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Repairing a database means bringing the database in accordance with a given set of integrity
constraints by applying some minimal change. If a database can be repaired in more than one way,
then the consistent answer to a query is defined as the intersection of the query answers on all
repaired versions of the database.

Earlier approaches have confined the repair work to deletions and insertions of entire tuples.
We propose a theoretical framework that also covers updates as a repair primitive. Update-based
repairing is interesting in that it allows rectifying an error within a tuple without deleting the
tuple, thereby preserving consistent values in the tuple. Another novel idea is the construct of
nucleus: a single database that yields consistent answers to a class of queries, without the need for
query rewriting. We show the construction of nuclei for full dependencies and conjunctive queries.
Consistent query answering and constructing nuclei is generally intractable under update-based
repairing. Nevertheless, we also show some tractable cases of practical interest.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational
databases; Query processing; H.2.3 [Database Management]: Languages—Query languages

General Terms: Theory

Additional Key Words and Phrases: Consistent query answering, database repairing

1. GENERAL PROBLEM DESCRIPTION

Database textbooks generally explain that integrity constraints are used for
capturing the set of all “legal” databases and hence should be satisfied at all
times. Nevertheless, many real-life databases contain data that is known or
suspected to be inconsistent. Inconsistency may be caused, among other rea-
sons, by data integration and underspecified constraints. For example, the rule
“No employee has more than one contact address,” gives rise to an error if
two databases to be integrated store different addresses for the same em-
ployee. A FIRSTNAME CHAR(20) declaration in SQL does not protect us from
inputting illegal first names like “Louis14.” When later on we specify that
first names cannot contain numbers, the database may already turn out to be
inconsistent.

Author’s address: Université de Mons-Hainaut, Avenue du Champs de Mars 6, B-7000 Mons,
Belgium; email: wijsen@umh.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0362-5915/05/0900-0722 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 3, September 2005, Pages 722–768.



Database Repairing Using Updates • 723

Fig. 1. Example relation with four full dependencies.

Since database inconsistency is a widespread phenomenon, it is important
to understand how to react to it. The seminal work of Arenas et al. [1999] has
roused much research in the construct of repair for dealing with inconsistency.
In broad outline, a repair of an inconsistent database I is a database J that is
consistent and “as close as possible” to I . Closeness can be captured in different
ways and this has given rise to a variety of repair notions. Whatever repair
notion is used, a repair of a given database I need not generally be unique.
When there are multiple repairs, the question that arises is which repair to use
for answering queries. The generally accepted query semantics is to execute the
query on each repair and return the intersection of all answers, the so-called
consistent query answer. Intuitively, all repairs are equally possible and only
tuples that appear in all answers are certainly true.

Nearly all approaches so far have assumed that databases are repaired by
deleting and inserting entire tuples. A problem with deletion/insertion-based
repairing is that a single tuple may contain both correct and erroneous com-
ponents. When we delete a tuple because it contains an error, we also lose
the correct components as an undesirable side effect. This effect may be dra-
matic in real-life databases containing relations with many error-free attributes
along with one or two error-prone attributes. To overcome this problem, we
propose a notion of repair that allows updating erroneous components in place,
while keeping the consistent ones. We refer to our approach as “updated-based
repairing.”

For example, the relation CARS of Figure 1 stores price ranges of different
car variants; possible price ranges are: bottom, lower, medium, upper. Integrity
constraints are expressed in the tableau formalism [Abiteboul et al. 1995], using
column names for readability. The following constraints apply:

—Every model in the upper price range also exists in a medium priced standard
version (τ1).

—The upper price range only contains luxury cars (ε1). On the other hand,
luxury cars need not be upper priced.

—The price range of a car is determined by its model and version (ε2). This is
a key dependency.

—Models that exist in a luxury version are never available at bottom prices
(ε3). The constants 0 and 1 can be replaced by any pair of distinct constants.
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Fig. 2. F1 is a fix; the corresponding uprepairs are obtained from T1 by substituting for x any
value distinct from “sedan.” Likewise for F2–F5.

This is an example of a contradiction-generating dependency (cgd) and can
be stated as: ∀x∀ y∀z(¬R(x, luxury, z) ∨ ¬R(x, y , bottom)).

Note that because of ε1, we can substitute “luxury” for the variable y in τ1
without changing the meaning of the constraints.

The relation CARS falsifies τ1, because it does not contain the tuple 〈sedan,
standard, medium〉. Adding that tuple results in a violation of constraint ε2. In
deletion/insertion-based repairing, we can delete the first tuple of CARS; alter-
natively, we can delete the second tuple and insert 〈sedan, standard, medium〉.
In update-based repairing, erroneous values are replaced by variables in so-
called fixes. Five fixes F1–F5 of CARS are shown in Figure 2. The fix F1, for
example, assumes that the value “sedan” in the first tuple of CARS is mis-
taken. Each fix is homomorphic to the original relation CARS: one can find
substitutions for the variables x, y , z that map each fix into CARS. Moreover,
each fix is homomorphic to a consistent relation. In fact, F1 is homomorphic
to T1, and to every relation obtained from T1 by substituting a constant for x;
if we choose a constant distinct from “sedan,” then the relation obtained will
be consistent and called an uprepair. The prefix “up” distinguishes uprepairs
from other repair notions in the literature; it may be read as “update” or it
can refer to the fact that passing from fixes to uprepairs corresponds to “mov-
ing up” in a homomorphism lattice (see later). Significantly, uprepairs, unlike
fixes, do not contain variables. To make F5 consistent, we first add the tuple
〈sedan, standard, medium〉 because of τ1, and then we identify z and “medium”
because of ε2. In this way, we obtain the uprepair T5. Intuitively, the repair
work that modifies CARS into T5 updates “lower” into “medium”.
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In general, the number of uprepairs can be large or even infinite. The con-
sistent answer to a query is defined as the intersection of the query answers
on all uprepairs. In the running example, T1 gives rise to as many uprepairs as
there are possible Model-values distinct from “sedan.” The question “Give all
versions” yields “luxury” and “standard.” The question “Give all lower priced
versions” yields the empty answer, because the uprepair T5 contains no lower
priced cars.

The definition of consistent answer is conceptually clean but, since the num-
ber of uprepairs can be infinite, it is not clear whether consistent answers can
be effectively computed and if so, whether they can be computed in tractable
time. In this article, all complexity results refer to data complexity: complexity
is in terms of the cardinality of the input relation.

A well-studied strategy for computing consistent query answers, known as
query rewriting, consists in “pushing” integrity constraints into queries so as to
obtain new queries that are guaranteed to return the consistent answer on any,
possibly inconsistent, database. Since query rewriting is independent of the
underlying database, it gives us tractability provided that the modified queries
execute in polynomial time.

In this article, we explore a different route. We show that for full dependen-
cies and conjunctive queries, all uprepairs can be “summarized” into a single
tableau G such that the consistent answer to any conjunctive query can be
obtained by executing the query on G. The tableau G, called nucleus, will be
homomorphic to all uprepairs and will be maximal in the sense that any other
tableau that is homomorphic to all uprepairs, is also homomorphic to G. A
nucleus for the running example is the following tableau G:

G Model Version PriceRange
x luxury u
x standard v

sedan standard w

The queries “Give all versions,” and “Give all lower priced versions” on G, indeed
yield the same consistent answers as before. Note incidentally the difference
with deletion/insertion-based repairing, where the repair obtained by deleting
the first tuple of CARS contains no luxury cars.

Rewriting conjunctive queries takes time, and more significantly, usually
results in nonconjunctive queries that are more time-consuming. The use of
nuclei eliminates the need for query rewriting. A nucleus could be computed
once and then used to compute consistent answers to any conjunctive query.
The drawback is that the nucleus has to be recomputed when the underlying
database is modified. Of course, for classes of queries and constraints for which
consistent query answering is tractable, the use of nuclei is only meaningful
if they can be computed in polynomial time. In this article, we identify cases
where the nucleus construction needs no more time than the time needed to
answer a single query obtained from rewriting.

The rest of this article is organized as follows. Section 2 recalls some database
constructs and introduces the notion of uprepair. In general, the set of upre-
pairs can be infinite. Section 3 shows how to effectively query infinitely many
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uprepairs in the case of full dependencies and conjunctive queries. Section 4
shows the existence of nuclei and provides an effective way to compute them.
The results in Section 2–4 are general in the sense that they do not depend on
a particular way of fixing, but simply assume that some set of fixes is given.
Section 5 settles the construct of fix and then explores an upper bound for the
time complexity of consistent query answering. Section 6 provides results on the
nucleus size and the time complexity for computing it. Two classes of dependen-
cies are investigated in detail: key dependencies (Section 7) and contradiction-
generating dependencies (Section 8). For both classes, we clarify the frontier
between tractability and intractability. Section 9 shows the problems arising
when we add inequalities or disjunctions. Finally, Section 10 contains a com-
parison with existing work.

2. FROM SUBCONSISTENT TABLEAUX TO CONSISTENT RELATIONS

2.1 Preliminaries

We recall the definition of tableau. To simplify the notation, we will assume a
unirelational database containing a single relation of arity n.

