A computer assisted proof of the symmetry of solutions to a PDE

Christophe Troestler

Département de Mathématique
Université de Mons
UMONS
CSD8

The problem

$$
\begin{cases}-\Delta u=|u|^{p-2} u & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega .\end{cases}
$$

where Ω is an open bounded set in \mathbb{R}^{N} and $p>2$ (and
$p<2 N /(N-2)$ if $N \geqslant 3)$. and $\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}$.
Remarks:
■ Elliptic, time independent.

- Trivial solution 0.

■ Nonlinear, non-convex : infinitely many solutions.

The problem

$$
\begin{cases}-\Delta u=|u|^{p-2} u & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega .\end{cases}
$$

where Ω is an open bounded set in \mathbb{R}^{N} and $p>2$ (and
$p<2 N /(N-2)$ if $N \geqslant 3)$. and $\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}$.
Remarks:
■ Elliptic, time independent.

- Trivial solution 0 .

■ Nonlinear, non-convex : infinitely many solutions. In this talk:

What is a symmetry?

Let G be subgroup of $O(N)$ and $\sigma: G \rightarrow\{-1,1\}$ be a group morphism.
We define an action of G on functions $u: \Omega \rightarrow \mathbb{R}$ by

$$
g u(x):=\sigma(g) u\left(g^{-1} x\right), \quad g \in G .
$$

We say that G-symmetric if
$\forall g \in G, \quad g u=u$.

Outline

1 Type of solutions

2 Asymptotic problem

3 Interval arithmetic

4 Computer assisted proof

Variational structure

$$
\mathcal{E}_{p}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\frac{1}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x
$$

where $H_{0}^{1}(\Omega)$ is the Sobolev space with zero Dirichlet boundary conditions, that is

$$
\begin{gathered}
H_{0}^{1}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \mid u \in L^{2}(\Omega) \text { and } \forall i=1, \ldots, N, \partial_{i} u \in L^{2}(\Omega)\right. \\
\text { and } u=0 \text { on } \partial \Omega\} .
\end{gathered}
$$

Variational structure

$$
\mathcal{E}_{p}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\frac{1}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x
$$

where $H_{0}^{1}(\Omega)$ is the Sobolev space with zero Dirichlet boundary conditions, that is

$$
\begin{gathered}
H_{0}^{1}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \mid u \in L^{2}(\Omega) \text { and } \forall i=1, \ldots, N, \partial_{i} u \in L^{2}(\Omega)\right. \\
\text { and } u=0 \text { on } \partial \Omega\} .
\end{gathered}
$$

u is a solution to (PDE) $\Leftrightarrow \mathcal{E}_{p}^{\prime}(u)=0$.
where $\mathcal{E}_{p}^{\prime}(u): H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is the Fréchet derivative of \mathcal{E}_{p}. It is a linear map given by

$$
\mathcal{E}_{p}^{\prime}(u)[v]=\int_{\Omega} \nabla u \nabla v-\int_{\Omega}|u|^{p-2} u v=\int_{\Omega}\left(-\Delta u-|u|^{p-2} u\right) v
$$

Geometry \& existence of a ground state

$$
\mathcal{E}_{p}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\frac{1}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x
$$

has the property that

$$
\forall u \neq 0, \quad \exists!\lambda_{u}>0, \quad \mathcal{E}_{p}\left(\lambda_{u} u\right)=\sup _{t \geqslant 0} \mathcal{E}_{p}(t u)
$$

Geometry \& existence of a ground state

$$
\mathcal{E}_{p}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\frac{1}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x
$$

has the property that

$$
\forall u \neq 0, \exists!\lambda_{u}>0, \quad \mathcal{E}_{p}\left(\lambda_{u} u\right)=\sup _{t \geqslant 0} \mathcal{E}_{p}(t u)
$$

Nehari manifold

$$
\mathcal{N}_{p}:=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \mid \mathcal{E}_{p}^{\prime}(u)[u]=0\right\}
$$

Geometry \& existence of a ground state

$$
\mathcal{E}_{p}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\frac{1}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x
$$

has the property that

$$
\forall u \neq 0, \exists!\lambda_{u}>0, \quad \mathcal{E}_{p}\left(\lambda_{u} u\right)=\sup _{t \geqslant 0} \mathcal{E}_{p}(t u)
$$

