB


i ðzi;wiÞ: We have xhy3Pn

i¼1 piðxi; yiÞX03
Pn

i¼1 pi
0ðxi; yiÞX0: When this regu-

larisation has been done, we know that the pi
0’s are

representations of the strongly linear relation h



i (if

AC123 holds) and can thus be decomposed into
jiðuiðxiÞ; uiðyiÞÞ: In the nondenumerable case, OD7 is
needed for guaranteeing the existence of a representa-
tion ui ofh

7
i : If we additionally impose thath satisfies

TAC12; the marginal preferences hi and the marginal
traces h

7
i are identical (Bouyssou & Pirlot, 2004,

Lemma 4, part (3)). Hence ui also represents h
7
i ; one

cannot guarantee in that case, even when imposing S

;
that ji can be transformed into a function ci increasing
in its first argument and decreasing in the second, as is
done in Theorem 5, and still yielding an additive
representation. In other words, we do not know the
conditions that guarantee the existence of a representa-
tion of h as in model (43) with ji increasing in its first
argument and decreasing in the second.
6. Conclusion

Our objective of characterising variants of model
(M–D) using a limited number of cancellation axioms
without any structural condition on the set of objects
has been achieved. The present work has focused on
further decomposition of the relations on ‘‘difference of
preferences’’ that are central in our previous study
(Bouyssou & Pirlot, 2002). Conditions that allow for
decomposing these in terms of well-behaved marginal
traces on each dimension have been obtained; this helps
clarify the inter-relations between marginal traces and
differences of preference (the relationships between
preference and marginal traces as well as between
marginal traces and marginal preferences have been
studied in Bouyssou and Pirlot (2004) without the
‘‘mediation’’ of ‘‘differences of preference’’). It is
remarkable that, at the level of generality we place
ourselves, there is no synergy between the axioms that
permit a decomposition in terms of differences of
preference (the models studied in Bouyssou and Pirlot
(2002) and the axioms that permit a further decomposi-
tion of the differences of preference in terms of marginal
traces; in other words these blocks of axioms are
independent. The resulting model offers a framework
that enables us to understand some fundamental
features of a large variety of preference models.
The line of research initiated in Bouyssou and Pirlot

(2002) has also proved useful here. The axioms that are
used:

* appear to have a clear interpretation;
* could be subjected to empirical tests without
theoretical difficulty.

Some models have been left aside, for instance those
dropping only partially the additivity and subtractivity
requirement of the additive difference model, such as:

xhy iff Fð½uiðxiÞ � uiðyiÞ�ÞX0;

with F nondecreasing (or increasing) in its n arguments.
Their analysis requires a different approach (in order to
capture subtraction).
What was said in Bouyssou and Pirlot (2002) on the

ability of models of type (M) to contain as particular
cases most rules for the comparison of multidimensional
objects remains valid here. All of these rules make
indeed use of marginal preferences on each dimension.
In particular, the various models studied in this
paper were shown in Greco, Matarazzo, and S"owiński
(1999a, b) to have close connections with preference
models representable by decision rules extracted from
rough sets approximations.
Future research on the topics introduced in this paper

will include:

* the specialisation of our results to the case in which X

is an homogeneous Cartesian product which includes
the important case of decision under uncertainty;

* the study of additional conditions allowing to specify
a precise functional form for F and ji;

* the generalisation of results to aggregation methods
leading to valued preference relation (see Bouyssou &
Pirlot, 1999; Bouyssou, Pirlot & Vincke, 1997; Pirlot
& Vincke, 1997).
Appendix A. Proofs

A.1. Proof of Lemma 2

By Theorem 1.3, we know that model (M0–D1)
implies that h is reflexive and independent. The
necessity of hypothesis LCC is also clear since it
determines the existence of appropriate functions ui:
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We show that it is possible to build a representation of
h in model (M0–D1) given that h is reflexive,
independent and satisfies LCC: The proof differs from
that of Lemma 1, in the general not necessarily
denumerable case, only in the construction of ji: In
order to get jiðuiðxiÞ; uiðxiÞÞ ¼ 0; for all xiAXi; we build
upon the construction of ji proposed in the proof of
Lemma 1. Let ji

0ðuiðxiÞ; uiðyiÞÞ ¼ f1ðuiðxiÞÞ þ f2ð1�
uiðyiÞÞ; with f1 and f2 as defined in the proof of Lemma
1 (we have just renamed as ji

0; the function called ji in
the proof of Lemma 1). Let g:�0; 1½-�0; 1½ be the
function that maps its argument aA�0; 1½ onto a number
b; with bA�0; 1½; g works on the binary representation
ða1; a2;y; a2k�1; a2kyÞ of a; building the ternary
representation ðb1;y; bk;yÞ of b as follows:

bk ¼
0 if ða2k�1; a2kÞ ¼ ð0; 0Þ;
1 if ða2k�1; a2kÞ ¼ ð0; 1Þ or ð1; 0Þ;
2 if ða2k�1; a2kÞ ¼ ð1; 1Þ

8><
>:

for k ¼ 1; 2;y
We define jiðuiðxiÞ; uiðyiÞÞ ¼ gðji

0ðuiðxiÞ; uiðyiÞÞÞ � 1
2
:

The function ji takes its values in the � � 1
2
; 1
2
½ interval. It

is not hard to convince oneself that, for all xi; yi; ziAXi;
uiðxiÞ4uiðyiÞ implies jiðuiðxiÞ; uiðyiÞÞ4jiðuiðziÞ; uiðyiÞÞ;
clearly, ji is also decreasing in its second argument. We
observe in addition that, for all xiAXi; f1ðuiðxiÞÞ þ
f2ð1� uiðxiÞÞ is a number a; the binary representation of
which is such that ða2k�1; a2kÞ ¼ ð0; 1Þ or ð1; 0Þ for all k;
g maps such a number onto the number with ternary
representation ð1; 1;y; 1;yÞ; i.e. onto 1

2
; which proves

that jiðuiðxiÞ; uiðxiÞÞ ¼ 0: With the same definition of F

as in the proof of Lemma 1, observe that Fð0Þ ¼ 1X0 as
required.
It is easy to verify that the constructed representation

is well-defined (see Bouyssou and Pirlot (2002) for
more details). The proof of the independence of the
three axioms characterising the model is left to the
reader. &

A.2. Proof of Lemma 5

(1) Necessity. Assume pi is used in a representation
according to model (M1) (or (M10)) and suppose there
exist xi; yi; zi;wi such that ðzi;wiÞg


i ðxi; yiÞ and
piðzi;wiÞppiðxi; yiÞ: There would then exist a�i; b�iAX�i

such that Not½ðxi; a�iÞhðyi; b�iÞ� and ðzi; a�iÞhðwi; b�iÞ:
A representation as in model (M10) implies that
Fðpiðxi; yiÞ; ðpjðaj; bjÞÞjaiÞo0 and Fðpiðzi;wiÞ;
ðpjðaj; bjÞÞjaiÞX0; which contradicts the nondecreasing-
ness of F :
Sufficiency: This results from the fact that the

construction described by (30) does lead to a representa-
tion ofh in a model of type (M10) as soon as pi verifies
condition (32). The proof is identical to that of
Theorem 1.3 in Bouyssouand Pirlot (2002).
(2) Necessity. Suppose there exist xi; yi; zi;wi such that
ðzi;wiÞg



i ðxi; yiÞ and piðzi;wiÞppiðxi; yiÞ: Then either

ðzi;wiÞg

i ðxi; yiÞ with piðzi;wiÞppiðxi; yiÞ

or ðyi; xiÞg

i ðwi; ziÞ with piðyi; xiÞXpiðwi; ziÞ:

In either case, an argument similar to that used in the
proof of the necessity, in part (1), leads to the
conclusion.
Sufficiency: In model (M20), it is proved like for model

(M10). Proving it for model (M3) is slightly more
delicate since the case xBy must be distinguished from
xgy; the proof can be done however using the same
arguments as in Theorem 1.5 of Bouyssou and Pirlot
(2002).
(3) Necessity. The same argument as for (M20) and

(M3) shows that condition (33) must be fulfilled.
Suppose that condition (34) is violated. One would then
have ðzi;wiÞB



i ðxi; yiÞ; ðxi; a�iÞBðyi; b�iÞ for some
a�i; b�iAX�i and piðzi;wiÞapiðxi; yiÞ: Since F is strictly
increasing, Fðpiðzi;wiÞ; ðpjðaj; bjÞÞjaiÞa0 while
ðzi; a�iÞBðwi; b�iÞ; a contradiction.
Sufficiency: Well-definedness of F is shown as for

(M3). For proving increasingness, suppose
piðzi;wiÞ4piðxi; yiÞ: This implies that ðzi;wiÞh



i

ðxi; yiÞ: If xgy; Lemma 3.3 of Bouyssou and Pirlot
(2002) says that ðzi; x�iÞgðwi; y�iÞ and the conclusion
follows from the definition of F : If xBy;
Fððpjðxj; yjÞÞj¼1;y;nÞ ¼ 0: Consider two cases. If
ðzi;wiÞg



i ðxi; yiÞ; Lemma 3.5 of Bouyssou and Pirlot
(2002) implies that ðzi; x�iÞgðwi; y�iÞ and hence F

strictly increases since Fðpiðzi;wiÞ; ðpjðxj; yjÞÞjaiÞ40:
The second case is when ðzi;wiÞB



i ðxi; yiÞ; then, by
Lemma 3.4 of Bouyssou and Pirlot (2002),
ðzi; x�iÞBðwi; y�iÞ; this case is excluded by condition
(34). Finally, the case when Not½xhy� is dealt with like
for model (M3). &

A.3. Proof of Lemma 6

(1) Assuming that S is denumerable, we can modify j
in order to eliminate all situations described either by
Eq. (35) or Eq. (36). This can be done by transforming
jðu; vÞ for all ðu; vÞAj�1ðrÞ; rAS; into

aþ jðu; vÞ þ bðu � vÞ;

where a and b are arbitrary positive coefficients. After
such a transformation, Eqs. (35) and (36) no longer
hold within j�1ðrÞ: Applying such a transformation to
the whole domain U � U does not solve our problem
since, in general, it does not preserve the ordering
induced on U � U by j; indeed, if jðu; vÞ ¼ rAS and
jðu0; v0Þ is either larger or smaller than r; we must
arrange that it remains so after the transformation.
The idea is to make a and b depend on ðu; vÞ in order
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that for all rAS;