Definition 2.1. We assume two disjoint, infinite sets dom and var of con-
stants and variables. A symbol is either a constant or a variable.

We assume an arity n. A tuple is a sequence 〈p1, . . . , pn〉 of symbols. The ith
coordinate of tuple t is denoted t(i) (i ∈ {1, 2, . . . , n}).

A tableau is a finite set of tuples. A tuple or tableau without variables is
called ground. A ground tableau is also called a relation. If F is a tableau, then
grd(F ) := {t ∈ F | t is ground}. The set of all tableaux (of fixed arity n) is
denoted T.

We will use the letters I , J , K to denote relations; F , G, H, T denote tableaux;
I denotes a set of relations; F, G denote sets of tableaux. We now recall the
definition of substitution and its extension to tableaux.

Definition 2.2. A substitution is a mapping θ from variables to symbols,
extended to be the identity on constants. Substitutions naturally extend to
tuples and tableaux: first, θ (〈p1, . . . , pn〉) = 〈θ (p1), . . . , θ (pn)〉, and second, if F
is a tableau, then θ (F ) = {θ (t) | t ∈ F }.

We write id for the identity function on symbols, and write idp = q , where p
and q are not two distinct constants, for a substitution that identifies p and q
and that is the identity otherwise. That is, if p is a variable and q a constant,
then idp = q = {p/q}; similarly, mutatis mutandis, if p is a constant and q a
variable. If p and q are variables, then idp = q can be either {p/q} or {q/p}; the
choice will be immaterial in the technical treatment.

The following definition introduces an order � on T based on tableau
homomorphism.

Definition 2.3. Let F , G be two tableaux (i.e. F, G ∈ T). A homomorphism
from F to G is a substitution θ for the variables in F such that θ (F ) ⊆ G. If
such a homomorphism from F to G exists, then F is said to be homomorphic to
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G, denoted G � F . Two tableaux are said to be equivalent, denoted F ∼ G, if
and only if F � G and G � F . We write G 
 F if and only if G � F and G �∼ F .
The relation ∼ is an equivalence relation (Lemma 2.4); we write [F ]∼ for the
equivalence class of ∼ that contains F . A tableau is reduced if it is equivalent
to no tableau of smaller cardinality.

The relation ∼ on tableaux naturally extends to sets of tableaux: two sets F
and G of tableaux are said to be equivalent, denoted F ∼ G, if and only if for
every tableau in either set, there exists an equivalent tableau in the other set.

It is well-known [Abiteboul et al. 1995], and significant for the results to follow,
that if a tableau F is not reduced, then there exists a substitution θ such that
θ (F ) � F . Also, homomorphisms are known to be intimately related to logical
implication. Each tableau G can be associated to a first-order logic sentence,
denoted wff (G), defined as wff (G) := ∃∗(

∧
t∈G R(t)). Then, G � F if and only if

wff (G) logically implies wff (F ). Consequently, G ∼ F if and only if wff (G) and
wff (F ) are logically equivalent. The following properties are straightforward:

LEMMA 2.4. Let F, G ∈ T.

(1) If F ⊇ G, then F � G.
(2) If F � G, then grd(F ) ⊇ grd(G).
(3) 〈T, �〉 is a quasi-order.1

(4) ∼ is an equivalence relation on T.

PROOF. Easy.

2.2 Uprepairs

Consistency of relations is defined relative to a set � of integrity constraints. A
tableau will be called subconsistent if it is homomorphic to a consistent relation.
Our approach to repairing an inconsistent relation I consists in finding subcon-
sistent fixes that are one-one homomorphic to I and homomorphic to consistent
uprepairs. The actual relationship between I and its fixes will be specified in
Section 5. Up to that point, we will assume that a set F of subconsistent fixes
is given and focus on the problem of querying the uprepairs generated by F.

Definition 2.5. We assume arity n. A constraint is a closed first-order for-
mula σ using a single predicate symbol of arity n. If J is a relation, then J |= σ

denotes that J satisfies σ (according to standard first-order logic semantics).
Let � be a set of constraints. We write J |= � if and only if J |= σ for each

σ ∈ �. The relation J is called consistent (with respect to �) if and only if J |= �;
otherwise J is inconsistent. The set � is called satisfiable if it allows a consistent
relation. The set � is called coherent if it allows a nonempty consistent relation.
Two sets of constraints are equivalent if any relation that is consistent with
respect to either set, is also consistent with respect to the other set.

A tableau F is subconsistent (with respect to �), denoted F � �, if and only
if F is homomorphic to a consistent relation: J � F for some consistent relation
J .

1A quasi-order satisfies reflexivity and transitivity.
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Let F be a subconsistent tableau. An uprepair of F and � is a minimal (with
respect to ⊆) consistent relation J satisfying J � F . In general, there will
be more than one uprepair of F and �; the set of all uprepairs of F and � is
denoted F ↑� . The latter operator naturally extends to a set F of subconsistent
tableaux:

F↑� :=
⋃
F∈F

F ↑� .

If J ∈ F↑� , then we also say that J is generated by F and �.

Note that F ↑� need not be finite. For example, for the subconsistent tableau F1
of Figure 2, F1

↑{τ1,ε1,ε2,ε3} contains every relation obtained from T1 by replacing
x by a constant distinct from “sedan.”

Equivalent sets of subconsistent tableaux generate the same uprepairs.

LEMMA 2.6. Let � be a set of constraints. Let F, G be sets of subconsistent
tableaux such that F ∼ G. Then, F↑� = G↑� .

PROOF. Assume J ∈ F↑� . We can assume the existence of F ∈ F such that
J � F and for each relation J ′, J ⊃ J ′ � F implies J ′ �|= �. Since F ∼ G,
we can assume the existence of G ∈ G such that F ∼ G, hence F � G and
G � F . By transitivity, J � G. Assume a relation J ′ such that J ⊃ J ′ � G. By
transitivity, J ⊃ J ′ � F , hence J ′ �|= �. It is correct to conclude J ∈ G↑� . It
follows F↑� ⊆ G↑� . By symmetry, G↑� ⊆ F↑� .

3. QUERYING THE UPREPAIRS

In this section, we study an initial problem underlying consistent query answer-
ing: given a finite set F of subconsistent tableaux and a query τ , compute the
intersection of the query answers on each J ∈ F↑� , i.e. compute

⋂
J∈F↑� τ (J ).

3.1 Tableau Queries and Full Dependencies

We use the tableau formalism to express conjunctive queries [Abiteboul et al.
1995]. The answer to a tableau query on a set of relations is defined as the
intersection of the query answers on each relation of the set.

Definition 3.1. A tableau query is a pair (B, h) where B is a tableau (called
body) and h is a tuple (called summary or head) such that every variable in h
also occurs in B; B and h need not have the same arity. The class of tableau
queries is denoted CQ (acronym for Conjunctive Queries).

Let τ = (B, h) be a tableau query, and F a tableau of the same arity as B.
The answer to τ on input F , denoted τ (F ), is the tableau defined as τ (F ) :=
{θ (h) | θ is a substitution and θ (B) ⊆ F }. Obviously, if F is ground, then so is
τ (F ).

A tableau query τ = (B, h) is called Boolean if h contains no variables; we
will often choose h = 〈1〉, where 1 ∈ dom. Intuitively, the answer {〈1〉} can be
thought of as true, and the answer {} as false.
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Fig. 3.

For a set I of relations and a tableau query τ , we define:

τ (I) :=
⋂
I∈I

τ (I ) .

Certain results in this article are limited to full dependencies, a restricted but
interesting class of database constraints [Abiteboul et al. 1995]. Unlike the
seminal paper by Beeri and Vardi [1984], our full dependencies need not be
typed and can contain constants. All constraints of our running example (see
Figure 1) are full dependencies.

Satisfaction of full dependencies by relations is borrowed from first-order
logic semantics. We also define what it means for a tableau to satisfy a set
of full dependencies. We are not aware of existing work introducing the same
concept.

Definition 3.2. A full dependency is either a full tuple-generating depen-
dency (ftgd) or a full equality-generating dependency (fegd).

An ftgd takes the form of a tableau query (B, h) where B and h have the
same arity. The ftgd τ = (B, h) is satisfied by a tableau F , denoted F |= τ , if
and only if F ∪ τ (F ) ∼ F .

An fegd is of the form (B, p = q) where B is a tableau and p, q are symbols
such that every variable in {p, q} also occurs in B. The fegd ε = (B, p = q) is
satisfied by a tableau F , denoted F |= ε, if and only if for every substitution θ , if
θ (B) ⊆ F , then θ (p), θ (q) are not two distinct constants and F ∼ idθ (p) = θ (q)(F ).

Consistency (see Definition 2.5) carries over from relations to tableaux: a
tableau F is called consistent with respect to a set � of full dependencies if and
only if F |= �.

If P is a tableau, a tableau query, an ftgd, or an fegd, then the active symbol
domain of P , denoted asd(P ), is the set of symbols occurring in P .

