Strategy Synthesis for Multi-dimensional Quantitative Objectives

Krishnendu Chatterjee¹ Mickael Randour² Jean-François Raskin³

¹ IST Austria

² UMONS

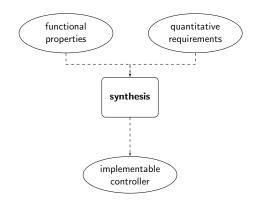
³ ULB

08.06.2012

Workshop on Quantitative and Game Models for the Synthesis of Reactive Systems

Aim of this work

MEPGs & MMPPGs



→ restriction to finite-memory strategies.

Aim of this work

- Study games with
 - multi-dimensional quantitative objectives (energy and mean-payoff)
 - > and a parity objective.
 - \sim First study of such a conjunction.
- Address questions that revolve around strategies:
 - bounds on memory,

 - ightharpoonup randomness $\stackrel{?}{\sim}$ memory.

Results Overview

Memory bounds

MEPGs	MMPPGs		
optimal	finite-memory optimal	optimal	
exp.	exp.	infinite [CDHR10]	

Strategy synthesis (finite memory)

MEPGs	MMPPGs	
EXPTIME	EXPTIME	

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		
two-player	×	×	×	

- 1 Multi energy and mean-payoff parity games
- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

2 Memory bounds

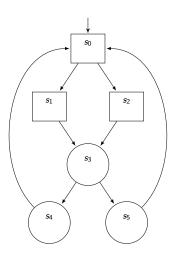
MEPGs & MMPPGs

•0000

- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

Turn-based games

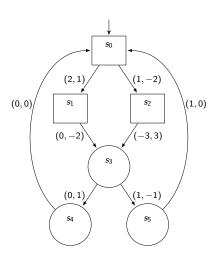
MEPGs & MMPPGs



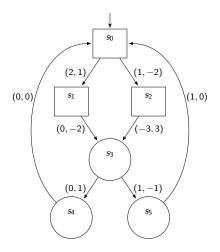
- $G = (S_1, S_2, s_{init}, E)$
- $S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$
- \mathcal{P}_1 states $=\bigcirc$
- \blacksquare \mathcal{P}_2 states = \bigsqcup
- Plays, prefixes, **pure** strategies.

Integer k-dim. payoff function

MEPGs & MMPPGs



- $G = (S_1, S_2, s_{init}, E, w)$
- $\mathbf{w}: E \to \mathbb{Z}^k$
- Energy level $\mathsf{EL}(\rho) = \sum_{i=0}^{i=n-1} w(s_i, s_{i+1})$
- Mean-payoff $MP(\pi) = \liminf_{n \to \infty} \frac{1}{n} EL(\pi(n))$



Unknown initial credit

 $\exists ? v_0 \in \mathbb{N}^k, \lambda_1 \in \Lambda_1 \text{ s.t.}$

Mean-payoff threshold

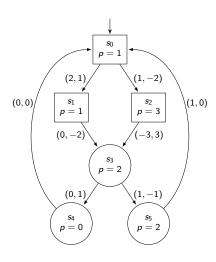
Given $v \in \mathbb{Q}^k$, $\exists ? \lambda_1 \in \Lambda_1$ s.t.

MEPGs & MMPPGs

Parity problem

MEPGs & MMPPGs

00000



- $G_p = (S_1, S_2, s_{init}, E, w, p)$
- $p: S \to \mathbb{N}$
- **■** Even parity

 \exists ? $\lambda_1 \in \Lambda_1$ s.t. the parity is even

 \triangleright canonical way to express ω -regular objectives

		Memory (\mathcal{P}_1)	Decision problem
	1-dim [CdAHS03, BFL ⁺ 08]	momonuloss	
Energy	k-dim [CDHR10]	finite	coNP-c
	1-dim + parity [CD10]	exponential	$NP \cap coNP$
Mean-payoff	1-dim [EM79, LL69]	memoryless	$NP \cap coNP$
	k-dim [CDHR10]	infinite	coNP-c (fin.)
	1-dim + parity [CHJ05, BMOU11]	infinite	$NP \cap coNP$

00000

Example for MMPGs, even with only one player! [CDHR10]

- \triangleright To obtain MP(π) = (1,1), \mathcal{P}_1 has to visit s_0 and s_1 for longer and longer intervals before jumping from one to the other.
- Any finite-memory strategy involving these edges induces an ultimately periodic play s.t. $MP(\pi) = (x, y), x + y < 2$.

