A computer assisted proof of the symmetry of solutions to a PDE

Christophe Troestler

Département de Mathématique Université de Mons

<u>U</u>MONS

CSD8

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□= のへ⊙

The problem

$$\begin{cases} -\Delta u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$
(PDE)

where Ω is an open bounded set in \mathbb{R}^N and p > 2 (and

$$p < 2N/(N-2)$$
 if $N \ge 3$). and $\Delta = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$.

Remarks:

- Elliptic, time independent.
- Trivial solution 0.
- Nonlinear, non-convex : infinitely many solutions.

The problem

$$\begin{cases} -\Delta u = |u|^{p-2}u & \text{in }\Omega, \\ u = 0, & \text{on }\partial\Omega. \end{cases}$$
(PDE)

where Ω is an open bounded set in \mathbb{R}^N and p > 2 (and

$$p < 2N/(N-2)$$
 if $N \ge 3$). and $\Delta = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$.

Remarks:

- Elliptic, time independent.
- Trivial solution 0.
- Nonlinear, non-convex : infinitely many solutions.

In this talk:

$$\Omega = B(0, 1)$$
 or $\Omega =]-1, 1[^2$

< 回 > < 回 > < 回 >

What is a symmetry?

Let *G* be subgroup of O(N) and $\sigma: G \rightarrow \{-1, 1\}$ be a group morphism.

We define an action of *G* on functions $u : \Omega \rightarrow \mathbb{R}$ by

$$gu(x) := \sigma(g) u(g^{-1}x), \qquad g \in G.$$

We say that G-symmetric if

$$\forall g \in G, \quad gu = u.$$

A computer assisted proof of symmetry in PDE

Aug 25, 2017

3/22

Outline

1 Type of solutions

- 2 Asymptotic problem
- 3 Interval arithmetic
- 4 Computer assisted proof

Variational structure

$$\mathcal{E}_{p}: H_{0}^{1}(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} \, \mathrm{d}x - \frac{1}{p} \int_{\Omega} |u(x)|^{p} \, \mathrm{d}x$$

where $H_0^1(\Omega)$ is the Sobolev space with zero Dirichlet boundary conditions, that is

$$\begin{aligned} H^1_0(\Omega) &:= \big\{ u : \Omega \to \mathbb{R} \ \Big| \ u \in L^2(\Omega) \text{ and } \forall i = 1, \dots, N, \ \partial_i u \in L^2(\Omega), \\ \text{ and } u &= 0 \text{ on } \partial\Omega \big\}. \end{aligned}$$

Variational structure

$$\mathcal{E}_{p}: H^{1}_{0}(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} \, \mathrm{d}x - \frac{1}{p} \int_{\Omega} |u(x)|^{p} \, \mathrm{d}x$$

where $H_0^1(\Omega)$ is the Sobolev space with zero Dirichlet boundary conditions, that is

$$\begin{split} H^1_0(\Omega) &:= \big\{ u : \Omega \to \mathbb{R} \ \big| \ u \in L^2(\Omega) \text{ and } \forall i = 1, \dots, N, \ \partial_i u \in L^2(\Omega), \\ \text{ and } u = 0 \text{ on } \partial\Omega \big\}. \end{split}$$

$$u$$
 is a solution to (PDE) $\Leftrightarrow \mathcal{E}'_p(u) = 0.$

where $\mathcal{E}'_p(u): H^1_0(\Omega) \to \mathbb{R}$ is the Fréchet derivative of \mathcal{E}_p . It is a linear map given by

$$\mathcal{E}'_{p}(u)[\mathbf{v}] = \int_{\Omega} \nabla u \nabla \mathbf{v} - \int_{\Omega} |u|^{p-2} u \mathbf{v} = \int_{\Omega} (-\Delta u - |u|^{p-2} u) \mathbf{v}$$