Satisfaction of full dependencies by tableaux needs special attention, as illus-
trated by the tableaux F and G, and the dependencies ε4 and τ2 in Figure 3.
Since F ∼ idx = y (F ) ∼ F ∪ τ2(F ), F satisfies both ε4 and τ2. Note that in
verifying whether F satisfies ε4, one must not consider F as a relation by inter-
preting x and y as distinct constants. Since G �∼ idx = y (G) and G �∼ G ∪ τ2(G),
G satisfies neither ε4 nor τ2.
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Clearly, if a relation I is consistent with respect to a set of fegd’s, then so
is every subset of I . This is no longer true for tableaux, since G ⊆ F , F |=
ε4, but G �|= ε4. Although this behavior may be somewhat counterintuitive
at first sight, we can give two arguments in favor of it. First, our definition of
satisfaction ensures that equivalent tableaux satisfy the same full dependencies
(see Theorem 3.7), which is obviously a nice property. Note that F ∼ {〈z, z〉}:
the tuple 〈x, y〉 is redundant in F . In first-order logic terms, ∃x∃ y∃z(R(x, y) ∧
R(z, z)) is logically equivalent to ∃z(R(z, z)). Second, this behavior is coherent
with querying. Consider the Boolean tableau query:

τ 1 2
v v
1

.

Intuitively, since ε4 expresses ∀x∀ y(R(x, y) → x = y), every nonempty tableau
H satisfying ε4 necessarily contains a tuple t such that t(1) = t(2), hence τ (H) =
{〈1〉}. Since G is nonempty but τ (G) = {}, we conclude that G must falsify ε4.
On the other hand, τ (F ) = {〈1〉}. Note incidentally that no tableau query can
differentiate between F and {〈z, z〉}: for every tableau query τ , τ (F ) ∼ τ ({〈z, z〉}).

We now prove three lemmas that are needed in the main theorem to follow,
which expresses that equivalent tableaux satisfy the same full dependencies.
The operator ◦ denotes function composition.

LEMMA 3.3. Let F be a tableau, and θ a substitution for the variables in F .
Let τ = (B, h) be a tableau query. Then θ (τ (F )) ⊆ τ (θ (F )).

PROOF. Let t ∈ θ (τ (F )). We can assume s ∈ τ (F ) such that θ (s) = t. There
exists a substitution ω such that ω(B) ⊆ F and ω(h) = s. Hence, θ ◦ω(B) ⊆ θ (F ).
Hence, θ ◦ ω(h) = t ∈ τ (θ (F )).

LEMMA 3.4. Let F , G be tableaux and τ a tableau query. If F � G, then
τ (F ) � τ (G) and F ∪ τ (F ) � G ∪ τ (G).

PROOF. Assume F � G. We can assume a substitution θ such that θ (G) ⊆ F .
It is easy to see τ (θ (G)) ⊆ τ (F ). By Lemma 3.3, it follows θ (τ (G)) ⊆ τ (F ). Hence,
τ (F ) � τ (G). From θ (G) ⊆ F and θ (τ (G)) ⊆ τ (F ), it follows θ (G ∪ τ (G)) ⊆
F ∪ τ (F ). Hence, F ∪ τ (F ) � G ∪ τ (G).

COROLLARY 3.5. Let F , G be tableaux and τ a tableau query. If F ∼ G, then
τ (F ) ∼ τ (G) and F ∪ τ (F ) ∼ G ∪ τ (G).

LEMMA 3.6. Let F , G be tableaux, and p, q symbols. Let θ be a substi-
tution such that θ (p), θ (q) are not two distinct constants. If θ (G) ⊆ F, then
idθ(p) = θ (q)(F ) � idp = q(G).

PROOF. Since θ (p) and θ (q) are not two distinct constants, p and q are
not two distinct constants either. From the premise θ (G) ⊆ F , it follows
idθ(p) = θ (q)(θ (G)) ⊆ idθ (p) = θ (q)(F ). It is easy to verify that idθ (p) = θ (q) ◦ θ =
idθ(p) = θ (q) ◦ θ ◦ idp = q . Hence, idθ (p) = θ (q) ◦ θ (idp = q(G)) ⊆ idθ (p) = θ (q)(F ). Hence,
idθ(p) = θ (q)(F ) � idp = q(G).

THEOREM 3.7. Equivalent tableaux satisfy the same full dependencies.
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PROOF. Let F , G be two tableaux such that F ∼ G: F � G and G � F .
Assume F |= τ for some ftgd τ : F � F∪τ (F ). By Lemma 3.4, F∪τ (F ) � G∪τ (G).
By transitivity, G � G ∪ τ (G). It follows G |= τ .

Assume F |= ε for some fegd ε = (B, p = q). Since F � G, we can assume a
substitution θ such that θ (G) ⊆ F . Let ω be any substitution with ω(B) ⊆ G.
Hence, θ ◦ ω(B) ⊆ F . Since F |= ε, θ ◦ ω(p) and θ ◦ ω(q) are not two distinct
constants, and F � idθ◦ω(p) = θ◦ω(q)(F ). Clearly, ω(p) and ω(q) are not two distinct
constants either. By Lemma 3.6, idθ◦ω(p) = θ◦ω(q)(F ) � idω(p) = ω(q)(G). Since G �
F , it follows G � idω(p) = ω(q)(G) by transitivity. Since idω(p) = ω(q)(G) � G is
obvious, it follows G |= ε.

3.2 The Chase

The chase was originally introduced as a tool for deciding logical implication;
here we use it for repairing databases. We generalize some results of Beeri
and Vardi [1984] to tableaux that can contain constants and need not be typed,
replacing equality of tableaux by equivalence. A consequence is that a chase
can terminate “unsuccessfully” when it tries to identify two distinct constants.
New results include decidability of subconsistency (Theorem 3.14), which will
be needed for determining fixes.

Definition 3.8. We introduce an artificial top element, denoted �, to the
quasi-order 〈T, �〉. Let F �= � and G be tableaux, and � a set of full dependen-
cies. We write F �� G if G can be obtained from F by a single application of
one of the following chase rules:

(1) If τ = (B, h) is an ftgd of �, then F �� F ∪ τ (F ).
(2) Let (B, p = q) be an fegd of �, and θ a substitution such that θ (B) ⊆ F .

If θ (p) and θ (q) are two distinct constants, then F �� �; otherwise, F ��

idθ (p) = θ (q)(F ).

A chase of F by � is a maximal (with respect to length) sequence F =
F0, F1, . . . , Fn of tableaux such that for every i ∈ {1, . . . , n}, Fi−1 �� Fi and
Fi−1 �= Fi.

Requiring that chases be maximal tacitly assumes that chases are finite,
which is expressed by Lemma 3.9. This lemma and some of the lemmas to
follow imitate some known results (see for example Lemmas 8.4.3 and 8.4.4 in
Abiteboul et al. [1995]). Since our semantics are slightly different (distinct vari-
ables should not be treated as distinguished constants in general), the results
are stated explicitly.

LEMMA 3.9. Let F �= � be a tableau and � a set of full dependencies.

(1) If G is a tableau in a chase of F by �, then G � F.
(2) Each chase of F by � is finite.
(3) If G �= � is the last element of a chase of F by �, then G |= �.
(4) If G �= � is the last element of a chase of F by �, and θ is a substitution

mapping distinct variables to distinct constants not occurring elsewhere,
then θ (G) |= �.
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PROOF. Easy.

The following two lemmas are needed for the main theorems to follow, express-
ing that the chase is Church-Rosser up to ∼ and that subconsistency is decidable
for full dependencies. Lemma 3.10 implies that all tableaux in a successful chase
of F by � are homomorphic to each consistent tableau H satisfying H � F .

LEMMA 3.10. Let F , H be tableaux, both distinct from �, and � a set of full
dependencies. Let G �= � be a tableau in a chase of F by �. If H � F and H |= �,
then H � G.

PROOF. Assume H � F and H |= �. Let F = F0, F1, . . . , Fn = G �= �
be the initial sequence of a chase of F by �. We prove by induction that for
each k ∈ {0, . . . , n}, H � Fk . Base: H � F = F0 is given. Step: The induction
hypothesis is H � Fk−1. The tableau Fk can be obtained by an ftgd or an fegd:

(1) Fk is obtained from Fk−1 by an application of τ = (B, h) of �; that is, Fk =
Fk−1 ∪ τ (Fk−1). Since H � Fk−1, H ∪ τ (H) � Fk−1 ∪ τ (Fk−1) by Lemma 3.4.
Since H |= τ , H � H ∪ τ (H). It follows H � Fk .

(2) Fk is obtained from Fk−1 by an application of ε = (B, p = q) of �. As
G �= �, Fk �= �. We can assume a substitution ψ such that ψ(B) ⊆ Fk−1,
ψ(p) and ψ(q) are not distinct constants, and Fk = idψ(p) = ψ(q)(Fk−1). Since
H � Fk−1, we can assume a substitution θ such that θ (Fk−1) ⊆ H. It follows
θ (ψ(B)) ⊆ H, and, since H |= ε, θ ◦ ψ(p) and θ ◦ ψ(q) are not two distinct
constants and H ∼ idθ◦ψ(p) = θ◦ψ(q)(H). By Lemma 3.6, idθ◦ψ(p) = θ◦ψ(q)(H) �
idψ(p) = ψ(q)(Fk−1). By transitivity, H � Fk .