Restriction to finite memory

MEPGs & MMPPGs

- Infinite memory:
 - needed for MMPGs & MPPGs,
 - practical implementation is unrealistic.

0000

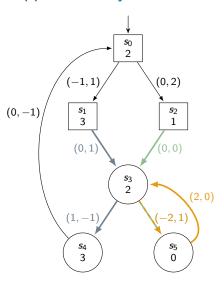
■ Infinite memory:

- □ needed for MMPGs & MPPGs.
- > practical implementation is unrealistic.
- Finite memory:
 - preserves game determinacy,
 - > provides equivalence between energy and mean-payoff settings,
 - by the way to go for strategy synthesis.

- 1 Multi energy and mean-payoff parity games
- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

exp.	exp.	infinite [CDHR10]	
optimal	finite-memory optimal	optimal	
MEPGs	MMPPGs		

By [CDHR10], we only have to consider MEPGs. Recall that the unknown initial credit decision problem for MEGs (without parity) is coNP-complete.



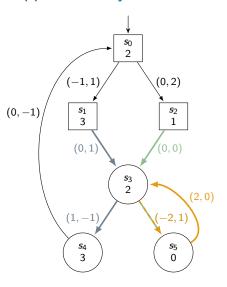
■ A winning strategy λ_1 for initial credit $v_0 = (2, 0)$ is

$$\triangleright \lambda_1(*s_1s_3) = s_4$$
,

$$\triangleright \lambda_1(*s_2s_3) = s_5$$
,

$$> \lambda_1(*s_5s_3) = s_5.$$

Synthesis

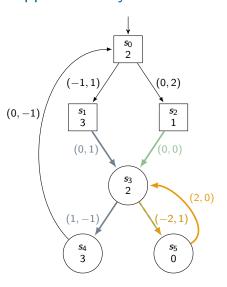


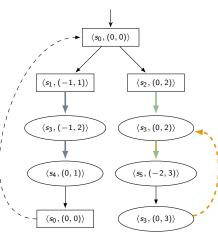
■ A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is

$$\triangleright \lambda_1(*s_1s_3) = s_4$$

$$> \lambda_1(*s_5s_3) = s_5.$$

- Lemma: To win, \mathcal{P}_1 must be able to enforce positive cycles of even parity.
 - Self-covering paths on VASS [Rac78, RY86].
 - ▷ Self-covering trees (SCTs) on reachability games over VASS [BJK10].

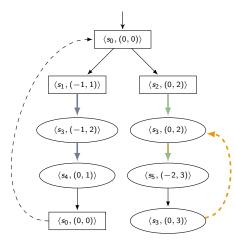




Pebble moves \Rightarrow strategy.

T = (Q, R) is an epSCT for s_0 , $\Theta : Q \mapsto S \times \mathbb{Z}^k$ is a labeling function.

- Root labeled $\langle s_0, (0, \dots, 0) \rangle$.
- Non-leaf nodes have
 - ightharpoonup unique child if \mathcal{P}_1 ,
 - ightharpoonup all possible children if \mathcal{P}_2 .
- Leafs have even-descendance energy ancestors: ancestors with lower label and minimal priority even on the downward path.



Pebble moves \Rightarrow strategy.

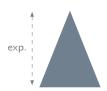
Upper memory bound: SCTs for VASS games

- \mathcal{P}_1 wins $\Rightarrow \exists$ SCT of depth at most exponential [BJK10].
- → If there exists a winning strategy, there exists a "compact" one.
- \sim Idea is to eliminate unnecessary cycles.

Limits:

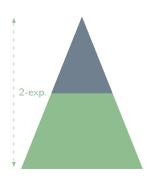
- \triangleright weights in $\{-1,0,1\}$,
- no parity,
- depth only.