* a small interval rather than a single value r is reserved
for representing the pairs ðu; vÞAj�1ðrÞ;

* these intervals are disjoint;
* the other values of j (not in S) are trans-
formed avoiding to let them fall into these
intervals and preserving the order induced on
U � U by j:

Consider separately the positive part Sþ (r40) and the
negative part S� (ro0) of S (the case r ¼ 0 is treated
apart) and number their respective elements in arbitrary
order:

rþ1 ; rþ2 ;y for the elements of Sþ;

r�1 ; r�2 ;y for the elements of S�:

Note that it is not in general possible to number these
elements in increasing (or decreasing) order of their
value since S may have accumulation points or even be
dense in R:
For each u; v in U � U such that jðu; vÞ40; we define

cðu; vÞ as follows:
jðu; vÞ þ 1þ

P
k:rþ

k
ojðu;vÞð1=2Þ

k if jðu; vÞeS;

rþi þ 1þ
P

k:rþ
k
orþ

i
ð1=2Þk

þ ð1=2Þiþ1ð1þ u � vÞ if jðu; vÞ ¼ rþi :

8>><
>>:

ðA:1Þ

For each u; v in U � U such that jðu; vÞo0; we define
cðu; vÞ as follows:

jðu; vÞ � 1�
P

k:r�
k
4jðu;vÞ ð1=2Þ

k if jðu; vÞeS;

r�i � 1�
P

k:r�
k
4r�

i
ð1=2Þk

� ð1=2Þiþ1ð1� u þ vÞ if jðu; vÞ ¼ r�i :

8>><
>>:

ðA:2Þ

The class of pairs such that jðu; vÞ ¼ 0 requires
particular attention since it contains the diagonal
fðu; uÞ; uAUg where cðu; uÞ must be kept equal to 0:
To fulfil this requirement, we define, for ðu; vÞ such that
jðu; vÞ ¼ 0; cðu; vÞ ¼ u � v; the image by c of the pairs
ðu; vÞ such that jðu; vÞ ¼ 0 all lie in the � � 1; 1½ interval.
A picture of the transformation of j into c is shown

in Fig. 3. The function c is now fully described. It
vanishes on the diagonal ðu; uÞ; for all uAU ; it is strictly
Fig. 3. Transformation of j into c:
monotonic on j�1ðrÞ; for all rAS; to each value of j
corresponds a single value of c except for the values of
j belonging to S; hence (38) is satisfied. In order to
show that c is strictly monotonic everywhere on U � U ;
we have to prove that for all u; v; u0; v0AU ; it
satisfies (37).
Let us check the property for positive values of j: The

negative case is treated symmetrically; the case in which
jðu; vÞ40 and jðu0; v0Þo0 is trivial since c keeps the
sign of j; the case in which jðu; vÞ ¼ 0 (resp. 40) and
jðu0; v0Þo0 (resp. ¼ 0) is dealt with observing that when
j ¼ 0; c belongs to the interval � � 1; 1½ and if j40
(resp. jo0), then c41 (resp. co� 1).
In the cases in which neither jðu; vÞ nor jðu0; v0Þ

belong to S; the result comes from the fact that
the transformation applied both to jðu; vÞ and
jðu0; v0Þ; i.e.
cðu; vÞ ¼ jðu; vÞ þ 1þ

X
k:rþ

k
ojðu;vÞ

ð1=2Þk

is an increasing function of jðu; vÞ: In case jðu; vÞ ¼ rþi
and jðu0; v0ÞeS; we have:

cðu0; v0Þ ¼jðu0; v0Þ þ 1þ
X

k:rþ
k
ojðu;vÞ

ð1=2Þk

o rþi þ 1þ
X

k:rþ
k
orþ

i

ð1=2Þk

ocðu; vÞ
since 1þ u � v40: The remaining two cases are similar.
Note that the definition of c ensures that c is skew-

symmetric as soon as j has this property.
(2) Suppose that S is not denumerable; we show that a

function c that is increasing in its first argument and
decreasing in the second and satisfies (37) may not exist.
For each rAS; select two pairs ður; vrÞ and ður

0; vr
0Þ such

that either Eq. (35) is fulfilled (with ður; vrÞ ¼ ða; cÞ and
ður

0; vr
0Þ ¼ ðb; cÞ) or Eq. (36) is fulfilled (with ður; vrÞ ¼

ða; dÞ and ður
0; vr

0Þ ¼ ða; cÞ). Suppose that there exists c
such that for all rAS; cður; vrÞ4cður

0; vr
0Þ: The intervals

�cður
0; vr

0Þ;cður; vrÞ½ with rAS; would form a nondenu-
merable family of disjoint nonempty open intervals of R;
which does not exist since Q is dense in R: &
Appendix B. Examples

This section puts together the descriptions of 18
examples that are used in the main text, mostly for
showing the independence of the axioms. The Examples
from 1 to 13 serve for the case in which X is
denumerable; the remaining ones illustrate the non-
denumerable case. Some properties of the examples are
summarised in Tables 2–4.