It is correct to conclude H � G.

LEMMA 3.11. Let F , H be tableaux, both distinct from �, and � a set of full
dependencies. If � is the last element of a chase of F by � and H � F, then
H �|= �.

PROOF. Let G be the last but one element in the chase of F by � that ends
with �: G �� �. Assume H � F . If H �� G, then H �|= � by Lemma 3.10. Next
assume H � G, hence we can assume a substitution θ such that θ (G) ⊆ H.
Since G �� �, � contains an fegd ε = (B, p = q) such that there exists a
substitution ψ satisfying ψ(B) ⊆ G and ψ(p) �= ψ(q) are distinct constants.
Then θ ◦ ψ(B) ⊆ H, but θ ◦ ψ(p) �= θ ◦ ψ(q) are distinct constants. We conclude
H �|= ε, hence H �|= �.

THEOREM 3.12. Let F �= � be a tableau and � a set of full dependencies. If
two chases of F by � end with G1 and G2 respectively, then G1 ∼ G2.

PROOF. This is the Church-Rosser property. Assume G2 �= � and G1 �= �.
Since G2 � F and G2 |= � by Lemma 3.9, G2 � G1 by Lemma 3.10. Similarly,
G1 � G2. It follows G1 ∼ G2.

Next assume G2 = �. Then G1 = �, or else G1 � F and G1 |= � by
Lemma 3.9, but G1 �|= � by Lemma 3.11, a contradiction.

Theorem 3.12 motivates the following definition.
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Definition 3.13. Let F �= � be a tableau and � a set of full dependencies.
We write chase(F, �) for the equivalence class [G]∼ if the last element of a
chase of F by � is G. The singleton [�]∼ is also written �.

Given a set � of full dependencies, it is decidable whether a given tableau F is
subconsistent.

THEOREM 3.14. Let � be a set of full dependencies and F �= � a tableau.
Then, F is subconsistent (i.e. F � �) if and only if chase(F, �) �= �.

PROOF. The only-if part is an immediate corollary of Lemma 3.11. The if
part follows from Lemma 3.9.

Since the empty tableau is homomorphic to any relation, � is satisfiable if
and only if the empty tableau is subconsistent. Likewise, since the tableau
{〈x1, x2, . . . , xn〉}, where x1, x2, . . . , xn are distinct constants, is homomorphic to
each nonempty relation, � is coherent (� allows a nonempty relation) if and
only if {〈x1, x2, . . . , xn〉} is subconsistent. So we obtain the following result:

COROLLARY 3.15. Assume arity n and let x1, x2, . . . , xn be distinct constants.
Let � be a set of full dependencies. Then,

(1) � is satisfiable if and only if chase({}, �) �= �;
(2) � is coherent if and only if chase({〈x1, x2, . . . , xn〉}, �) �= �.

Finally, the chase preserves the order � on tableaux.

THEOREM 3.16. Let F , G be tableaux, both distinct from �, and � a set of
full dependencies. If F � G, F ′ ∈ chase(F, �), and G ′ ∈ chase(G, �), then
F ′ � G ′.

PROOF. Assume F � G. The proof is trivial if chase(F, �) = �. Next assume
that chase(F, �) is distinct from �. Assume without loss of generality that
F ′ �= � is the last element in a chase of F by �. By Lemma 3.9, F ′ |= � and
F ′ � F , hence F ′ � G. Then chase(G, �) �= �, or else F ′ �|= � by Lemma 3.11,
a contradiction. Let G ′ �= � be the last element in a chase of G by �. By
Lemma 3.10, F ′ � G ′.

COROLLARY 3.17. Let F , G be tableaux, both distinct from �, and � a set of
full dependencies. If F ∼ G, then chase(F, �) = chase(G, �).

3.3 Replacing Uprepairs by Chase Results

After our digression on the chase, we return to the problem raised at the be-
ginning of Section 3: given a satisfiable set � of full dependencies, a query τ ,
and a finite set F of subconsistent tableaux, compute τ (F↑�). Recall that τ (F↑�)
denotes the intersection of the answers to τ on all (possibly infinitely many)
uprepairs generated by F and �. In the results to follow, F can be any set of
subconsistent tableaux. Later on in Section 5, F will be restricted to be a set of
fixes. Theorem 3.22 implies that in order to compute τ (F↑�), it suffices to query
the tableaux obtained by chasing each F ∈ F by �.

For example, let F = {F1, . . . , F5}, the set of tableaux shown in Figure 2, and
let � = {τ1, ε1, ε2, ε3}, the full dependencies in Figure 1. A chase of Fi by � ends
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with Ti (1 ≤ i ≤ 5). Then, Theorem 3.22 will tell us that for any tableau query
τ , τ (F↑�) is equal to grd(τ (T1)) ∩ · · · ∩ grd(τ (T5)).

The following shorthand notation will be used for convenience.

Definition 3.18. Let G be a tableau and F a set of tableaux. We write F
∗� G

if and only if F � G for each F ∈ F.

LEMMA 3.19. Let � be a satisfiable set of full dependencies and F a subcon-
sistent tableau. For each tableau H, F ↑� ∗� H if and only if chase(F, �)

∗� H.

PROOF. Note that since F � �, chase(F, �) �= � by Theorem 3.14. If part.
Let G �= � be the last element in a chase of F by �. Assume G � H and
J ∈ F ↑� . It suffices to show J � H. Since J � F and J |= �, J � G by
Lemma 3.10. By transitivity, J � H. Only-if part. Assume chase(F, �) � ∗� H.
Let G be the last element in a chase of F by �. From chase(F, �) � ∗� H, it

follows G �� H. Let V be the set of variables occurring in G. Let θ : V
inj−→

dom be a substitution that maps distinct variables to distinct constants not
in asd(G) ∪ asd(H). By Lemma 3.9, θ (G) |= �. Assume θ (G) � H. Then, we
can assume a substitution µ such that µ(H) ⊆ θ (G), hence θ−1 ◦ µ(H) ⊆ G. It
follows G � H, a contradiction. We conclude by contradiction θ (G) �� H. From
θ (G) � G and G � F (Lemma 3.9), θ (G) � F by transitivity. We can assume a
minimal (with respect to ⊆) relation J satisfying θ (G) ⊇ J � F and J |= �.
Then J ∈ F ↑� and J �� H. Hence, F ↑� � ∗� H.

Since all tableaux in chase(F, �) are equivalent, in order to verify chase(F,
�)

∗� H in the preceding lemma (and the following theorem), it suffices to chase
F by � and check whether H is homomorphic to the final tableau in the chase.

THEOREM 3.20. Let � be a satisfiable set of full dependencies and F a finite
set of subconsistent tableaux. For each tableau H, F↑� ∗� H if and only if for
each F ∈ F, chase(F, �)

∗� H.

PROOF. This follows immediately from Lemma 3.19.

LEMMA 3.21. Let τ be a tableau query. Let � be a satisfiable set of full
dependencies. Let F be a subconsistent tableau. For each G ∈ chase(F, �),
τ (F ↑�) = grd(τ (G)).

PROOF. Let τ = (B, h). Since F � �, chase(F, �) �= � by Theorem 3.14. Let
G ∈ chase(F, �).

To prove the inclusion grd(τ (G)) ⊆ τ (F ↑�), assume t ∈ grd(τ (G)). Let J ∈
F ↑� . Since J � F and J |= �, J � G by Lemma 3.10. By Lemma 3.4, τ (J ) �
τ (G). Since t is a ground tuple in τ (G), it follows t ∈ τ (J ). Since J is an arbitrary
element of F ↑� , it follows t ∈ τ (F ↑�).

To prove the inclusion τ (F ↑�) ⊆ grd(τ (G)), let t ∈ τ (F ↑�). Let θ be a sub-
stitution for the symbols in h such that θ (h) = t, extended to be the identity
otherwise. Obviously, t ∈ τ (F ↑�) implies F ↑� ∗� θ (B). By Lemma 3.19, G � θ (B).
Since θ (h) is ground, θ (h) = t ∈ grd(τ (G)).
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THEOREM 3.22. Let τ be a tableau query. Let � be a satisfiable set of full
dependencies and F a finite set of subconsistent tableaux. Let G be a set of
tableaux such that G ∼ ⋃

F∈F chase(F, �). Then, τ (F↑�) = ⋂
G∈G grd(τ (G)).

PROOF. This follows immediately from Lemma 3.21.

In practice, the set G in the preceding theorem will be computed by collecting
the terminal tableaux that result from chasing each tableau of F by �.