Upper memory bound: SCTs for MEGs (no parity)



MEPGs & MMPPGs

Depth bound from [BJK10].



$$w: E \to \{-1, 0, 1\}^k$$

$$I = 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^2}$$

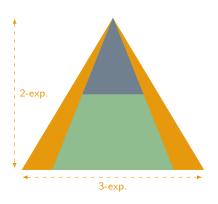
$$\Downarrow$$

$$w: E \to \mathbb{Z}^k, \ W \text{ max absolute weight,}$$

$$V \text{ bits to encode } W$$

 $I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S| + 1)^{c\cdot k^2}$ $=2^{(d-1)\cdot 2^{V}\cdot |S|}\cdot (W\cdot |S|+1)^{c\cdot k^2}$

Naive approach: blow-up by W in the size of the state space.

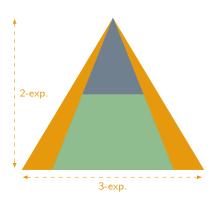


$$\begin{aligned}
 w : E &\to \{-1, 0, 1\}^k \\
 I &= 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^2} \\
 &\downarrow \downarrow
 \end{aligned}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, V bits to encode W $I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$ $= 2^{(d-1)\cdot 2^V\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by $L = d^{I}$

Naive approach: width increases exponentially with depth.



$$\begin{aligned}
 w : E &\to \{-1, 0, 1\}^k \\
 I &= 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^2} \\
 &\downarrow \downarrow
 \end{aligned}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, V bits to encode W $I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S| + 1)^{c\cdot k^2}$ $=2^{(d-1)\cdot 2^{V}\cdot |S|}\cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by $L = d^{I}$

Naive approach: overall, 3-exp. memory $< L \cdot I$, without parity.

Upper memory bound: epSCTs for MEPGs



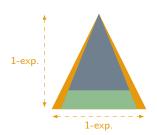
MEPGs & MMPPGs

$$\begin{aligned}
 w : E &\to \{-1, 0, 1\}^k \\
 I &= 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^2} \\
 &\downarrow \downarrow
 \end{aligned}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W \cdot |S| + 1)^{c \cdot k^2}$

Refined approach: no blow-up in exponent as branching is preserved, extension to parity.

Upper memory bound: epSCTs for MEPGs



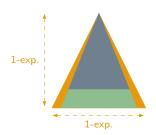
MEPGs & MMPPGs

$$I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by
$$L = |S| \cdot (2 \cdot I \cdot W + 1)^k$$

Refined approach: merge equivalent nodes, width is bounded by number of incomparable labels (see next slide).



$$I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by
$$L = |S| \cdot (2 \cdot I \cdot W + 1)^k$$

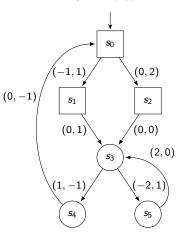
Refined approach: overall, **single exp. memory** $\leq L \cdot I$, for multi energy *along with* parity. Initial credit bounded by $I \cdot W$.

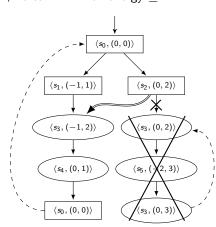
Upper memory bound: from MEPGs to MEGs

■ Bound on depth.

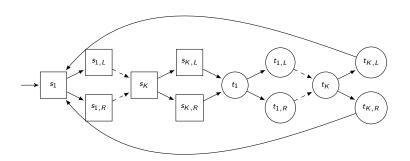
- ⇒ Bound on steps before seeing an even minimal priority.
 - ⇒ Encoding of parity as additional energy dimensions.

- Key idea to reduce width to single exp.
 - $\triangleright \mathcal{P}_1$ only cares about the energy level.
 - \triangleright If he can win with energy v, he can win with energy $\ge v$.





Lemma: There exists a family of multi energy games $(G(K))_{K\geq 1,} = (S_1, S_2, s_{init}, E, k = 2 \cdot K, w : E \rightarrow \{-1, 0, 1\})$ s.t. for any initial credit, \mathcal{P}_1 needs exponential memory to win.



