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The problem

—Au=|ulP2u ingQ,
{ u=|ulP2u in (PDE)

u=0, on a9.
where Q is an open bounded set in RY and p > 2 (and

N 82
p < 2N/(N—2) if N > 3). and A:Za—z.
. XI

Remarks:
m Elliptic, time independent.
m Trivial solution 0.
m Nonlinear, non-convex : infinitely many solutions.
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The problem
—Au=|ulP%u inQ, (PDE)
u=0, on a9.

where Q is an open bounded set in RY and p > 2 (and

N 82
p < 2N/(N—2) if N > 3). and A:Za—z.
. XI

Remarks:

m Elliptic, time independent.
m Trivial solution 0.

m Nonlinear, non-convex : infinitely many solutions.
In this talk: P —— ‘

C. Troestler (UMONS)



Introduction Type of solutions Asymptotic problem Interval arithmetic Computer assisted proof

What is a symmetry?

Let G be subgroup of O(N) and 0: G — {—1, 1} be a group
morphism.

We define an action of G on functions u: Q — R by
gu(x):=0o(g)u(g~'x), geG,
We say that G-symmetric if
Vge G, gu=u.

g(x1, X2) = (—X1, X2)
. =o(g)=1
) o(g)=—1m=

C. Troestler (UMONS)
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Outline

Type of solutions
Asymptotic problem
Interval arithmetic

B} Computer assisted proof
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Variational structure

& HY(Q) > R:u— %J [Vu(x)|? dx — %J lu(x)|P dx
Q Q

where Hé(Q) is the Sobolev space with zero Dirichlet boundary
conditions, that is
Hy(Q):={u:Q—=R|uel’(QandVi=1,...,N, yuel?*Q),
and u =0 on aQ}.
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Variational structure

& HY(Q) = R:u— %J [Vu(x)|? dx — %J lu(x)|P dx
Q Q

where Hé(Q) is the Sobolev space with zero Dirichlet boundary
conditions, that is

Hy(Q) ={u:Q—-R|uel?Q) andVi=1,...,N, su€L*(Q),
and u =0 on aQ}.
u is a solution to (PDE) < EI’)(u) =0.

where SI’)(u) : H(l)(Q) — R is the Fréchet derivative of &,. It is a
linear map given by

£ (u)[v] :J VUVV—J IUIp_zuv:J (—Au—|ulP?u)v
p . . )
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Geometry & existence of a ground state

Ep(u) = 3 J VuCoP dx— 3 J UG dx
Q Q
has the property that

Yu#£0, 3N, >0, &E(Auu)=sup&p(tu)
t>0

C. Troestler (UMONS)
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Geometry & existence of a ground state

Ep(u) = 3 J VuCoP dx— 3 J UG dx
Q Q
has the property that

Yu#£0, 3N, >0, &E(Auu)=sup&p(tu)
t>0

Nehari manifold

Np = {u € Hy(@)\ {0} | £/ (u)[u] = 0}
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Geometry & existence of a ground state

Ep(u) = 3 J VuCoP dx— 3 J UG dx
Q Q
has the property that

Yu#£0, 3N, >0, &E(Auu)=sup&p(tu)
t>0

Nehari manifold
Np = {u € Hy(@)\ {0} | £/ (u)[u] = 0}

Solution

minimize 0 # u — sup &p(tu)
20

C. Troestler (UMONS)

, minimize &y(u)
i.e.,
s.t. UGNp
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Computation of the ground states

u=20, on of.

C. Troestler (UMONS
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Geometry & existence of a least-energy
sign-changing solution

Nodal Nehari “manifold”

Mp :={ueHy(Q)|u" €Ny and
u- GNp}

where u™(x) := max{u(x), 0}

and u=(x) := min{u(x), 0}
(sou=ut+u7).

C. Troestler (UMONS)
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Geometry & existence of a least-energy
sign-changing solution

Nodal Nehari “manifold”

Mp :={ueHy(Q)|u" €Ny and
u- GNp}

where u™(x) := max{u(x), 0}

and u=(x) := min{u(x), 0}
(sou=ut+u7).

Solution

minimize u— sup &(tu™ +su™)
t,s=0

o minimize &y(u)
" st ueMp
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Computation of the least-energy sign-changing
solutions

—Au = |ulP%u inQ,

{u:o, on a9.

C. Troestler (UMONS)
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Asymptotic problem p — 2

—Au=|ulP~2u inQ, —Au=MXu ingQ,
(PDE), vl (L) 2
u=20, on 9f. u=0, on 9.

If (Up)p>2 is a family of solutions to (PDE),, then, up to a
subsequence,

—1/(p—2)

A —

2 Up 27 U
where uy is a solution to (L) where A; is the second
eigenvalue of —A.
Theorem: for p ~ 2, up inherits the symmetries of ux.