4. CONSTRUCTING THE NUCLEUS

Given a satisfiable set � of full dependencies, a tableau query τ , and a set
F of subconsistent tableaux, Theorem 3.22 gives us an effective algorithm to
compute τ (F↑�): chase each tableau of F by �, query the last tableau of each
chase by τ , and return the ground tuples common to all query answers. We now
show that F↑� has a nucleus: that there exists a single tableau G such that for
every tableau query τ , τ (F↑�) = grd(τ (G)).

4.1 Nucleus Definition

A nucleus of a set I of relations is defined relative to a class of queries; intuitively,
it is a single tableau that can replace I for the purpose of query answering.

Definition 4.1. Let I be a (possibly infinite) set of relations. Let Q be a
subclass of CQ (Q ⊆ CQ). The tableau F is called a Q-nucleus of I if and only if for
every query τ ∈ Q, grd(τ (F )) = τ (I). The term CQ-nucleus is often abbreviated
as nucleus—CQ can be omitted.

In the preceding definition, the function grd(·) serves to eliminate from τ (F )
tuples that contain variables. The following theorem implies that a nucleus
must be unique up to ∼.

THEOREM 4.2. Let I be a set of relations. If G1 and G2 are CQ-nuclei of I,
then G1 ∼ G2.

PROOF. Let G1 and G2 be CQ-nuclei of I. Consider the Boolean tableau query
τ = (G1, 〈1〉). Since τ (G1) = {〈1〉}, we have τ (I) = {〈1〉}, hence τ (G2) = {〈1〉}.
Hence, there exists a substitution θ that maps the body of τ into G2: θ (G1) ⊆ G2.
It follows G2 � G1. By the same reasoning, G1 � G2. Hence, G1 ∼ G2.

4.2 Infimum

We define the greatest lower bound (or infimum) of a set of tableaux.

Definition 4.3. Let F be a finite set of tableaux. An infimum (with respect
to �) of F is a tableau G satisfying:

(1) F
∗� G, and

(2) for every tableau G ′, F
∗� G ′ implies G � G ′.

It is easy to see that all infimums of a set F of tableaux must be mutually equiv-
alent. We assume there is an arbitrary selection rule that picks a representative
of this ∼-equivalence class and denote it inf F.
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There is an effective procedure to construct an infimum of any finite set of
tableaux; the construction is borrowed from infimums of sets of clauses [Plotkin
1969]. Practically, to construct an infimum of {F1, F2}, every tuple of F1 is com-
bined columnwise with every tuple of F2. The combination of two symbols p
and q, denoted µ(p, q), is a variable unless p and q are the same constant. The
combination of two times the same constant (say a) yields that same constant:
µ(a, a) = a.

Definition 4.4. An inf-mapping is a partial one-one function µ : (dom ∪
var) × (dom ∪ var)

inj−→ dom ∪ var such that µ(p, q) = p if p and q are the
same constant, and µ(p, q) is a new distinct variable otherwise.

Let F , G be tableaux and µ an inf-mapping defined over asd(F ) × asd(G).
The inf-mapping µ naturally extends to pairs of tuples and pairs of tableaux as
follows: firstly, if t ∈ F and t ′ ∈ G, then

µ(t, t ′) := 〈µ(t(1), t ′(1)), . . . , µ(t(n), t ′(n))〉;
secondly, µ(F, G) := {µ(t, t ′) | t ∈ F, t ′ ∈ G}.
For example, for the following tableaux F1 and F2,

F1 1 2 3
a b z
b c z

F2 1 2 3
a y y
y c y

,

we obtain:

µ(F1, F2) 1 2 3
µ(a, a) µ(b, y) µ(z, y)
µ(b, a) µ(c, y) µ(z, y)
µ(a, y) µ(b, c) µ(z, y)
µ(b, y) µ(c, c) µ(z, y)

∼

1 2 3
a u v

w1 w2 v
w3 w4 v
u c v

∼
G 1 2 3

a u v
u c v

It is easy to verify that G is homomorphic to both F1 and F2. It takes more effort
to show that every tableau homomorphic to both F1 and F2 is also homomorphic
to G. We show that the above construction is correct in general.

THEOREM 4.5. Let F1, F2 be tableaux. If µ is an inf-mapping defined over
asd(F1) × asd(F2), then µ(F1, F2) is an infimum of {F1, F2}.

PROOF. Let G = µ(F1, F2). Let λ and ρ be substitutions for the symbols in the
range of µ such that for all symbols (p, q) ∈ asd(F1) × asd(F2), λ(µ(p, q)) = p
and ρ(µ(p, q)) = q. The mappings λ and ρ are the identity on constants because
µ(p, q) = a ∈ dom implies p = q = a; they are well-defined because µ(p1, q1) =
µ(p2, q2) implies p1 = p2 and q1 = q2. Clearly, λ(G) = F1 and ρ(G) = F2. It
follows F1 � G and F2 � G, hence {F1, F2} ∗� G.

Assume a tableau H homomorphic to both F1 and F2, {F1, F2} ∗� H; it suffices
to show G � H. We can assume substitutions θ and ω such that θ (H) ⊆ F1 and
ω(H) ⊆ F2. Let γ be a total function with domain asd(H) defined by γ (p) =
µ(θ (p), ω(p)). Note that γ is the identity on constants. Let t ∈ H. It can be
easily verified that γ (t) = µ(θ (t), ω(t)). From θ (t) ∈ F1 and ω(t) ∈ F2, it follows
γ (t) ∈ G. Since t is an arbitrary tuple of H, γ (H) ⊆ G. Hence, G � H.
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The following theorem expresses that the infimum of a set of tableaux preserves
consistency.

THEOREM 4.6. Let F1, F2 be tableaux and � a set of full dependencies. Let G
be an infimum of {F1, F2}. If F1 |= � and F2 |= �, then G |= �.

PROOF. Assume F1 |= � and F2 |= �. Let τ = (B, h) be an ftgd in �. Since
F1 |= τ , F1 � F1 ∪ τ (F1). From F1 � G, it follows F1 ∪ τ (F1) � G ∪ τ (G) by
Lemma 3.4. Hence, F1 � G ∪ τ (G). Likewise, F2 � G ∪ τ (G). Hence, {F1, F2} ∗�
G ∪ τ (G). It follows G � G ∪ τ (G), hence G |= τ .

Next, let ε = (B, p = q) be an fegd in �. Let µ be an inf-mapping defined over
asd(F1) × asd(F2). By Theorem 4.5, G ′ := µ(F1, F2) is an infimum of {F1, F2}.
Let λ and ρ be substitutions for the symbols in the range of µ such that for all
symbols (m, o) ∈ asd(F1) × asd(F2), λ(µ(m, o)) = m and ρ(µ(m, o)) = o. Clearly,
λ(G ′) = F1 and ρ(G ′) = F2. Let θ be any substitution with θ (B) ⊆ G ′. It fol-
lows λ ◦ θ (B) ⊆ F1 and ρ ◦ θ (B) ⊆ F2. To ease the notation, define p′ := θ (p)
and q′ := θ (q). Since F1 |= ε, it follows λ(p′), λ(q′) are not two distinct con-
stants; likewise, ρ(p′), ρ(q′) are not two distinct constants. Since λ and ρ are
the identity on constants, p′, q′ cannot be two distinct constants either. Let
F ′

1 := idλ(p′) = λ(q′)(F1) and F ′
2 := idρ(p′) = ρ(q′)(F2). Since F1 |= ε and F2 |= ε,

F1 ∼ F ′
1 and F2 ∼ F ′

2. Let H := µ(F ′
1, F ′

2). Let φ be a substitution for the vari-
ables in the range of µ defined by φ(µ(x, y)) = µ(idλ(p′) = λ(q′)(x), idρ(p′) = ρ(q′)( y)).
Since φ(p′) = φ(q′) is now easily verifiable, it follows φ = φ ◦ idp′ = q′ . We show
φ(idp′ = q′ (G ′)) ⊆ H. To this extent, let r ∈ idp′ = q′ (G ′). Hence, there exist
t ∈ F1 and s ∈ F2 such that r = idp′ = q′ (µ(t, s)). Since t ∈ F1 and s ∈ F2,
µ(idλ(p′) = λ(q′)(t), idρ(p′) = ρ(q′)(s)) ∈ H. From µ(idλ(p′) = λ(q′)(t), idρ(p′) = ρ(q′)(s)) =
φ(µ(t, s)) = φ ◦ idp′ = q′ (µ(t, s)) = φ(r), it follows φ(r) ∈ H. Since r is an ar-
bitrary tuple of idp′ = q′ (G ′), φ(idp′ = q′ (G ′)) ⊆ H, hence H � idp′ = q′ (G ′). By
Theorem 4.5, H is an infimum of {F ′

1, F ′
2}. Since F1 ∼ F ′

1 and F2 ∼ F ′
2, H is

an infimum of {F1, F2}. It follows G ′ � H � idp′ = q′ (G ′), hence G ′ |= ε. Since
G ′ ∼ G, G |= ε by Theorem 3.7. It is correct to conclude G |= �.

COROLLARY 4.7. Let � a set of full dependencies. Every infimum of a finite
set of consistent tableaux is itself consistent.