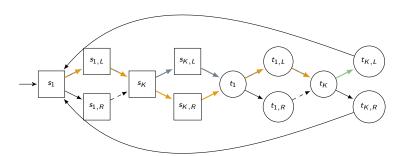
$$\forall 1 \leq i \leq K, w((\circ, s_i)) = w((\circ, t_i)) = (0, \dots, 0),$$

$$w((s_i, s_{i,L})) = -w((s_i, s_{i,R})) = w((t_i, t_{i,L})) = -w((t_i, t_{i,R})),$$

$$\forall 1 \leq j \leq k, \ w((s_i, s_{i,L}))(j) = \begin{cases} = 1 \text{ if } j = 2 \cdot i - 1 \\ = -1 \text{ if } j = 2 \cdot i \end{cases}.$$

$$= 0 \text{ otherwise}$$

Lower memory bound



If \mathcal{P}_1 plays according to a Moore machine with less than 2^K states, he takes the same decision in some state t_x for the two highlighted prefixes (let x = K w.l.o.g.).

- $\Rightarrow \mathcal{P}_2$ can force a decrease by 1 on some dimension every visit.
- $\Rightarrow \mathcal{P}_1$ loses for any $v_0 \in \mathbb{N}^k$.

- 1 Multi energy and mean-payoff parity games
- 2 Memory bounds

- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

Symbolic synthesis algorithm

MEPGs & MMPPGs

Algorithm CpreFP for MEPGs and MMPPGs:

- > symbolic (antichains) and incremental,
- > winning strategy of at most exponential size,

Symbolic synthesis algorithm

Algorithm CpreFP for MEPGs and MMPPGs:

- > symbolic (antichains) and incremental,
- > winning strategy of at most exponential size,

Idea: greatest fixed point of a Cpre_ℂ operator.

- $ightharpoonup \mathbb{C}$: incremental, ensures convergence.
- \triangleright Exponential bound on the size of manipulated sets (\sim width).
- \triangleright Exponential bound on the number of iterations if a winning strategy exists (\sim depth).

- $\mathcal{U}(\mathbb{C}) = 2^{U(\mathbb{C})}$, the powerset of $U(\mathbb{C})$,
- lacksquare Cpre $_{\mathbb C}:\mathcal U(\mathbb C) o\mathcal U(\mathbb C)$, Cpre $_{\mathbb C}(V)=$

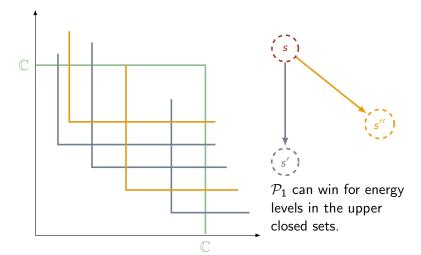
$$\{(s_1, e_1) \in U(\mathbb{C}) \mid s_1 \in S_1 \land \exists (s_1, s) \in E, \exists (s, e_2) \in V : e_2 \leq e_1 + w(s_1, s)\}$$

$$\cup$$

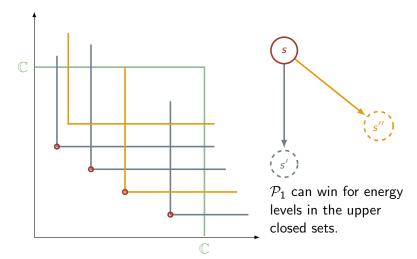
$$\{(s_2, e_2) \in U(\mathbb{C}) \mid s_2 \in S_2 \land \forall (s_2, s) \in E, \exists (s, e_1) \in V : e_1 \leq e_2 + w(s_2, s)\}$$

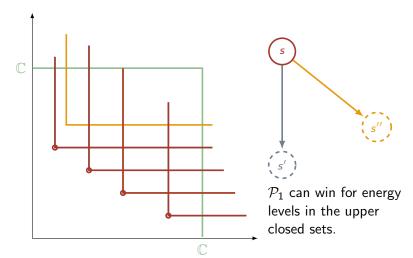
▷ Intuitively, compute for each state the set of winning initial credits, represented by the minimal elements of these upper closed sets.