Nehari manifold

$$
\mathcal{N}_{p}:=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \mid \mathcal{E}_{p}^{\prime}(u)[u]=0\right\}
$$

Solution

$$
\operatorname{minimize} 0 \neq u \mapsto \sup _{t \geqslant 0} \mathcal{E}_{p}(t u) \quad \text { i.e., } \quad\left\{\begin{array}{l}
\operatorname{minimize} \mathcal{E}_{p}(u) \\
\text { s.t. } u \in \mathcal{N}_{p}
\end{array}\right.
$$

Computation of the ground states

$$
\begin{cases}-\Delta u=|u|^{p-2} u & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

$\Omega=B(0,1)$

$$
\Omega=]-1,1\left[^{2}\right.
$$

Geometry \& existence of a least-energy sign-changing solution

Nodal Nehari "manifold"

$$
\begin{aligned}
& \mathcal{M}_{p}:=\left\{u \in H_{0}^{1}(\Omega) \mid\right. u^{+} \\
& \in \mathcal{N}_{p} \text { and } \\
&\left.u^{-} \in \mathcal{N}_{p}\right\}
\end{aligned}
$$

where $u^{+}(x):=\max \{u(x), 0\}$ and $u^{-}(x):=\min \{u(x), 0\}$ (so $u=u^{+}+u^{-}$).

Geometry \& existence of a least-energy sign-changing solution

Nodal Nehari "manifold"

$$
\begin{aligned}
& \mathcal{M}_{p}:=\left\{u \in H_{0}^{1}(\Omega) \mid\right. u^{+} \\
& \in \mathcal{N}_{p} \text { and } \\
& u^{-}\left.\in \mathcal{N}_{p}\right\}
\end{aligned}
$$

where $u^{+}(x):=\max \{u(x), 0\}$ and $u^{-}(x):=\min \{u(x), 0\}$ (so $u=u^{+}+u^{-}$).

Solution

$$
\text { minimize } u \mapsto \sup _{t, s \geqslant 0} \mathcal{E}_{p}\left(t u^{+}+s u^{-}\right) \quad \text { i.e., } \quad\left\{\begin{array}{l}
\operatorname{minimize} \mathcal{E}_{p}(u) \\
\text { s.t. } u \in \mathcal{M}_{p}
\end{array}\right.
$$

Computation of the least-energy sign-changing solutions

$$
\begin{cases}-\Delta u=|u|^{p-2} u & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

$\Omega=B(0,1)$

$$
\Omega=]-1,1\left[^{2}\right.
$$

Asymptotic problem $p \rightarrow 2$

$(\mathrm{PDE})_{p}\left\{\begin{array}{ll}-\Delta u=|u|^{p-2} u & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega .\end{array} \quad\right.$ (L) $\begin{cases}-\Delta u=\lambda_{2} u & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega .\end{cases}$
If $\left(u_{p}\right)_{p>2}$ is a family of solutions to (PDE) $)_{p}$, then, up to a subsequence,

$$
\lambda_{2}^{-1 /(p-2)} u_{p} \xrightarrow[p \rightarrow 2]{ } u_{*}
$$

where u_{*} is a solution to (L) where λ_{2} is the second eigenvalue of $-\Delta$.
Theorem: for $p \approx 2, u_{p}$ inherits the symmetries of u_{*}.

Eigenvalues

Recall that $\left\{\begin{array}{ll}-\Delta u=\lambda u & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega .\end{array}\right.$ has a solution $u \neq 0$ iff $\lambda=\lambda_{k}$ for some
$k \in \mathbb{N}^{\geqslant 1}$ for a sequence $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \xrightarrow[n \rightarrow \infty]{ }+\infty$.

The second eigenspace E_{2} on the ball

$$
E_{2}:=\left\{u: \Omega \rightarrow \mathbb{R} \mid-\Delta u=\lambda_{2} u \text { in } \Omega, u=0 \text { on } \partial \Omega\right\}
$$

When $\Omega=B(0,1) \subseteq \mathbb{R}^{2}$,
$E_{2}=\operatorname{span}\left\{w_{1}, w_{2}\right\} \quad$ where, in polar coordinates (r, φ),

$$
w_{1}(r \varphi)=J_{1}\left(\sqrt{\lambda_{2}} r\right) \sin (\varphi),
$$

and

$$
w_{2}(r \varphi)=J_{1}\left(\sqrt{\lambda_{2}} r\right) \cos (\varphi) .
$$

where J_{ν} are the Bessel functions of the first kind.
Theorem: For $p \approx 2, u_{p}$ is anti-symmetric w.r.t. a diameter.