4.3 Commutative Diagram

The construction of nuclei relies on Theorem 4.8, which states that the following
commutative diagram is correct:

THEOREM 4.8. Let F1, F2 be tableaux and τ = (B, h) a tableau query. Let G
be an infimum of {F1, F2}, and H an infimum of {τ (F1), τ (F2)}. Then τ (G) ∼ H.

PROOF. Obviously, asd(τ (F1)) ⊆ asd(F1) ∪ asd(τ ) and asd(τ (F2)) ⊆
asd(F2) ∪ asd(τ ). Let µ be an inf-mapping defined over (asd(F1) ∪ asd(τ )) ×
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(asd(F2) ∪ asd(τ )). By Theorem 4.5, G ′ := µ(F1, F2) is an infimum of {F1, F2}
and H ′ := µ(τ (F1), τ (F2)) is an infimum of {τ (F1), τ (F2)}.

From F1 � G ′ and F2 � G ′, it follows τ (F1) � τ (G ′) and τ (F2) � τ (G ′) by
Lemma 3.4. Hence, {τ (F1), τ (F2)} ∗� τ (G ′). It follows H ′ � τ (G ′).

We next show τ (G ′) � H ′. Let r be an arbitrary tuple in H ′. We can assume
the existence of t ∈ τ (F1) and s ∈ τ (F2) such that r = µ(t, s). Since t ∈ τ (F1),
we can assume a substitution θ such that θ (B) ⊆ F1 and θ (h) = t. Likewise,
there exists a substitution ω such that ω(B) ⊆ F2 and ω(h) = s. Let δ be a
total function with domain asd(τ ) such that δ(p) = µ(θ (p), ω(p)). Let b be an
arbitrary tuple of B: b ∈ B. It can be easily verified that δ(b) = µ(θ (b), ω(b)).
Since θ (b) ∈ F1 and ω(b) ∈ F2, it follows δ(b) ∈ G ′. Since b is an arbitrary tuple
of B, δ(B) ⊆ G ′. Hence, δ(h) ∈ τ (G ′). From δ(h) = µ(θ (h), ω(h)) = µ(t, s) = r,
it follows r ∈ τ (G ′). Since r is an arbitrary tuple of H ′, H ′ ⊆ τ (G ′), hence
τ (G ′) � H ′.

It follows τ (G ′) ∼ H ′. Since an infimum is unique up to ∼, G ′ ∼ G and H ′ ∼
H. By Corollary 3.5, τ (G ′) ∼ τ (G). By transitivity, τ (G) ∼ H. This concludes
the proof.

COROLLARY 4.9. Let F be a finite set of tableaux and τ = (B, h) a tableau
query. Let G be an infimum of F, and H an infimum of {τ (F ) | F ∈ F}. Then
τ (G) ∼ H.

PROOF. Immediately from Theorem 4.8 and the following obvious property:
if F1, F2 are finite sets of tableaux, G1 an infimum of F1, and G2 an infimum of
F2, then each infimum of {G1, G2} is an infimum of F1 ∪ F2.

4.4 Nucleus Construction

Let � be a satisfiable set of full dependencies and F a finite set of subconsistent
tableaux. We show that the set of uprepairs generated by F and � (i.e. F↑�) has
a computable nucleus. Moreover, this nucleus is consistent.

THEOREM 4.10. Let � be a satisfiable set of full dependencies, and F a fi-
nite set of subconsistent tableaux. Let G be a set of tableaux such that G ∼⋃

F∈F chase(F, �). Then, every infimum of G is (i) consistent, and (ii) a CQ-
nucleus of F↑� .

PROOF. Let G be an infimum of G. Let τ be a tableau query. Let H be
an infimum of {τ (F ) | F ∈ G}. By Corollary 4.9, H ∼ τ (G). By Lemma 2.4,
grd(τ (G)) = grd(H). Obviously, grd(H) = ⋂

F∈G grd(τ (F )). By Theorem 3.22,⋂
F∈G grd(τ (F )) = τ (F↑�). It follows grd(τ (G)) = τ (F↑�). Since τ is an arbitrary

tableau query, G is a CQ-nucleus of F↑� .
If F ∈ F, then the last tableau in a chase of F by � is consistent (Lemma 3.9).

By Theorem 3.7, each tableau in G is consistent. By Corollary 4.7, G is
consistent.

For a satisfiable set � of full dependencies and a finite set F of subconsistent
tableaux, Theorem 4.10 gives us an effective procedure for computing a CQ-
nucleus of F↑� : chase each F in F by �, and compute an infimum of the last
tableaux of these chases.
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5. FIXES AND CONSISTENT QUERY ANSWERING

In the preceding lemmas and theorems, we start from any finite set F of subcon-
sistent tableaux. We will now apply these results in situations where F results
from “fixing” a relation I . We also provide upper bounds for the complexity of
fix checking and consistent query answering.

5.1 Fixes

Intuitively, a fix of I is a subconsistent tableau obtained from I by replacing
erroneous values by distinct variables. The formalization relies on homomor-
phisms that do not identify distinct tuples.

Definition 5.1. Let F , G be tableaux. A one-one homomorphism from F to
G is a substitution θ for the variables in F such that θ (F ) ⊆ G and θ identifies
no two distinct tuples of F—for all t, t ′ ∈ F , t �= t ′ implies θ (t) �= θ (t ′). If such
a one-one homomorphism from F to G exists, then F is said to be one-one
homomorphic to G, denoted G � F . We write F � G if and only if F � G and
G � F . We write G � F if and only if G � F and G �� F .

We illustrate the difference between � and � by our running example (see
Figures 1 and 2). The tableau F1 ∪ F2 is subconsistent and homomorphic to
CARS: CARS � F1 ∪ F2 (use the substitution {x/sedan, z/upper}). However,
CARS �� F1 ∪ F2 because every homomorphism from F1 ∪ F2 to CARS must
identify the first and the third tuple of F1 ∪ F2. We require fixes to be one-one
homomorphic to the relation that has to be repaired, in order to avoid double
repairing of the same tuple.

F1 ∪ F2 Model Version PriceRange
x luxury upper

sedan standard lower
sedan luxury z

The following properties are straightforward.

LEMMA 5.2. Let F, G ∈ T.

(1) If F ⊇ G, then F � G. If F � G, then F � G.
(2) 〈T, �〉 is a quasi-order.
(3) � is an equivalence relation on T.

PROOF. Easy.

Unlike earlier work [Wijsen 2002], we disallow multiple occurrences of the
same variable in a fix, in order to exclude some unnatural uprepairs illustrated
by Figure 4. The relation EMP stores employee salaries, and the fegd ε5 ex-
presses that no employee has more than one salary. Clearly, EMP �|= ε5. We have
EMP � F and F subconsistent. Note incidentally that F is not homomorphic
to the tableau obtained from F by substituting 195 for the second occurrence
of y . The relation J is the uprepair generated by F and ε5. This uprepair is
counterintuitive, however, as there seems to be no reason to assume that An’s
salary is mistaken in EMP. Intuitively, the fact that Ed and An earn the same
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Fig. 4.

salary in EMP is just a coincident not to be encoded in fixes, as is done in F
through the double occurrence of y .

Definition 5.3. A tuple or tableau without multiple occurrences of the same
variable is called linear.

Let � be a satisfiable set of constraints and I a relation. A fix of I and � is
a linear tableau F satisfying:

(1) I � F and F is subconsistent;
(2) Maximality: for every linear tableau G, if I � G � F , then G is not

subconsistent.

Let F be the set of fixes of I and �. We define:

I↓↑� := F↑� ,

the set of uprepairs generated by the fixes of I and �. If J ∈ I↓↑� , then we also
say that J is an uprepair generated by I and �. If τ is a tableau query, then
τ (I↓↑�) is called the consistent query answer to τ on input I (relative to �).

Given a linear tableau F , it is generally sufficient to know the entries of F
up to a renaming of variables; if this is the case, then every variable can be
replaced by a placeholder • without loss of information. So each occurrence of
• in a tableau stands for a distinct variable.

Intuitively, the use of ↓↑ in I↓↑� indicates that in repairing a relation I , we
first go down the homomorphism lattice to find fixes, then go up to find upre-
pairs. Recall that τ (I↓↑�) is the intersection of the answers to τ on each uprepair
generated by I and �. If � is a satisfiable set of constraints, then the empty
tableau is subconsistent, so the set of fixes is nonempty. Since the cardinality of
each fix of I is bounded by |I |, there can be at most finitely many nonequivalent
fixes. This does not mean, however, that determining fixes is feasible in general.
Obviously, the singleton tableau {〈x1, x2, . . . , xn〉} is subconsistent (with respect
to �) if and only if � has a nonempty model (� is coherent). Since the latter
property is generally undecidable, there is no algorithm to determine whether a
given tableau F is subconsistent. When we limit ourselves to full dependencies,
we obtain the following result.

COROLLARY 5.4. For every relation I and satisfiable set � of full dependen-
cies, there exists a computable CQ-nucleus of I↓↑� .