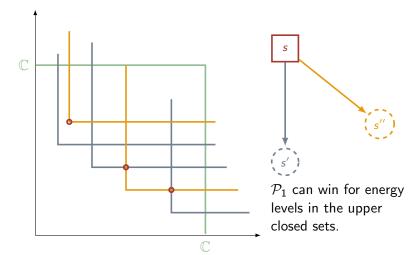
MEPGs & MMPPGs



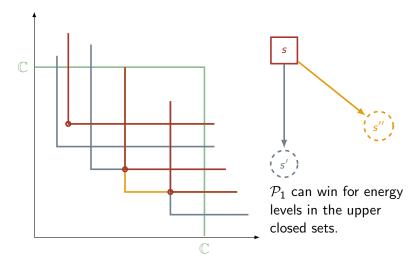
MEPGs & MMPPGs







MEPGs & MMPPGs

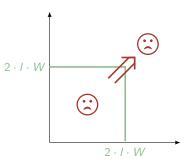


Correctness

MEPGs & MMPPGs

 $(s_{init}, (c_1, \ldots, c_k)) \in \mathsf{Cpre}_{\mathbb{C}}^* \leadsto \mathsf{winning} \mathsf{ strategy} \mathsf{ for initial} \mathsf{ credit} (c_1, \ldots, c_k).$

Completeness



- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

Question

MEPGs & MMPPGs

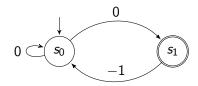
When and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one?

- \triangleright Sure semantics \rightsquigarrow almost-sure semantics (i.e., probability 1).
- Illustration on single mean-payoff Büchi games.

Mean-payoff Büchi games

MEPGs & MMPPGs

Remark. MPBGs require infinite memory for optimality.

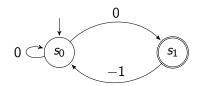


 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Mean-payoff Büchi games

MEPGs & MMPPGs

Remark. MPBGs require infinite memory for optimality.

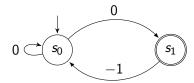


 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Lemma: In MPBGs, ε -optimality can be achieved surely by pure finite-memory strategies and almost-surely by randomized memoryless strategies.

MPBGs: key idea

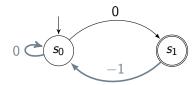
MEPGs & MMPPGs



1 Uniform memoryless strategies:

Randomization 00000

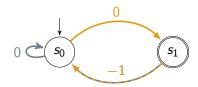
MPBGs: key idea



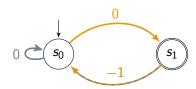
- 1 Uniform memoryless strategies:
 - λ_1^{gfe} ensures any cycle c has $EL(c) \ge 0$ [CD10],

MPBGs: key idea

MEPGs & MMPPGs



- 1 Uniform memoryless strategies:
 - λ_1^{gfe} ensures any cycle c has $EL(c) \ge 0$ [CD10],
 - $\lambda_1^{\diamondsuit F}$ ensures reaching F in at most n steps (attractor).



- 1 Uniform memoryless strategies:
 - λ_1^{gfe} ensures any cycle c has $EL(c) \ge 0$ [CD10],
- 2 Alternate using pure memory or probability distributions.
 - ightharpoonup Frequency of $\lambda_1^{gfe} \to 1 \Rightarrow MP \to MP^*$.

Obtained results

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		
two-player	×	×	×	

- 1 Multi energy and mean-payoff parity games
- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

Conclusion

MEPGs & MMPPGs

- Quantitative objectives
- Parity
- Restriction to finite memory (practical interest)
- Exponential memory bounds
- EXPTIME symbolic and incremental synthesis
- Randomness instead of memory

Memory bounds

exp.	exp.	infinite [CDHR10]		
optimal	finite-memory optimal	optimal		
MEPGs	MMPPGs			

Strategy synthesis (finite memory)

MEPGs	MMPPGs
FXPTIME	FXPTIME

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		
two-player	×	×	×	

Thanks. Questions?

Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.

Better quality in synthesis through quantitative objectives. In *Proc. of CAV*, volume 5643 of *LNCS*, pages 140–156. Springer, 2009.

Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí Srba.

Infinite runs in weighted timed automata with energy constraints.

In *Proc. of FORMATS*, volume 5215 of *LNCS*, pages 33–47. Springer, 2008.

Tomás Brázdil, Petr Jancar, and Antonín Kucera.

Reachability games on extended vector addition systems with states.

In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 478–489. Springer, 2010.

Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels.

Measuring permissiveness in parity games: Mean-payoff parity games revisited.

In *Proc. of ATVA*, volume 6996 of *LNCS*, pages 135–149. Springer, 2011.

Krishnendu Chatterjee and Laurent Doyen.

Energy parity games.

In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 599–610. Springer, 2010.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.

Resource interfaces.