Geometry & existence of a ground state

$$\mathcal{E}_{\rho}(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 \, \mathrm{d}x - \frac{1}{\rho} \int_{\Omega} |u(x)|^{\rho} \, \mathrm{d}x$$

has the property that

 $\forall u \neq 0, \exists \lambda_u > 0, \mathcal{E}_p(\lambda_u u) = \sup_{t \ge 0} \mathcal{E}_p(tu)$

Geometry & existence of a ground state

$$\mathcal{E}_{\rho}(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 \, \mathrm{d}x - \frac{1}{\rho} \int_{\Omega} |u(x)|^{\rho} \, \mathrm{d}x$$

has the property that

$$\forall u \neq 0, \exists ! \lambda_u > 0, \quad \mathcal{E}_p(\lambda_u u) = \sup_{t \ge 0} \mathcal{E}_p(tu)$$

$$\begin{array}{c}
 \lambda_{u}u \\
 \lambda_{p}
 \lambda_{p}
 \lambda_{p}$$

Nehari manifold

$$\mathcal{N}_{p} := \left\{ u \in H^{1}_{0}(\Omega) \setminus \{0\} \mid \mathcal{E}'_{p}(u)[u] = 0 \right\}$$

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Aug 25, 2017 6 / 22

Geometry & existence of a ground state

$$\mathcal{E}_{\rho}(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 \, \mathrm{d}x - \frac{1}{\rho} \int_{\Omega} |u(x)|^{\rho} \, \mathrm{d}x$$

has the property that

$$\forall u \neq 0, \exists ! \lambda_u > 0, \quad \mathcal{E}_p(\lambda_u u) = \sup_{t \ge 0} \mathcal{E}_p(tu)$$

Nehari manifold

$$\mathcal{N}_{p} := \left\{ u \in H^{1}_{0}(\Omega) \setminus \{0\} \mid \mathcal{E}'_{p}(u)[u] = 0 \right\}$$

Solution

minimize
$$0 \neq u \mapsto \sup_{t \geq 0} \mathcal{E}_p(tu)$$
 i.e.,
 $\begin{cases} \text{minimize } \mathcal{E}_p(u) \\ \text{s.t. } u \in \mathcal{N}_p \end{cases}$

(日)

Computation of the ground states

$$\begin{cases} -\Delta u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

A computer assisted proof of symmetry in PDE

Geometry & existence of a least-energy sign-changing solution

Nodal Nehari "manifold"

$$\mathcal{M}_{p} := \left\{ u \in H_{0}^{1}(\Omega) \mid u^{+} \in \mathcal{N}_{p} \text{ and } u^{-} \in \mathcal{N}_{p} \right\}$$

where
$$u^+(x) := \max\{u(x), 0\}$$

and $u^-(x) := \min\{u(x), 0\}$
(so $u = u^+ + u^-$).

Geometry & existence of a least-energy sign-changing solution

Nodal Nehari "manifold"

$$\mathcal{M}_{p} := \left\{ u \in H_{0}^{1}(\Omega) \mid u^{+} \in \mathcal{N}_{p} \text{ and } u^{-} \in \mathcal{N}_{p} \right\}$$

where
$$u^+(x) := \max\{u(x), 0\}$$

and $u^-(x) := \min\{u(x), 0\}$
(so $u = u^+ + u^-$).

(日)

Solution

minimize
$$u \mapsto \sup_{t,s \ge 0} \mathcal{E}_p(tu^+ + su^-)$$
 i.e.,

$$\begin{cases} \text{minimize } \mathcal{E}_p(u) \\ \text{s.t. } u \in \mathcal{M}_p \end{cases}$$

Computation of the least-energy sign-changing solutions

A computer assisted proof of symmetry in PDE

Asymptotic problem $p \rightarrow 2$

$$(\mathsf{PDE})_p \begin{cases} -\Delta u = |u|^{p-2}u & \text{in }\Omega, \\ u = 0, & \text{on }\partial\Omega. \end{cases} \qquad (\mathsf{L}) \begin{cases} -\Delta u = \lambda_2 u & \text{in }\Omega, \\ u = 0, & \text{on }\partial\Omega. \end{cases}$$

If $(u_p)_{p>2}$ is a family of solutions to $(PDE)_p$, then, up to a subsequence,

$$\lambda_2^{-1/(p-2)} u_p \xrightarrow[p \to 2]{} u_*$$

where u_* is a solution to (L) where λ_2 is the second eigenvalue of $-\Delta$. **Theorem**: for $p \approx 2$, u_p inherits the symmetries of u_* .