The second eigenspace E_{2} on the square

When $\Omega=]-1,1\left[{ }^{2}, E_{2}=\operatorname{span}\left\{v_{1}, v_{2}\right\}\right.$ where

$$
v_{1}(x, y)=\sin (\pi x) \cos \left(\frac{\pi}{2} y\right) \quad \text { and } \quad v_{2}(x, y)=\cos \left(\frac{\pi}{2} x\right) \sin (\pi y) .
$$

The second eigenspace E_{2} on the square

Question: What function is u_{*} in E_{2} ?

Variational formulation (1/2)

Reduced functional

$$
\mathcal{E}_{*}: E_{2} \rightarrow \mathbb{R}: u \mapsto \int_{\Omega} u^{2}-u^{2} \log u^{2}
$$

Reduced Nehari manifold

$$
\mathcal{N}_{*}:=\left\{u \in E_{2} \backslash\{0\} \mid \mathcal{E}_{*}^{\prime}(u)[u]=0\right\}
$$

Criteria: u_{*} is a solution to
$\operatorname{minimize} u \mapsto \sup _{t \geqslant 0} \mathcal{E}_{*}(t u) \quad$ i.e., $\quad\left\{\begin{array}{l}\operatorname{minimize} \mathcal{E}_{*}(u) \\ \text { s.t. } u \in \mathcal{N}_{*}\end{array}\right.$

Variational formulation (2/2)

If $\int_{\Omega} u^{2}=1$ (i.e., u is on the unit L^{2}-sphere),

$$
S_{*}(u):=\frac{1}{2} \log \left(\sup _{t \geqslant 0} \mathcal{E}_{*}(t u)\right)=-\int_{\Omega} u^{2} \log |u| \mathrm{d} x
$$

We want to minimize S_{*} on the L^{2}-unit sphere of E_{2}.

Because $\left|v_{1}\right|_{L^{2}}=1,\left|v_{2}\right|_{L^{2}}=1$ and $v_{1} \perp v_{2}$ in L^{2},

$$
u_{\theta}:=\cos \theta v_{1}+\sin \theta v_{2}
$$

parameterize the L^{2}-sphere of E_{2}.

Numerical simulation

Numerical simulation

Because the problem is invariant by rotations of $\pi / 2$ and axial symmetries and S_{*} is even, one has:
$\square S_{*}$ is $\pi / 2$-periodic;
$\square S_{*}\left(\frac{\pi}{4}-\theta\right)=S_{*}\left(\frac{\pi}{4}+\theta\right)$.

Express course on interval arithmetic (1/2)

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}
$$

In double precision, evaluating $f(77617,33096)$ yields $-1.180592 \cdot 10^{21}$. The correct value is -2 .

Express course on interval arithmetic (1/2)

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}
$$

In double precision, evaluating $f(77617,33096)$ yields $-1.180592 \cdot 10^{21}$. The correct value is -2 .

Basic idea: Compute an interval $[\underline{z}, \bar{z}]$ containing the true value:

$$
f(x, y) \in[\underline{z}, \bar{z}],
$$

the rounding of each endpoint taking care of rounding errors.
"- guaranteed bounds

Express course on interval arithmetic (2/2)

Extend operations to intervals:

$$
\begin{aligned}
& {[\underline{x}, \bar{x}]+[\underline{x}, \bar{y}] }=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
& {[\underline{x}, \bar{x}] \cdot[\underline{y}, \bar{y}] }=[\min \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{x}, \bar{x} \bar{y}\}, \max \{\underline{x} y, \underline{x} \bar{y}, \bar{x} y, \bar{x} \bar{y}\}] \\
& \text { sin, } \cos , \ldots
\end{aligned}
$$

Express course on interval arithmetic (2/2)

Extend operations to intervals:

$$
\begin{aligned}
& {[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}] }=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
& {[\underline{x}, \bar{x}] \cdot[\underline{y}, \bar{y}] }=[\min \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \bar{x} \bar{y}\}, \max \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} y, \bar{x} \bar{y}\}] \\
& \text { sin, } \cos , \ldots
\end{aligned}
$$