Example 1. Let X be any product set with Xi nonempty
and at most denumerable, for all i ¼ 1;y; n: Let h be
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the empty relation on X : Obviously h is neither
complete nor reflexive and conditions RC1; RC2; TC;
AC1; AC2; AC3 are trivially satisfied as well as
independence; axioms TAC1 and TAC2 are not contra-
dicted either.

Example 2. Let X ¼ fa; b; cg � fd; e; f g; xhy iff
Fðp1ðx1; y1Þ; p2ðx2; y2ÞÞX0 with

Fða; bÞ ¼
aþ b if jaþ bj42;

0 otherwise

�

and p1 and p2 given in the following tables:

p1 a b c

a 0 �2 �1
b 2 0 1

c 1 �1 0

p2 d e f

d 0 0 �2
e 0 0 �2
f 2 2 0

F is odd and nondecreasing and p1; p2 are skew-
symmetric; henceh is complete, satisfies RC1; RC2 and
is independent. TC is violated since ðc; dÞhða; f Þ;
ða; eÞhðc; dÞ; ða; dÞhðb; eÞ but Not½ða; dÞhðb; f Þ�: It is
easily checked that AC1; AC2 and AC3 hold with bg7

1

cg7
1 a and fg7

2 ½d; e�; TAC1 and TAC2 are not in
force.

Example 3. Let X ¼ fa; b; cg � fd; eg; xhy iff
Fðp1ðx1; y1Þ; p2ðx2; y2ÞÞX0 with p1 and p2 given in the
following tables:

p1 a b c

a 0 2 �1
b �2 0 �1
c 1 1 0

p2 d e

d 0 2

e �2 0

and F such that:

F �2 0 2

�2 �41 �21 0

�1 �31 �9 10

0 �19 0 19

1 �10 9 31

2 0 21 41

F is odd and increasing in its two arguments and p1; p2
are skew-symmetric implying that h is complete,
satisfies TC and hence satisfies RC1; RC2 and is
independent. It is easy to check that we have: cg�

1 a;
ag�

1 b; cg�
1 b; cgþ

1 b; agþ
1 b; Not½chþ

1 a�; Not½ahþ
1 c�;

dg7
2 e: Hence AC2 and AC3 hold but AC11 is violated

(while AC12 holds). One verifies indeed that we have
ðc; dÞhðc; dÞ and ða; eÞhðb; dÞ but neither ða; dÞhðc; dÞ
nor ðc; eÞhðb; dÞ: TAC11 is therefore not in force since
h

þ
1 is incomplete (Lemma 4.8). One easily verifies,

using condition (25), that TAC2 holds. It suffices to
check that, for all ðx1; x2Þ; ðy1; y2ÞAX1 � X2; with
ðx1; x2ÞBðy1; y2Þ; the indifference between ðx1; x2Þ and
ðy1; y2Þ becomes strict preference as soon as y1 (resp. y2)
is substituted by z1 (resp. z2) such that y1g

�
1 z1 (resp.

y2g
�
2 z2).

Example 4. This example is defined as the previous one
(example 3) except that p1 becomes �p1: The effect of
this modification is to interchange the roles of AC11 and
AC21 since the value associated to the pair ðy1; x1Þ is the
value that was formerly associated to ðx1; y1Þ in
Example 3. The relation h is complete and verifies
TC; RC1; RC2 and independence. We have: bgþ

1

agþ
1 c; bg�

1 c; bg�
1 a; Not½ah�

1 c�; Not½ch�
1 a�; dg7

2 e:
Hence AC1 and AC3 hold but AC21 is violated (while
AC22 holds). One verifies indeed that ðc; dÞhðc; dÞ and
ðb; eÞhða; dÞ but neither ðc; dÞhða; dÞ nor ðb; eÞhðc; dÞ:
Hence h

�
1 is not complete and TAC21 is violated

(Lemma 4.9). One verifies as in Example 3 that TAC1
holds.

Example 5. Let X ¼ fa; b; c; dg � fw;x; y; zg; h is
defined as in Example 3 with the same table for F and
p1; p2 given in the following tables:

p1 a b c d

a 0 1 2 2

b �1 0 1 0

c �2 �1 0 �2
d �2 0 2 0

p2 w x y z

w 0 2 2 2

x �2 0 2 2

y �2 �2 0 2

z �2 �2 �2 0

Since F is odd and increasing and p1; p2 are skew-
symmetric, we know thath is complete and verifies TC

(and hence RC1; RC2 and independence). It can be
checked that we have: wg7

2 xg7
2 yg7

2 z; agþ
1 dgþ

1

bgþ
1 c; ag�

1 bg�
1 dg�

1 c: Hence AC1 and AC2 hold but
AC3 is violated since neither dg7

1 b nor bg7
1 d:

Example 6. Let X ¼ fa; bg � fz;wg; xhy iff
p1ðx1; y1Þ þ p2ðx2; y2ÞX0 with p1 and p2 given by the
following tables:

p1 a b

a �1 1

b �1 1

p2 z w

z 1 0

w 1 1

h is clearly complete: the only two pairs missing in h

are Not½ða; zÞhða;wÞ� and Not½ðb; zÞhða;wÞ�: Relation
h satisfies RC1 (by construction) but violates RC2
because it is not independent: ½ðb; zÞhðb;wÞ� but
Not½ða; zÞhða;wÞ�: Relation h satisfies AC1; AC2;
AC3 with wh7