PROOF. Let F be the set of all fixes of I and �, hence I↓↑� = F↑� . Since
the number of nonequivalent fixes is finite, we can compute a finite set F′ such
that F′ ∼ F. By Lemma 2.6, F′↑� = F↑� . Since I↓↑� = F′↑� and F′ is finite, the
desired result follows from Theorem 4.10.
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The introductory example of Section 1 can illustrate the nucleus computation.
The tableaux F1–F5 are five fixes of CARS and � = {τ1, ε1, ε2, ε3}, and all other
fixes are equivalent to one of F1–F5. The chases of these fixes result in T1–T5.
The infimum G of {T1, . . . , T5}, which is shown in Section 1, is a CQ-nucleus of
I↓↑� . Note incidentally that this nucleus is not linear.

5.2 Fix Checking

Let L denote the set of linear tableaux, and R the set of relations (all of fixed
arity n). Let � be a satisfiable set of constraints. Fix checking is the complexity
of the set:

FC(�) := {(I, F ) ∈ R × L | F is a fix of I and �}.
We will show that fix checking is in P for full dependencies. We need the con-
struct of transformation, which allows modifying tableaux by specifying the
new symbol to be put at each entry. Transformations differ from substitutions
in that two occurrences of the same symbol in a tableau need not be transformed
into the same symbol. Also, constants may be transformed into variables.

Definition 5.5. Let F be a tableau of arity n. Each element of F ×
{1, 2, . . . , n} is called an entry of F (or F-entry). A transformation of F is a
total function


 : F × {1, 2, . . . , n} → dom ∪ var

A transformation 
 of F is applied to F in a natural way as follows. For each
t ∈ F :


(t) := 〈
(t, 1), 
(t, 2), . . . , 
(t, n)〉.
Finally,


(F ) := {
(t) | t ∈ F }.
A special transformation of a relation I results from listing the entries of I that
have to be replaced by new distinct variables.

Definition 5.6. Let I be a relation of arity n. Every set E of I -entries induces
a transformation of I , denoted 
E : I × {1, 2, . . . , n} → dom ∪ var, defined as
follows: for each t ∈ I , 
E (t, i) = t(i) if (t, i) �∈ E; otherwise 
E (t, i) is a new
distinct variable not occurring elsewhere.

For example, let I = {s, t} be as shown next. Let E = {(s, 2), (t, 1), (t, 2)}. Since

E (I ) is obviously a linear tableau, variables can be shown as • by our nota-
tional convention.

I 1 2 3
a b c (s)
b c d (t)


E (I ) 1 2 3
a • c
• • d

Clearly, for every relation I and set E of I -entries, we have 
{}(I ) = I , I �

E (I ), and |I | = |
E (I )|. The following lemma states that all fixes of a relation
I and a coherent set � of constraints (� has a nonempty model) can be obtained
by replacing certain occurrences of constants in I by distinct variables.
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LEMMA 5.7. Assume arity n. Let � be a coherent set of constraints. Let I be
a relation and F a linear tableau.

(1) If F is a fix of I and �, then |F | = |I |.
(2) For every fix F of I and �, there exists a set E of I-entries such that F �


E (I ).

PROOF. For (1), let F be a fix of I and �. Clearly, |F | ≤ |I |, or else I �� F , a
contradiction. Next assume |F | < |I |. Since � is coherent, {} is not a fix, hence
|F | ≥ 1. Let t = 〈x1, x2 . . . , xn〉 where x1, . . . , xn are new distinct variables not
occurring elsewhere. From F ∼ F ∪ {t} and F subconsistent, it follows F ∪ {t}
subconsistent. Since I � F ∪ {t} � F is obvious, F is not a fix, a contradiction.
We conclude by contradiction that |F | = |I |.

For (2), let F be a fix of I and �. Since I � F and |F | = |I |, we can assume
a substitution θ such that θ (F ) = I . Let E be the set of I -entries such that E
contains (θ (t), i) if t ∈ F and t(i) ∈ var. Obviously, 
E (I ) � F .

LEMMA 5.8. Let I be a relation and F a linear tableau such that |I | = |F |.
It can be decided in polynomial time whether I � F.

PROOF. Define S := {(s, t) ∈ I × F | {s} � {t}}. Clearly, I � F if and only
if there exists T ⊆ S such that |T| = |I | and no two distinct pairs of T agree
on the first or the second coordinate. The latter problem is a two-dimensional
matching problem, known to be in P.

THEOREM 5.9. For a satisfiable set � of full dependencies, FC(�) is in P.

PROOF. Let I be a relation and F a linear tableau. If � is not coherent, then
(I, F ) ∈ FC(�) if and only if F = {}. If � is coherent, then (I, F ) ∈ FC(�) if and
only if the following three conditions are simultaneously satisfied:

(1) |I | = |F | and I � F . This can be tested in polynomial time by Lemma 5.8.
(2) F is subconsistent. By Theorem 3.14, this can be tested by the chase, which

is known to have polynomial time data complexity [Beeri and Vardi 1984].
(3) If x is a variable occurring in the ith column of F , and a a constant occur-

ring in the ith column of I , then either I �� idx = a(F ) or idx = a(F ) is not
subconsistent. For arity n, there are at most n|I |2 possible substitutions of
the form idx = a.

We show that the condition (3) is sufficient to guarantee maximality (with re-
spect to �) of F . Assume that F satisfies conditions (1) and (2), but F is not a
fix. Then, there is a linear tableau G such that I � G � F and G is subcon-
sistent. We can assume a substitution θ such that θ (F ) = G and |θ (F )| = |F |.
Since G is linear, θ cannot map distinct variables of F to the same variable
in G. So θ can only rename variables or replace variables by constants. Since
G �� F , for some variable x in F , for some constant a, θ (x) = a. Obviously,
I � G � idx = a(F ) � F , and since G is subconsistent, idx = a(F ) is subconsis-
tent. So we showed that if F satisfies conditions (1) and (2), but F is not a fix,
then for some variable x in F , for some constant a, I � idx = a(F ) and idx = a(F )
subconsistent.
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5.3 Consistent Query Answering

The problem of consistent query answering is defined relative to a fixed set �

of constraints and a fixed tableau query τ = (B, h), where B and all tuples in
� have the same fixed arity n. The problem is to decide membership of the set
(recall that R is the set of all relations):

CQA(�, τ ) := {I ∈ R | τ (I↓↑�) = {} }.
That is, on input of a relation I of fixed arity, we have to decide whether the
intersection of the answers to τ on all uprepairs is empty. A difference with
the problem called consistent query answers in Chomicki and Marcinkowski
[2005a], is that our definition is not restricted to Boolean queries. We show
that consistent query answering is in NP for full dependencies and tableau
queries.

THEOREM 5.10. For a satisfiable set � of full dependencies and a Boolean
tableau query τ , CQA(�, τ ) is in NP.

PROOF. Let I be a relation of arity n. If � is not coherent, then I↓↑� = {{}},
so it suffices to verify whether τ ({}) = {}. Next assume � coherent. Since τ is
Boolean, it follows from Lemma 2.6 and Theorem 3.22 that τ (I↓↑�) = {} if and
only if for some fix F of I and �, we have τ (G) = {} where G is the last tableau
of a chase of F by �. From Lemma 5.7, it follows that every fix to consider can
be encoded as a set E of I -entries, whose size is bounded by n|I |.

A nondeterministic polynomial time algorithm can guess some set E of
I -entries, check in polynomial time whether 
E (I ) is a fix (Theorem 5.9), and
if so, compute the last tableau (call it G) of a chase of 
E (I ) by �, and verify
whether τ (G) = {}.

COROLLARY 5.11. For a satisfiable set � of full dependencies and a tableau
query τ , CQA(�, τ ) is in NP.

PROOF. Assume I a relation of arity n. Let l be the length of �. Let τ = (B, h).
Assume τ (I↓↑�) �= {}; we can assume a ground tuple t such that t ∈ τ (I↓↑�).
Clearly, all constants that occur in t but not in h must come from I or �. Let V
be the set of variables that occur in h, and C the set of constants that occur in I or
�. Then, for some substitution θ : V → C, extended to be the identity otherwise,
θ (h) = t. Let τθ = (θ (B), θ (h)), a Boolean tableau query. Clearly, t ∈ τ (I↓↑�) if and
only if t ∈ τθ (I↓↑�). There are at most (n|I | + l )|V | possibilities for θ , a number
that is polynomial in |I |. Consequently, to decide whether I ∈ CQA(�, τ ), it
suffices to decide I ∈ CQA(�, τθ ) for polynomially many Boolean queries τθ .
The desired result then follows from Theorem 5.10.