Eigenvalues

—Au=Xu inQ,
u=0, on o9Q.
k e N>l for a sequence 0 <A1 <Ay <--- <Ap——> +o0.

C. Troestler (UMONS)
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The second eigenspace E, on the ball

Ey:={u:Q—>R|—Au=XuinQ, u=0on a0}

When Q =B(0, 1) € R?,
E;> =span{wi, w2} where,
in polar coordinates (r, @),

w1(re) =J1(VAzr) sin(e),

and

w2(re) =J1(v/A2r) cos(@).

where J,, are the Bessel functions of the first kind.

Theorem: For p ~ 2, up is anti-symmetric w.r.t. a diameter.
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The second eigenspace E, on the square
When Q =]-1,1[?, E; =span{vi, v2} where

vi(x, y) = sin(mx) cos(gy) and va(x,y)= cos(gx) sin(my).

V2

C. Troestler (UMONS)
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The second eigenspace E, on the square

V1+ V2 vi—2Vy

Question: What function is ux in E>?

C. Troestler (UMONS)
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Variational formulation (1/2)

Reduced functional
Ex :E2—>R:u-—>J u? — u?log u?
Q

Reduced Nehari manifold

Ny = {u€Es\ {0} | £ (u)[u] = 0} N
Criteria: u. is a solution to

minimize u — sup&«(tu)

t=0

o minimize £« (u)
' s.t. ue N,

C. Troestler (UMONS)
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Variational formulation (2/2)

If [,u?=1 (i.e., uis on the unit L2-sphere),

S.(u) ::%Iog(suge*(tu)) =—f u? log|u| dx
Q

t=>

We want to minimize S, on the L2-unit sphere of E».
V2

Because |vi|2 = 1, |v2];2 =1 and
vilwvs in L2,

Ug :=C0SO V1 +sSinbvy

parameterize the L?-sphere of E;.

C. Troestler (UMONS)
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Numerical simulation

0.4+ : S« (cos(8)v1 +sin(B)v2)
0.3 T E 1l 1l 1l 1
T T T 3| T 9
o i 3 " 3 2

C. Troestler (UMONS)



Introduction Type of solutions Asymptotic problem Interval arithmetic Computer assisted proof

Numerical simulation

0.4 1 : S« (cos(8)v1 +sin(B)v2)
0.3 T E Il Il Il L
1 I I 3\ T 9
o i 3 " 3 2

Because the problem is invariant by rotations of n/2 and axial
symmetries and S« is even, one has:

m S, is m/2-periodic;

mS.(F—0)=S«(F+6).

C. Troestler (UMONS)
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Express course on interval arithmetic (1/2)

Observation: floating point computations may be inaccurate
due to rounding error.

Example: Let : R? — R be the function
f(x,y) =333.75y% + x?(11x%y? —y® —121y* —2) + 5.58

In double precision, evaluating f(77617, 33096) yields
—1.180592 - 102, The correct value is —2.

C. Troestler (UMONS)
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Express course on interval arithmetic (1/2)

Observation: floating point computations may be inaccurate
due to rounding error.

Example: Let : R? — R be the function

f(x,y)=333.75y% + x?(11x%y? —y® —121y*—2) +5.5y8
In double precision, evaluating f(77617, 33096) yields
—1.180592 - 10%L. The correct value is —2.

Basic idea: Compute an interval [z, Z] containing the true
value:

fix.y)€lz z],

the rounding of each endpoint taking care of rounding errors.
w guaranteed bounds

C. Troestler (UMONS)
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Express course on interval arithmetic (2/2)
Extend operations to intervals:

(X, X]+ [y, y]=X+y,Xx+Yy]
[x, X]- [y, y]=[min{xy, x¥, Xy, Xy}, max{xy, xy,Xy,Xy}]
sin, cos, ...

C. Troestler (UMONS)
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Express course on interval arithmetic (2/2)
Extend operations to intervals:

(X, X]+ [y, Y]=KX+y X+Y]

[x,X]- [y, ¥]=[min{xy, xy, Xy, Xy}, max{xy, xy, Xy, Xy }]
sin, Cos, ...

Fundamental property: Let x — f(x) be a function and
| — f(/) an interval extension of f. That means:

VI interval, Vx el, f(x)ef(l)

C. Troestler (UMONS)
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Express course on interval arithmetic (2/2)

Extend operations to intervals:

(X, X]+ [y, Y]=KX+y X+Y]
[x, X]- [y, y]=[min{xy, x¥, Xy, Xy}, max{xy, xy,Xy,Xy}]
sin, Cos, ...