2 z and ag�
1 b; aBþ

1 b:

Example 7. Let X ¼ X1 � X2; with X1 ¼ fa; b; c; dg and
X2 ¼ fw; x; y; zg: For all x; yAX ; xhy iff
Fðp1ðx1; y1Þ; p1ðx2; y2ÞÞX0; with

Fðp1; p2Þ ¼
p1 þ p2 if jp1 þ p2j42;

0 otherwise:

�
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Let p1 and p2 be defined by the following tables:

p1 a b c d

a 0 1 3 3

b �3 0 0 3

c �4 0 0 1

d �4 �2 �2 0

p2 w x y z

w 0 0 2 4

x 0 0 2 4

y �2 �2 0 4

z �4 �4 �4 0

Since F is nondecreasing in both its arguments, RC1
holds. The relationh is independent and reflexive since
p1ðu; uÞ ¼ p2ðv; vÞ ¼ 0 for all uAX1 and vAX2 and
Fð0; 0Þ ¼ 0: We have ah7

1 bh7
1 ch7

1 d and ½w; x�h7
2

yh7
2 z; h thus satisfies AC123:

RC21 does not hold since one can verify that
ðb; zÞhðd; yÞ; Not½ða; zÞhðb; yÞ�; ðd; xÞhðb; xÞ and
Not½ðb; xÞhða; xÞ�:

Example 8. The following example appears as Example
4 in Bouyssou and Pirlot (2004). Let X ¼ X1 � X2 with
X1 ¼ fx1; y1; z1g and X2 ¼ fx2; y2; z2g: Consider the
reflexive binary relation h identical to the complete
order: ðx1; x2Þgðx1; y2Þgðy1; x2Þgðx1; z2Þgðy1; y2Þ
gðz1; x2Þgðy1; z2Þgðz1; y2Þgðz1; z2Þ; except that
ðy1; y2ÞBðx1; z2Þ and ðz1; x2ÞBðy1; y2Þ: It is shown in
Bouyssou and Pirlot (2004) that this relation is
complete, independent and satisfies TAC12 (it is a
nontransitive semi-order). The relation h does not
verify RC11 sinceh



1 is not a complete relation; we have

indeed neither ðz1; y1Þh

1ðy1; x1Þ nor ðy1; x1Þh


1ðz1; y1Þ
since ðz1; x2Þhðy1; y2Þ; ðy1; y2Þhðx1; z2Þ but
Not½ðy1; x2Þhðx1; y2Þ� and Not½ðz1; x2Þhðy1; z2Þ�: The
incomplete (yet transitive) relation h



1 is the following:

ðx1; z1Þ
k

ðx1; y1Þ2ðy1; z1Þ
k

ðx1; x1Þ2ðy1; y1Þ2ðz1; z1Þ
k

ðy1; x1Þ; ðz1; y1Þ
k

ðz1; x1Þ
(the pointing down arrows represent g


1; the left-right
arrows represent B


1; the nonrepresented pairs of g


1

and B

1 obtain by transitive closure of the diagram).

Note that ðy1; x1Þ; ðz1; y1Þ are not joined by a left–right
arrow since they are incomparable, as proven above.
Property RC12 is violated; the same example implies
that neither ðx2; y2Þh


2ðy2; z2Þ nor ðy2; z2Þh

2ðx2; y2Þ:

One easily checks h satisfies RC21 using the equiva-
lence RC2i iff ½8a; b; c; dAXi;Not½ða; bÞh


i ðc; dÞ� )
ðb; aÞh


i ðd; cÞ� (see Bouyssou & Pirlot, 2002, Lemma
1, part (2)). One similarly proves that RC22 holds and
h thus satisfies RC2: Property TC does not hold since
RC1 is violated.
Example 9. Let X ¼ Q2 and, for all x; yAX ; xhy

3Fðp1ðx1; y1Þ; p2ðx2; y2ÞÞX0; with piðxi; yiÞ ¼
2
Parctanðxi � yiÞ and Fðp1; p2Þ ¼ p1 þ p2 þ p1p2:
A variant of this example, where X ¼ R2 instead of

Q; was shown to satisfy AC123 in Bouyssou and Pirlot
(2002, Example 3). It is easily checked that h satisfies
model (M20–D1) since all functions pi are skew
symmetric, increasing in their first argument and
decreasing in the second and F is increasing in all its
arguments (since the latter take their values in the � �
1; 1½ interval). The relation h is not complete (taking
ðx; yÞ such that p1ðx1; y1Þ ¼ 1=4 and p2ðx2; y2Þ ¼ �1=4;
we have neither ðx1; x2Þhðy1; y2Þ nor ðy1; y2Þhðx1; x2Þ).
Hence h cannot be represented in model (M3–D1).
Note that the above properties also hold (or not) in case
X ¼ R2:

Example 10. Let X ¼ Q2 and, for all x; yAX ;
xhy3Fðp1ðx1; y1Þ; p2ðx2; y2ÞÞX0; with piðxi; yiÞ ¼
xi � yi and

Fðp1; p2Þ ¼
p1 þ p2 if jp1 þ p2jX1;

0 otherwise:

�

A variant of this example (with X ¼ R2 instead of Q2),
was shown to satisfy AC123 in Bouyssou and Pirlot
(2002, Example 4). By construction, h has a represen-
tation in (M3–D1). Simple examples show that h

violates TC so that it cannot be represented in model
(M30–D1). One shows similarly that neither TAC1 nor
TAC2 holds. All the above properties are also valid (or
not) in case X ¼ R2:

Example 11. Let X ¼ fa; b; c; dg � f0; 1g; xhy iff
p1ðx1; y1Þ þ p2ðx2; y2ÞX0 with p2ðx2; y2Þ ¼ x2 � y2 and
p1 given by the following table:

p1 a b c d

a 0 1 �1 �1
b �1 0 1 1

c 1 �1 0 1

d 1 �1 �1 0

Since p1 and p2 are skew-symmetric and F odd and
increasing in its two arguments, h satisfies RC12 and
TC: It satisfies none of AC1; AC2; AC3: It satisfies
neither AC11 nor AC21 since, for any x2AX2;
ða; x2Þhb; x2Þ; ðc; x2Þhðd; x2Þ; Notððc; x2Þhðb; x2ÞÞ
and Notðða; x2Þhðd; x2ÞÞ: It does not satisfy AC31;
since for any x2AX2; ða; x2Þhðb; x2Þ; ðd; x2Þhða; x2Þ;
Notððc; x2Þhðb; x2ÞÞ and Notððd; x2Þhðc; x2ÞÞ:

Example 12. Let X ¼ X1 � X2 � X3 ¼ Q
3
þ (where Qþ

denotes the set of positive rational numbers) and for all
x; yAQ

3
þ; xhy iff Fðx1; x2; x3ÞXFðy1; y2; y3Þ; with

Fðx1; x2; x3Þ ¼ ðx þ yÞ � z: This relation is a weak order
and hence is complete. Since F is increasing in its three
arguments, h satisfies AC123 and TAC12:
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It satisfies neither RC1 nor RC2: To show the former,
consider the following sets of elements belonging to
X1;X2 and X3:

X1 X2 X3

a ¼ 0:1 i ¼ 5 a ¼ 1

b ¼ 0:1 j ¼ 0:1 b ¼ 5

c ¼ 5 k ¼ 0:1 g ¼ 5

d ¼ 5 l ¼ 5 d ¼ 1:

It is easy to verify that ða; i; aÞhðb; j; bÞ and
Not½ðc; i; aÞhðd; j; bÞ�; which implies that Not½ðc; dÞh


1

ða; bÞ�: We have similarly, ðc; k; gÞh ðd; l; dÞ and
Not½ða; k; gÞhðb; l; dÞ�; which implies that Not½ða; bÞh


1

ðc; dÞ�:Henceh

1 is incomplete and RC11 does not hold.

To show that RC21 is also violated, one verifies
that ðb; l; dÞhða; k; gÞ and Not½ðd; l; dÞhðc; k; gÞ�; which
implies Not½ðd; cÞh


1ðb; aÞ�: This together with the
previously obtained Not½ðc; dÞh


1ða; bÞ� invalidates
RC21: As a consequence, TC does not hold either.
Note that the above properties also hold (or not) in case
X ¼ R3

þ:

Example 13. Let X ¼ Q�Q; where Q denotes the set
of rational numbers; for x; yAX ; say that xhy iff
p1ðx1; y1Þ þ p2ðx2; y2ÞX0 with

piðxi; yiÞ ¼
xi � yi if jxi � yij41;

0 otherwise:

�

It is easily checked that h is complete and satisfies TC

as well as AC1; AC2; AC3; it does not satisfy TAC1
since we have ð0; 0Þhð1; 0Þ; ð1; 0Þhð2; 0Þ; ð2; 0Þhð0; 2Þ
and Not½ð0; 0Þhð0; 2Þ�; contrary to TAC11: One simi-
larly shows that TAC2 fails to be true since we have
ð�2; 0Þhð�1; 1Þ; ð�1; 1Þhð0; 0Þ; ð0; 0Þhð�2; 2Þ and
Not½ð0; 0Þhð0; 2Þ�; contrary to TAC21:

Example 14. Let X1 ¼ X2 ¼ R and X ¼ X1 � X2 ¼ R2:
For x ¼ ðx1; x2Þ; y ¼ ðy1; y2ÞAX ; we say that xhy iff
x1 � y14y2 � x2 or ½x1 � y1 ¼ y2 � x2 and
Dðx1; y1ÞX0�; with

Dðx1; y1Þ ¼

1 if ðx140 and y1p0Þ
or ðx1 ¼ 0 and y1o0Þ;

0 if x1; y140 or

x1 ¼ y1 ¼ 0 or x1; y1o0;

�1 if ðy140 and x1p0Þ or
ðy1 ¼ 0 and x1o0Þ:

8>>>>>>>><
>>>>>>>>:

In other words, the objects are ranked in order of
decreasing value of the sum of their coordinates
(x1 þ x2); if x and y are tied, the tie is possibly broken
when the sign of x1 is greater than the sign of y1 (the sign
of a real number r being 1 if r40; 0 if r ¼ 0 and �1 if
ro0: It is easy to check that h is complete and
verifies TC; we have h




i ¼ h



i for i ¼ 1; 2;

ðx1; y1Þh

1ðz1;w1Þ iff x1 � y14z1 � w1 or ½x1 � y1 ¼

z1 � w1 and Dðx1; y1ÞXDðz1;w1Þ�; ðx2; y2Þh

2ðz2;w2Þ iff

x2 � y2Xz2 � w2: Clearly, the weak order h


2 admits a

representation on the reals, while h


1 does not; OD


1 is
not verified. Relations h

7
1 and h

7
2 are the usual

ordering on R; AC1; AC2; AC3 and OD7 are thus
satisfied. So are TAC12 since (24) and (25) hold.
Property S



2 is clearly satisfied and the same holds for
S


1 since ðx1; z1ÞB



1 ðy1; z1Þ implies x1 ¼ y1:

Example 15. Let X1 ¼ ðRþ,f0gÞ � f0; 1g; where Rþ
denotes the set of positive real numbers, and X2 ¼ R;
X ¼ X1 � X2: If x denotes an element of X ; its first
coordinate x1AX1 has itself two components that we
denote respectively x1

0 ðARþÞ and x00
1 ðAf0; 1gÞ: For

x; yAX ; we say that xhy iff p1ðx1; y1Þ þ p2ðx2; y2ÞX0
with p2ðx2; y2Þ ¼ x2 � y2 and

p1ðx1; y1Þ ¼

2 if x1
04y1

0 ¼ 0 and x00
1 ¼ 1;

1 if x1
04y1

0a0

or ½x104y1
0 ¼ 0 and x00

1 ¼ 0�;
0 if x1

0 ¼ y1
0;

�1 if y1
04x1

0a0

or ½y104x1
0 ¼ 0 and y00

1 ¼ 0�;
�2 if y1

04x1
0 ¼ 0 and y00

1 ¼ 1:

8>>>>>>>>>>><
>>>>>>>>>>>:

h is reflexive, independent and complete; it satisfies
TC (and hence RC1 and RC2). It satisfies AC11
and AC21: x1g

7
1 y1 iff x1

04y1
0 or ½x10 ¼

y1
0a0 and x00

1 ¼ 1 and y00
1 ¼ 0�; x1B7

1 y1 iff x1 ¼ y1 or
½x10 ¼ y1

0 ¼ 0�; h
7
1 is complete and, hence, AC31 is

satisfied. Clearly, h does not satisfy OD7
1 : Property

AC1232 as well as OD7
2 are obviously in force. On the

contrary, TAC11 is not in force since taking for instance
x1 ¼ ð3; 0Þ; y1 ¼ ð2; 0Þ and z1 ¼ ð1; 0Þ; we have
ðy1; 0ÞBðz1; 1Þ and ðx1; 0ÞBðz1; 1Þ; we also have
x1g

þ
1 y1; which, in view of (24), is not compatible with

TAC11: Finally, since h



1 has only five equivalence

classes, condition S


1 is trivially fulfilled; this is also the

case of S


2 :

Example 16. Let X1 ¼ fx1 ¼ ðx11; x12Þ : x11AR; x12 ¼
0 if x11a0 and x12Af0; 1g if x11 ¼ 0g; X2 ¼ Q; the
set of rational numbers. Define, for all x; yAX ;

ðx1; x2Þhðy1; y2Þ

iff

x11 � y114y2 � x2 or

x11 � y11 ¼ y2 � x2 and

x12 � y12X0:

�
8<
:

This relation is complete, independent, satisfies TC;
TAC12; OD
 and OD7 but not S
: Completeness and
independence are straightforward. The relation h



1
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is as follows:

ðx1; y1Þh

1ðz1;w1Þ

iff

x11 � y114z11 � w11 or

x11 � y11 ¼ z11 � w11eQ or

x11 � y11 ¼ z11 � w11AQ and

x12 � y12Xz12 � w12:

�
8>>><
>>>:

This relation is complete and equal to h



1 ; hence h

satisfies RC121: It also verifies OD

1 because the union of

the three sets fðx1; y1ÞAX 2
1 such that x11 � y11AQ and

x12 � y12 ¼ kg for k ¼ �1; 0; 1 forms a denumerable set
that is dense in X 2

1 for the weak order h



1 : Using

Lemma 9 below—a useful counterpart, for TC; of
Lemma 4, parts (5) and (6), that concerns TAC12—one
sees that h



1 satisfies TC1 since ðx1; x2ÞBðy1; y2Þ and
ðz1;w1Þg



1 ðx1; y1Þ implies ðz1; x2Þgðw1; y2Þ:
Since the relation h




2 can be represented by the

function p2ðx2; y2Þ ¼ x2 � y2; it is easy to see that it is
complete and thath satisfies RC122; TC2 and OD