Fundamental property: Let $x \rightarrow f(x)$ be a function and $l \mapsto \mathbf{f}(I)$ an interval extension of f. That means:
$\forall I$ interval, $\quad \forall x \in I, f(x) \in \mathbf{f}(I)$

Express course on interval arithmetic (2/2)

Extend operations to intervals:

$$
\begin{aligned}
& {[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}] }=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
& {[\underline{x}, \bar{x}] \cdot[\underline{y}, \bar{y}] }=[\min \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \bar{x} \bar{y}\}, \max \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} y, \bar{x} \bar{y}\}] \\
& \text { sin, } \cos , \ldots
\end{aligned}
$$

Fundamental property: Let $x \rightarrow f(x)$ be a function and $l \mapsto \mathbf{f}(I)$ an interval extension of f. That means:
$\forall I$ interval, $\quad \forall x \in I, f(x) \in \mathbf{f}(I)$

Express course on interval arithmetic (2/2)

Extend operations to intervals:

$$
\begin{aligned}
& {[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}] }=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
& {[\underline{x}, \bar{x}] \cdot[\underline{y}, \bar{y}] }=[\min \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \bar{x} \bar{y}\}, \max \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} y, \bar{x} \bar{y}\}] \\
& \text { sin, } \cos , \ldots
\end{aligned}
$$

Fundamental property: Let $x \rightarrow f(x)$ be a function and $l \mapsto \mathbf{f}(I)$ an interval extension of f. That means:
$\forall I$ interval, $\quad \forall x \in I, f(x) \in \mathbf{f}(I)$

Dependency problem:

$\square[\underline{x}, \bar{x}]-[\underline{x}, \bar{x}]=[\underline{x}-\bar{x}, \bar{x}-\underline{x}] \supseteq[0,0]$ but $\neq($ unless $\underline{x}=\bar{x})$.

- $([\underline{x}, \bar{x}])^{2} \subseteq[\underline{x}, \bar{x}] \cdot[\underline{x}, \bar{x}]$ but in general \neq.
etc.

Evaluation of basic functions

Recall that $S_{*}(u)=-\int_{\Omega} f(u) \mathrm{d} x$ where $f(u):=u^{2} \log |u|$.

Evaluation of basic functions

Recall that $S_{*}(u)=-\int_{\Omega} f(u) \mathrm{d} x$ where $f(u):=u^{2} \log |u|$.

Evaluation of basic functions

Recall that $S_{*}(u)=-\int_{\Omega} f(u) \mathrm{d} x$ where $f(u):=u^{2} \log |u|$.

Evaluation of basic functions

Recall that $S_{*}(u)=-\int_{\Omega} f(u) \mathrm{d} x$ where $f(u):=u^{2} \log |u|$.

Evaluation of basic functions

Recall that $S_{*}(u)=-\int_{\Omega} f(u) \mathrm{d} x$ where $f(u):=u^{2} \log |u|$.

Adaptive integration

Compute $S_{*}(u)=-\int_{\Omega} u^{2} \log |u| \mathrm{d} x$ where $u=\cos \theta v_{1}+\sin \theta v_{2}$.
Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$
\frac{1}{|P|} \int_{P} g(x) \mathrm{d} x \in g(P) .
$$

Adaptive integration

Compute $S_{*}(u)=-\int_{\Omega} u^{2} \log |u| \mathrm{d} x$ where $u=\cos \theta v_{1}+\sin \theta v_{2}$.
Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$
\frac{1}{|P|} \int_{P} g(x) \mathrm{d} x \in g(P) .
$$

Higher order schemes: require some regularity $\left(u \in \mathcal{C}^{2}\right)$.

Adaptive integration

Compute $S_{*}(u)=-\int_{\Omega} u^{2} \log |u| \mathrm{d} x$ where $u=\cos \theta v_{1}+\sin \theta v_{2}$.
Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$
\frac{1}{|P|} \int_{P} g(x) \mathrm{d} x \in g(P) .
$$

Higher order schemes: require some regularity $\left(u \in \mathcal{C}^{2}\right)$.