Fundamental property: Let x — f(x) be a function and
I — f(I) an interval extension of f. That means:

VI interval, Vx el, f(x)ef(l)

Dependency problem:
B X X]—[Xx, X]=[X—X,x—x] 2 [0, 0] but £ (unless x = X).
n ([)_(,7(])2 C [x, X]-[x, X] but in general #£.
m etc.
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

0.5+
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

f(u) = u? log|ul E Naive

0.5+

_— 1.5
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

f(u) = u? loglul [ ] Naive, refined

0.5+
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

[ ] Naive
[ ] Tight bounds

f(u) = u?log|u|

0.5+

1.5
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

[ ] Naive, refined
[ ] Tight bounds

f(u) = u?log|u|

0.5+
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Adaptive integration

Compute S« (u) = —fQ u? loglul dx where u = cos8 vy +sin @ v;.

Basic scheme: partition Q in a union of “small” P and
estimate each integral with

|_;| JP g(x)dx € g(P).

C. Troestler (UMONS)
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Adaptive integration

Compute S« (u) = —fQ u? loglul dx where u = cos8 vy +sin @ v;.

Basic scheme: partition Q in a union of “small” P and
estimate each integral with

|_;| JP g(x)dx € g(P).

Higher order schemes: require some regularity (u € C2).
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Adaptive integration

Compute S« (u) = —fQ u? loglul dx where u = cos8 vy +sin @ v;.

Basic scheme: partition Q in a union of “small” P and
estimate each integral with

l—il fp g(x)dx € g(P).

Higher order schemes: require some regularity (u € C2).

C. Troestler (UMONS)



Interval arithmetic Computer assisted proof

Introduction Type of solutions Asymptotic problem

Asymptotic problem on Q =1]—1, 12
0.4 + Determine a small interval I such
that n/4 €/ and

Vo e [O, 7T/4]\I, 5*(6) >E*(7T/4)

0.3

C. Troestler (UMONS)
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Introduction Type of solutions Asymptotic problem

Asymptotic problem on Q =1]—1, 12

0.4 + Determine a small interval I such
that n/4 €/ and

Vo e [O, 7T/4]\I, 5*(9) >E*(7T/4)

Problem: the function may look
like

g

0.3

o
N
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Introduction Type of solutions

Asymptotic problem on Q =1]—1, 12

Determine a small interval I such

0.4 +
that /4 €1 and
VO e [0, i/4]\I, E«(0)>E«(m/4)
Problem: the function may look
like
\/ﬁ\/
! 4
0.3 = 5
7 Solution: Show that

Vo el, 35(S«(us))>0.

)

C. Troestler (UMONS
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Thank you for your attention!




Second derivative

Computing the second derivative

Recall that:
S*(u):—f u? log|u| dx
Q

Let ug =cosOvl +sin6v, and u; := dgUp. Taking into account
that [u2 =1 and [(u})? =1, one computes

95(S«(ug)) = 2(—1 — S (ug)— Jﬂ(u;)z log|usl dx).
Thus

35(S4(ug)) >0 & —L(u;)z loglugl dx > 1+ S (ug).

C. Troestler (UMONS)



Second derivative

Positiveness test for the second derivative

1.71- L(u;)2 log|uel| dx
1.6

VueR, —loglul>g(u)
J

—J (up)? log|ue| dx
Q
> J (u})? 9(ue) dx
Q

The map g is just a trun-
cation of —log:

o 9(u):=min{—log|ul, 1000}.

|

|

|

|

|

|

|

T
n
4
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Second derivative

The 3D case

On Q=1]-1,1[3, E; =span{vi, V2, v3} where
vi(X,y, z) .= sin(mx) cos(gy) cos(gz)
TN . T
Va(X, Yy, 2) = cos(Ex) sin(my) cos(zz)
v3(X,y, 2) = cos(gx) cos(gy) sin(mz)

Let ug,p := (cOSOVv1 +Sin Bv2)sin @ + COS PVv3.

C. Troestler (UMONS)



Second derivative

The 3D case: minimizers

®

NI

e

Ug,p := (COSO V1 +SinBVvy)sing
+CosQ V3

C. Troestler (UMONS)



Second derivative

The 3D case: minimizers
0

SIE]

Ug,p := (COSO V1 +SinBVvy)sing
+CosQ V3

/4 The minimum seems to be
atan ﬁ) achieved for

(6,9)= (g, atan \/E)

i.e., for

Vi+ V2 +Vvs.

e

C. Troestler (UMONS)
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Second derivative

The 3D case: minimizers

The zero set of vy + v, + v3 is pictured below.
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	Type of solutions
	Asymptotic problem
	Interval arithmetic
	Computer assisted proof
	Appendix
	Second derivative