In *Proc. of EMSOFT*, volume 2855 of *LNCS*, pages 117–133. Springer, 2003.

Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.

Generalized mean-payoff and energy games.

In *Proc. of FSTTCS*, volume 8 of *LIPIcs*, pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin lurdzinski

Mean-payoff parity games.

In Proc. of LICS, pages 178–187. IEEE Computer Society, 2005.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.

International Journal of Game Theory, 8(2):109–113, 1979.

Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games in multiweighted automata.

In Proc. of ICTAC, volume 6916 of LNCS, pages 95–115. Springer, 2011.

T.M. Liggett and S.A. Lippman.

Short notes: Stochastic games with perfect information and time average payoff.

Siam Review, 11(4):604-607, 1969.

Charles Rackoff.

The covering and boundedness problems for vector addition systems.

Theor. Comput. Sci., 6:223-231, 1978.

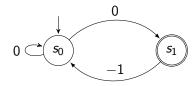
Louis E. Rosier and Hsu-Chun Yen.

A multiparameter analysis of the boundedness problem for vector addition systems.

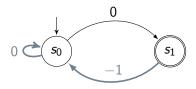
J. Comput. Syst. Sci., 32(1):105-135, 1986.

Upper memory bound: from MEPGs to MEGs

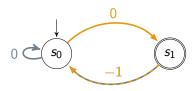
- Thanks to the bound on depth for MEPGs, encode parity $(2 \cdot m \text{ priorities})$ as m additional energy dimensions.
 - > For each odd priority, add one dimension.
 - ▷ Decrease by 1 when this odd priority is visited.
 - ▷ Increase by I each time a smaller even priority is visited.
- lacktriangleright \mathcal{P}_1 maintains the energy positive on all additional dimensions iff he wins the original parity objective.



Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$ s.t.



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$ s.t.
 - λ_1^{gfe} ensures that any cycle c of its outcome has $\mathsf{EL}(c) \geq 0$ [CD10],



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$ s.t.
 - λ_1^{gfe} ensures that any cycle c of its outcome has $\mathsf{EL}(c) \geq 0$ [CD10],
 - $\lambda_1^{\diamond F}$ ensures reaching F in at most n steps, while staying in Win.

- **2** For $\varepsilon > 0$, we build a pure finite-memory λ_1^{pf} s.t.
 - (a) it plays λ_1^{gfe} for $\frac{2 \cdot W \cdot n}{\varepsilon} n$ steps, then
 - (b) it plays $\lambda_1^{\diamond F}$ for *n* steps, then again (a).

- **2** For $\varepsilon > 0$, we build a pure finite-memory λ_1^{pf} s.t.
 - (a) it plays λ_1^{gfe} for $\frac{2 \cdot W \cdot n}{\varepsilon} n$ steps, then
 - (b) it plays $\lambda_1^{\diamond F}$ for *n* steps, then again (a).

This ensures that

- \triangleright *F* is visited infinitely often,
- \triangleright the total cost of phases (a) + (b) is bounded by $-2 \cdot W \cdot n$, and thus the mean-payoff is at least $-\varepsilon$.

Based on λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2 \in \Lambda_2, \\ \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

Based on λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2^{\textit{pm}} \in \Lambda_2^{\textit{PM}}, \\ \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

Based on λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2^{\textit{pm}} \in \Lambda_2^{\textit{PM}}, \\ \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

Strategy:

$$\forall s \in S, \ \lambda_1^{rm}(s) = egin{cases} \lambda_1^{gfe}(s) \ \text{with probability } 1 - \gamma, \\ \lambda_1^{\diamondsuit F}(s) \ \text{with probability } \gamma, \end{cases}$$

for some well-chosen $\gamma \in]0,1[$.

Büchi

- \triangleright Probability of playing as $\lambda_1^{\diamondsuit F}$ for n steps in a row and ensuring visit of F strictly positive at all times.
- ightharpoonup Thus $\lambda_1^{\it rm}$ almost-sure winning for the Büchi objective.

Mean-payoff

- Consider
 - all end components
 - in all MCs induced by pure memoryless strategies of \mathcal{P}_2 .
- \triangleright Choose γ so that all ECs have expectation $> -\varepsilon$.
- ▶ Put more probability on lengthy sequences of gfe edges.