Eigenvalues

Recall that
$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
 has a solution $u \neq 0$ iff $\lambda = \lambda_k$ for some $k \in \mathbb{N}^{\ge 1}$ for a sequence $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n \xrightarrow[n \to \infty]{} +\infty.$

The second eigenspace E_2 on the ball

$$\boldsymbol{E}_{2} := \left\{ \boldsymbol{u} : \Omega \to \mathbb{R} \mid -\Delta \boldsymbol{u} = \boldsymbol{\lambda}_{2} \boldsymbol{u} \text{ in } \Omega, \quad \boldsymbol{u} = 0 \text{ on } \partial \Omega \right\}$$

When $\Omega = B(0, 1) \subseteq \mathbb{R}^2$, $E_2 = \operatorname{span}\{w_1, w_2\}$ where, in polar coordinates (r, φ) ,

$$w_1(r\varphi) = J_1(\sqrt{\lambda_2}r)\sin(\varphi),$$

and

 $W_2(r\varphi) = J_1(\sqrt{\lambda_2}r)\cos(\varphi).$

where J_{ν} are the Bessel functions of the first kind.

Theorem: For $p \approx 2$, u_p is anti-symmetric w.r.t. a diameter.

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Aug 25, 2017 11 / 22

The second eigenspace E_2 on the square

When $\Omega =]-1, 1[^2, \frac{E_2 = \text{span}\{v_1, v_2\}}{V_1, v_2}$ where

 $v_1(x, y) = \sin(\pi x) \cos(\frac{\pi}{2}y)$ and $v_2(x, y) = \cos(\frac{\pi}{2}x) \sin(\pi y)$.

12/22

The second eigenspace E_2 on the square

Question: What function is u_* in E_2 ?

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Aug 25, 2017 13 / 22

1 = 9 Q (~

イロト イタト イヨト イヨト

Variational formulation (1/2)

Reduced functional

$$\mathcal{E}_*: E_2 \to \mathbb{R}: u \mapsto \int_{\Omega} u^2 - u^2 \log u^2$$

Reduced Nehari manifold

$$\mathcal{N}_* := \left\{ u \in \underline{E}_2 \setminus \{0\} \mid \mathcal{E}'_*(u)[u] = 0 \right\}$$

Criteria: u* is a solution to

minimize
$$u \mapsto \sup_{t \ge 0} \mathcal{E}_*(tu)$$
 i.e.,
 $\begin{cases} \text{minimize } \mathcal{E}_*(u) \\ \text{s.t. } u \in \mathcal{N}_* \end{cases}$

1

A (1) > A (1) > A (1) > A

Variational formulation (2/2)

If $\int_{\Omega} u^2 = 1$ (i.e., u is on the unit L^2 -sphere),

$$S_*(u) := \frac{1}{2} \log \left(\sup_{t \ge 0} \mathcal{E}_*(tu) \right) = - \int_{\Omega} u^2 \log |u| \, \mathrm{d}x$$

We want to minimize S_* on the L^2 -unit sphere of E_2 .

Because
$$|v_1|_{L^2} = 1$$
, $|v_2|_{L^2} = 1$ and $v_1 \perp v_2$ in L^2 ,

$$u_{\theta} := \cos \theta \, v_1 + \sin \theta \, v_2$$

parameterize the L^2 -sphere of E_2 .