2:We
hence get thath is complete and satisfies TC and OD
:
The relation h

7
1 is as follows:

x1h
7
1 y1 iff

x114y11 or

ðx11 ¼ y11 ¼ 0 and x12Xy12Þ

�

Since the additional condition in the case in which x11 ¼
y11 ¼ 0 applies only when x11 ¼ 0; this does not raise
any problem for the existence of a numerical representa-
tion of h7

1 and OD7
1 holds. This relation is obviously

complete and, thus, h verifies AC1231: One easily
checks, using conditions (24) and (25) that TAC121 is in
force. Since h7

2 is just the natural order on Q; one can
show without difficulty that h

7
2 enjoys the same

properties as h7
1 :

Finally, S
 and S

 do not hold. Let rAR\Q: In the
equivalence class of B


1ð¼ B


1 Þ defined by

fðx1; y1Þ such that x11 � y11 ¼ rg; the following two
pairs can be found: ðð0; 0Þ; ð�r; 0ÞÞ and ðð0; 1Þ; ð�r; 0ÞÞ;
we have: ð0; 0Þg7

1 ð0; 1Þ: The set S

i ð¼ S



i ; in this
example) thus contains every equivalence class asso-
ciated with an irrational number r and this set is not
denumerable, in violation of S
 and S

:

Lemma A.1. If h is complete, TCi is equivalent to

RC12i and the following condition:

½ðxhy and ððzi;wiÞg


i ðxi; yiÞÞ

) ððzi; x�iÞhðwi; y�iÞÞ� ðA:3Þ

Proof. It is shown in Bouyssou and Pirlot (2002,
Lemma 2, part (4)), that if h is complete, TCi implies
RC12i: In Lemma 3, part (5) of the same paper, one
proves that under the same completeness hypothesis, TCi

implies condition (A.3). The only thing that remains to
be proven is thus the indirect part of the lemma. Suppose
to the contrary that TCi does not hold, i.e. that there are
xi; yi; zi;wiAXi and a�i; b�i; c�i; d�iAX�i such that:

ðxi; a�iÞhðyi; b�iÞ ðA:4Þ

and ðzi; b�iÞhðwi; a�iÞ ðA:5Þ

and ðwi; c�iÞhðzi; d�iÞ ðA:6Þ

and Not½ðxi; c�iÞhðyi; d�iÞ�: ðA:7Þ
Sinceh satisfies RC12i; h




i is complete. In view of the

latter, (A.6) and (A.7) yield ðwi; ziÞg


i ðxi; yiÞ and

consequently ðyi; xiÞg


i ðzi;wiÞ: Applying (A.3) to the

latter together with (A.5) yields ðyi; b�iÞgðxi; a�iÞ
contradicting (A.4). &

Example 17. Modify the set on which the relation in
Example 16 is defined without changing the definition of
h itself. Let X1 ¼ fx1 ¼ ðx11; x12Þ : x11AQ; x12 ¼
0 if x11a0 and x12Af0; 1g if x11 ¼ 0g; X2 ¼ Z; the set
of signed integers. It is straightforward to adapt the
definitions of h




i and h

7
i ; all properties that were

satisfied by h in Example 16 remain valid here; S

 is
now valid since Q\Z is a denumerable set. For each
rAQ\Z; the equivalence class of B



1 defined by
fðx1; y1Þ such that x11 � y11 ¼ rg contains the two pairs
ðð0; 0Þ; ð�r; 0ÞÞ and ðð0; 1Þ; ð�r; 0ÞÞ with ð0; 0Þg7

1 ð0; 1Þ:
The set S



i is denumerable and h has a representation
in model (M30–D10).

Example 18. Let h be the relation ‘‘is not included in’’
defined on X ¼ 2R; the set of subsets of R: In this
example, n ¼ 1 and X1 ¼ X : The cardinality of X is
strictly larger than that of R: We have xhy iff
Fðp1ðx1; y1ÞÞ ¼ p1ðx1; y1ÞX0; with

p1ðx1; y1Þ ¼
1 if x1Py1;

�1 if x1iy1;

0 otherwise:

8><
>:

Indeed, p1ðx1; y1Þ is nonnegative iff the subset of R that is
labeled by x1 is not strictly included in the subset labeled by
y1: It is clear that h satisfies the (M30) model. The
equivalence relationB



1 has only three classes, namely the
set of pairs ðx1; y1Þ such that x1*y1; the pairs such that
x1Cy1 and all the other pairs; OD
 holds. On the contrary,
relation B7

1 is quite discriminant since x1B7
1 y1 iff x1 ¼

y1 ðx1 is not included in exactly the same subsets of R as
y1). As a consequence, there are as many classes of the
relationB7

1 than there are elements in X ; LCC is violated
and B7

1 is not representable by a function u1 :X1-R:
One can easily build a more typical example whereh

is a relation on a product of two (or more) sets and
retains the properties of the relation above. Consider,
e.g. the relationh defined on X ¼ X1 � X2; with X1;X2

two copies of the set 2R: Define h by xhy iff
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p1ðx1; y1Þ þ p2ðx2; y2ÞX0; p1 and p2 in the latter expres-
sion are two copies respectively defined on the set X1

and X2 of the function p1 introduced in the one–
dimensional case. As in that case,h can be represented
in model (M30); it satisfies OD
 but not LCC:
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