Asymptotic problem on $\Omega=]-1,1\left[{ }^{2}\right.$

Determine a small interval I such that $\pi / 4 \in I$ and
$\forall \theta \in[0, \pi / 4] \backslash I, \quad \mathcal{E}_{*}(\theta)>E_{*}(\pi / 4)$

Asymptotic problem on $\Omega=]-1,1\left[{ }^{2}\right.$

Determine a small interval I such that $\pi / 4 \in I$ and
$\forall \theta \in[0, \pi / 4] \backslash I, \quad \mathcal{E}_{*}(\theta)>E_{*}(\pi / 4)$
Problem: the function may look like

Asymptotic problem on $\Omega=]-1,1\left[{ }^{2}\right.$

Determine a small interval I such that $\pi / 4 \in I$ and
$\forall \theta \in[0, \pi / 4] \backslash I, \quad \mathcal{E}_{*}(\theta)>E_{*}(\pi / 4)$
Problem: the function may look like

Solution: Show that

$$
\forall \theta \in I, \quad \partial_{\theta}^{2}\left(S_{*}\left(u_{\theta}\right)\right)>0 .
$$

Thank you for your attention!

Computing the second derivative

Recall that:

$$
S_{*}(u)=-\int_{\Omega} u^{2} \log |u| \mathrm{d} x
$$

Let $u_{\theta}=\cos \theta v 1+\sin \theta v_{2}$ and $u_{\theta}^{\prime}:=\partial_{\theta} u_{\theta}$. Taking into account that $\int u_{\theta}^{2}=1$ and $\int\left(u_{\theta}^{\prime}\right)^{2}=1$, one computes

$$
\partial_{\theta}^{2}\left(S_{*}\left(u_{\theta}\right)\right)=2\left(-1-S_{*}\left(u_{\theta}\right)-\int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} \log \left|u_{\theta}\right| \mathrm{d} x\right)
$$

Thus

$$
\partial_{\theta}^{2}\left(S_{*}\left(u_{\theta}\right)\right)>0 \Leftrightarrow-\int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} \log \left|u_{\theta}\right| \mathrm{d} x>1+S_{*}\left(u_{\theta}\right)
$$

Positiveness test for the second derivative

$$
\begin{gathered}
\forall u \in \mathbb{R},-\log |u| \geqslant g(u) \\
\Downarrow \\
-\int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} \log \left|u_{\theta}\right| \mathrm{d} x \\
\geqslant \int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} g\left(u_{\theta}\right) \mathrm{d} x
\end{gathered}
$$

The map g is just a truncation of - log:
$g(u):=\min \{-\log |u|, 1000\}$.

Positiveness test for the second derivative

$$
\begin{aligned}
\forall u \in \mathbb{R},-\log |u| \geqslant g(u) \\
\Downarrow \\
-\int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} \log \left|u_{\theta}\right| \mathrm{d} x \\
\geqslant \int_{\Omega}\left(u_{\theta}^{\prime}\right)^{2} g\left(u_{\theta}\right) \mathrm{d} x
\end{aligned}
$$

The map g is just a truncation of - log:
$g(u):=\min \{-\log |u|, 1000\}$.

The 3D case

On $\Omega=]-1,1\left[^{3}, E_{2}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}\right.$ where

$$
\begin{aligned}
& v_{1}(x, y, z):=\sin (\pi x) \cos \left(\frac{\pi}{2} y\right) \cos \left(\frac{\pi}{2} z\right) \\
& v_{2}(x, y, z):=\cos \left(\frac{\pi}{2} x\right) \sin (\pi y) \cos \left(\frac{\pi}{2} z\right) \\
& v_{3}(x, y, z):=\cos \left(\frac{\pi}{2} x\right) \cos \left(\frac{\pi}{2} y\right) \sin (\pi z)
\end{aligned}
$$

Let $u_{\theta, \varphi}:=\left(\cos \theta v_{1}+\sin \theta v_{2}\right) \sin \varphi+\cos \varphi v_{3}$.

The 3D case: minimizers

$u_{\theta, \varphi}:=\left(\cos \theta v_{1}+\sin \theta v_{2}\right) \sin \varphi$ $+\cos \varphi v_{3}$

The 3D case: minimizers

$u_{\theta, \varphi}:=\left(\cos \theta v_{1}+\sin \theta v_{2}\right) \sin \varphi$ $+\cos \varphi v_{3}$

The minimum seems to be achieved for

$$
(\theta, \varphi)=\left(\frac{\pi}{4}, \operatorname{atan} \sqrt{2}\right)
$$

i.e., for

$$
v_{1}+v_{2}+v_{3}
$$

The 3D case: minimizers

The zero set of $v_{1}+v_{2}+v_{3}$ is pictured below.