Numerical simulation

A computer assisted proof of symmetry in PDE

Aug 25, 2017 16 / 22

고 노

イロン イワン イヨン イヨン

Numerical simulation

Because the problem is invariant by rotations of $\pi/2$ and axial symmetries and S_* is even, one has:

S_{*} is
$$\pi/2$$
-periodic;
S_{*} $(\frac{\pi}{4} - \theta) = S_*(\frac{\pi}{4} + \theta).$

Aug 25, 2017 16 / 22

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f(x, y) = 333.75 y^6 + x^2 (11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8$$

In double precision, evaluating f(77617, 33096) yields $-1.180592 \cdot 10^{21}$. The correct value is -2.

17/22

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f(x, y) = 333.75 y^6 + x^2 (11x^2y^2 - y^6 - 121y^4 - 2) + 5.5 y^8$$

In double precision, evaluating f(77617, 33096) yields $-1.180592 \cdot 10^{21}$. The correct value is -2.

Basic idea: Compute an interval $[\underline{z}, \overline{z}]$ containing the true value:

$$f(x,y)\in [\underline{z},\overline{z}],$$

the rounding of each endpoint taking care of rounding errors. guaranteed bounds

C. Troestler (UMONS)

Aug 25, 2017 17 / 22

Extend operations to intervals:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$$

$$[\underline{x}, \overline{x}] \cdot [\underline{y}, \overline{y}] = [\min\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}, \max\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}]$$

sin, cos, ...

(ロ) (同) (三) (三) (三) (○) (○)

Extend operations to intervals:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$$

$$[\underline{x}, \overline{x}] \cdot [\underline{y}, \overline{y}] = [\min\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}, \max\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}]$$

sin, cos, ...

Fundamental property: Let $x \mapsto f(x)$ be a function and $I \mapsto \mathbf{f}(I)$ an interval extension of f. That means:

 $\forall l \text{ interval}, \quad \forall x \in l, f(x) \in \mathbf{f}(l)$

Extend operations to intervals:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$$

$$[\underline{x}, \overline{x}] \cdot [\underline{y}, \overline{y}] = [\min\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}, \max\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}]$$

sin, cos, ...

Fundamental property: Let $x \mapsto f(x)$ be a function and $I \mapsto \mathbf{f}(I)$ an interval extension of f. That means:

 $\forall l \text{ interval}, \quad \forall x \in l, f(x) \in \mathbf{f}(l)$

Extend operations to intervals:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$$

$$[\underline{x}, \overline{x}] \cdot [\underline{y}, \overline{y}] = [\min\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}, \max\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}]$$

sin, cos, ...

Fundamental property: Let $x \mapsto f(x)$ be a function and $I \mapsto \mathbf{f}(I)$ an interval extension of f. That means:

 $\forall l \text{ interval}, \quad \forall x \in l, f(x) \in \mathbf{f}(l)$

Dependency problem:

- $[\underline{x}, \overline{x}] [\underline{x}, \overline{x}] = [\underline{x} \overline{x}, \overline{x} \underline{x}] \supseteq [0, 0]$ but \neq (unless $\underline{x} = \overline{x}$).
- $([\underline{x},\overline{x}])^2 \subseteq [\underline{x},\overline{x}] \cdot [\underline{x},\overline{x}]$ but in general \neq .

etc.

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Aug 25, 2017 19 / 22

A computer assisted proof of symmetry in PDE

Aug 25, 2017 19 / 22

A computer assisted proof of symmetry in PDE

Aug 25, 2017 19 / 22

Adaptive integration

Compute $S_*(u) = -\int_{\Omega} u^2 \log |u| dx$ where $u = \cos \theta v_1 + \sin \theta v_2$.

Basic scheme: partition Ω in a union of "small" *P* and estimate each integral with

$$\frac{1}{|P|}\int_P g(x)\,\mathrm{d}x\in g(P).$$

Adaptive integration

Compute $S_*(u) = -\int_{\Omega} u^2 \log |u| \, dx$ where $u = \cos \theta v_1 + \sin \theta v_2$.

Basic scheme: partition Ω in a union of "small" *P* and estimate each integral with

$$\frac{1}{|P|} \int_P g(x) \, \mathrm{d}x \in g(P).$$

Higher order schemes: require some regularity ($u \in C^2$).

Adaptive integration

Compute $S_*(u) = -\int_{\Omega} u^2 \log |u| dx$ where $u = \cos \theta v_1 + \sin \theta v_2$.

Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$\frac{1}{|P|}\int_P g(x)\,\mathrm{d}x\in g(P).$$

Higher order schemes: require some regularity ($u \in C^2$).

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Introduction Type of solutions Asymptotic problem Interval arithmetic Computer assisted proof

Asymptotic problem on $\Omega =]-1, 1[^2]$

Determine a small interval $\frac{1}{\pi}$ such that $\pi/4 \in I$ and

 $\forall \theta \in [0, \pi/4] \setminus I, \quad \mathcal{E}_*(\theta) > E_*(\pi/4)$

A computer assisted proof of symmetry in PDE

Aug 25, 2017 21 / 22

Introduction Type of solutions Asymptotic problem Interval arithmetic Computer assisted proof

Asymptotic problem on $\Omega =]-1, 1[^2]$

Determine a small interval $\frac{1}{2}$ such that $\pi/4 \in I$ and

 $\forall \theta \in [0, \pi/4] \setminus I, \quad \mathcal{E}_*(\theta) > E_*(\pi/4)$

Problem: the function may look like

21/22

Type of solutions Introduction Asymptotic problem Interval arithmetic Computer assisted proof

Asymptotic problem on $\Omega = [-1, 1]^2$

A computer assisted proof of symmetry in PDE

21/22

Thank you for your attention!

A computer assisted proof of symmetry in PDE

Aug 25, 2017 22 / 22

Computing the second derivative

Recall that:

$$S_*(u) = -\int_{\Omega} u^2 \log|u| \,\mathrm{d}x$$

Let $u_{\theta} = \cos \theta v \mathbf{1} + \sin \theta v_2$ and $u'_{\theta} := \partial_{\theta} u_{\theta}$. Taking into account that $\int u^2_{\theta} = \mathbf{1}$ and $\int (u'_{\theta})^2 = \mathbf{1}$, one computes

$$\partial_{\theta}^{2}(S_{*}(u_{\theta})) = 2\left(-1-S_{*}(u_{\theta})-\int_{\Omega}(u_{\theta}')^{2}\log|u_{\theta}|\,\mathrm{d}x\right).$$

Thus

$$\partial_{\theta}^{2}(S_{*}(u_{\theta})) > 0 \quad \Leftrightarrow \quad -\int_{\Omega} (u_{\theta}')^{2} \log|u_{\theta}| \,\mathrm{d}x > 1 + S_{*}(u_{\theta}).$$

Positiveness test for the second derivative

Positiveness test for the second derivative

The 3D case

On $\Omega =]-1, 1[^3, E_2 = \text{span}\{v_1, v_2, v_3\}$ where

$$v_1(x, y, z) := \sin(\pi x) \cos\left(\frac{\pi}{2}y\right) \cos\left(\frac{\pi}{2}z\right)$$
$$v_2(x, y, z) := \cos\left(\frac{\pi}{2}x\right) \sin(\pi y) \cos\left(\frac{\pi}{2}z\right)$$
$$v_3(x, y, z) := \cos\left(\frac{\pi}{2}x\right) \cos\left(\frac{\pi}{2}y\right) \sin(\pi z)$$

Let $u_{\theta,\varphi} := (\cos \theta v_1 + \sin \theta v_2) \sin \varphi + \cos \varphi v_3$.

The 3D case: minimizers

C. Troestler (UMONS)

A computer assisted proof of symmetry in PDE

Aug 25, 2017 4 / 5

The 3D case: minimizers

A computer assisted proof of symmetry in PDE

The 3D case: minimizers

The zero set of $v_1 + v_2 + v_3$ is pictured below.

A computer assisted proof of symmetry in PDE

ELE DQC