6. NUCLEUS FOR UPDATE-BASED REPAIRING

Let � be a satisfiable set of full dependencies. On input of a relation I , we can
effectively compute a CQ-nucleus of I↓↑� (Corollary 5.4). This nucleus allows
us to compute consistent answers to any tableau query without query rewrit-
ing. However, the nucleus may not be practical because its construction takes
exponential time, or even worse, its size is exponential. We show next that the
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Fig. 5. Graphical representation of Pk,n, Pk,k , and Om, n ≥ k > 1, m ≥ 1.

worst scenario cannot be ruled out. Clearly, if the complexity of CQA(�, τ ) is
NP-complete for some tableau query τ , then unless P = NP, the construction
of a CQ-nucleus takes exponential time. In Sections 6.2 and 6.3, we introduce
restricted query classes that allow nuclei of polynomial size, and we provide
sufficient conditions under which these nuclei can be computed in polynomial
time. These conditions will be used for identifying practical cases in Sections 7
and 8.

6.1 Nucleus of Exponential Size

We show that for full dependencies and conjunctive queries, the size of nuclei
may not be polynomially bounded (Theorem 6.6).

Definition 6.1. For n ≥ k > 1, define Pk,n as the following relation:

Pk,n := {〈b, b, 0, k − 1〉} ∪ {〈b, b, i + 1, i〉 | 0 ≤ i ≤ n − 2}.
For m ≥ 1, define Om as the following tableau:

Om := {〈b, b, x0, xm−1〉} ∪ {〈b, b, xi+1, xi〉 | 0 ≤ i ≤ m − 2}.
Since the constructs are technical, we give a graphical interpretation. Ignoring
the first and the second column, which are filled by the constant b, the third
and the fourth column can be represented as a graph. In particular, a tuple
〈b, b, α, β〉 encodes an edge from node α to node β. The graph representations
of Pk,n, Pk,k and Om are shown in Figure 5.

Obviously, if m = k, then Om is homomorphic to Pk,n: simply use the substi-
tution θ defined as θ (x j ) = j , j ∈ {0, 1, . . . , m − 1}. The following lemma states
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Fig. 6. Graphical representation of idxk = xl (Om), illustrating Lemma 6.3.

that a necessary and sufficient condition for Om to be homomorphic to Pk,n is
that m is a multiple of k.

LEMMA 6.2. Let n ≥ k > 1 and m ≥ 1. Then Pk,n � Om if and only if m is a
multiple of k.

PROOF. It can be easily verified that Om = {〈b, b, x( j+1) mod m, x j mod m〉 | j ∈
N0}, where N0 = {0, 1, 2, . . . }. If part. Assume m is a multiple of k. Let θ be
a substitution such that for each j ∈ {0, 1, . . . , m − 1}, θ (x j ) = j mod k. Let
t = 〈b, b, x(i+1) mod m, xi mod m〉 be an arbitrary tuple of Om (i ∈ N0). Then

θ (t) = 〈b, b, ((i + 1) mod m)) mod k, (i mod m) mod k〉.
Since m is a multiple of k,

θ (t) = 〈b, b, (i + 1) mod k, i mod k〉 ∈ Pk,n.

It is correct to conclude θ (Om) ⊆ Pk,n, hence Pk,n � Om.
Only if part. Assume Pk,n � Om. Let θ be a substitution for x0, x1, . . . , xm−1
such that θ (Om) ⊆ Pk,n. Assume for some j ∈ {0, 1, . . . , m − 1}, θ (x j ) = l ≥ k.
Then necessarily θ (x( j+1) mod m) = l + 1, θ (x( j+2) mod m) = l + 2, . . . Eventually,
θ (xp mod m) = n − 1 for some p ∈ N0. Let t = 〈b, b, x(p+1) mod m, xp mod m〉 ∈
Om. Since θ (xp mod m) = n − 1 does not occur in the rightmost column of Pk,n,
θ (t) �∈ Pk,n, a contradiction. We conclude by contradiction that for each j ∈
{0, 1, . . . , m − 1}, θ (x j ) < k. That is, θ (Om) ⊆ Pk,k . Then θ is essentially a
homomorphism from a cycle of length m to a cycle of length k. By the main
result in Hell and Zhu [1995], it follows that m is a multiple of k.

The following lemma states that identifying two distinct variables in Om

creates a cycle of smaller length. The graphical representation is shown in
Figure 6.

LEMMA 6.3. Let m > l > k ≥ 0. There exists an integer p such that m > p ≥ 1
and idxk = xl (O

m) � O p.

PROOF. Let p = l − k. Clearly, m > p ≥ 1. Let θ be a substitution for
x0, x1, . . . , xp−1 such that θ (x j ) = x j+k ( j ∈ {0, 1, . . . , p − 1}). Then idxk = xl ◦
θ (O p) ⊆ idxk = xl (O

m), hence idxk = xl (O
m) � O p.

In broad outline, the remainder goes as follows. We choose a database Dn of size
n > 1 and a set � of full dependencies such that, first, each uprepair contains
Pk,n for some k with n ≥ k > 1 (Lemma 6.5, first item), and second, for each
k, there is an uprepair that contains exactly Pk,n (Lemma 6.5, second item).
We know that a nucleus of (Dn)↓↑� exists (Corollary 5.4), and that this nucleus
is unique up to ∼ (Theorem 4.2). We then use Lemma 6.2 to show that some
nucleus contains the tableau Om with m a multiple of each positive integer k
satisfying n ≥ k, and we rely on Lemma 6.3 to show that this nucleus is reduced.
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The desired result then follows from the fact that the least common multiple of
the first n positive integers is greater than 2n if n ≥ 7.

Definition 6.4. For each n > 1, define Dn as follows:

Dn 1 2 3 4
a 1 − n n − 1 n − 2
a 2 − n n − 2 n − 3

...
a −2 2 1
a −1 1 0

The second column contains negative values only; the third and the
fourth columns contain nonnegative values only. Consider the following full
dependencies:

ε6 1 2 3 4
x y u1 v1
x z u2 v2

y = z

τ3 1 2 3 4
a u x v
b b 0 x

τ4 1 2 3 4
u v x y
b b x y

LEMMA 6.5. Let � = {ε6, τ3, τ4} and n > 1.

(1) If F is a fix of Dn and �, and F ′ ∈ chase(F, �), then for some k with
n ≥ k > 1, F ′ � Pk,n.

(2) For every k with n ≥ k > 1, there exists a fix F of Dn and � such that for
each F ′ ∈ chase(F, �), Pk,n = {t ∈ F ′ | t(1) = t(2) = b}.

PROOF. It is easy to see that each fix is of the form F shown below, for
some permutation 〈i1, i2, . . . , in−1〉 of 〈1, 2, . . . , n − 1〉, and for some l such that
1 ≤ l ≤ n − 1. A chase of F by � ends with F ′.

F 1 2 3 4
• −in−1 in−1 in−1 − 1

...
• −il+2 il+2 il+2 − 1
• −il+1 il+1 il+1 − 1
a • il il − 1

...
a • i3 i3 − 1
a • i2 i2 − 1
a −i1 i1 i1 − 1

F ′ 1 2 3 4
• −in−1 in−1 in−1 − 1

...
• −il+1 il+1 il+1 − 1
a −i1 il il − 1

...
a −i1 i1 i1 − 1
b b n − 1 n − 2

...
b b 2 1
b b 1 0
b b 0 il

...
b b 0 i2
b b 0 i1
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The first part of the proof follows because l ≥ 1. The second part is obtained by
choosing i1 = k − 1 and l = 1.

THEOREM 6.6. Let � = {ε6, τ3, τ4} and n ≥ 7. Every CQ-nucleus of (Dn)↓↑�

contains at least 2n tuples.

PROOF. Let G be a CQ-nucleus of (Dn)↓↑� . By Theorems 4.10 and 4.2, G
is ∼-equivalent to an infimum of the set of terminal tableaux that result from
chasing each fix of Dn and � by �. Let m = lcm(2, 3, . . . , n), where lcm(·) denotes
the least common multiple.

We first show G � Om. Let F be a fix of Dn and �. Let F ′ ∈ chase(F, �).
By Lemma 6.5 (first item), F ′ � Pk,n for some k with n ≥ k > 1. Since m is
a multiple of k, Pk,n � Om by Lemma 6.2. Hence, F ′ � Om. Since F is an
arbitrary fix, it follows G � Om.

Since G � Om, we can assume the existence of a substitution θ such that
θ (Om) ⊆ G. We show that θ is injective. Assume θ identifies two variables of
Om, say xk′ and xl with m > l > k′ ≥ 0. Since θ = θ ◦ idxk′ = xl is obvious,
θ (idxk′ = xl (O

m)) ⊆ G, so G � idxk′ = xl (O
m). By Lemma 6.3, we can assume the

existence of some p with m > p ≥ 1 such that G � O p. Let k ∈ {2, 3, . . . , n}. By
Lemma 6.5 (second item), we can assume the existence of a fix F such that a
chase of F by � results in a tableau F ′ with {t ∈ F ′ | t(1) = t(2) = b} = Pk,n.
Since F ′ � G and G � O p, it follows F ′ � O p. Hence, there exists a substitution
ω such that ω(O p) ⊆ F ′. Moreover, since t(1) = t(2) = b for every tuple t ∈ O p,
it follows ω(O p) ⊆ Pk,n, hence Pk,n � O p. By Lemma 6.2, p is a multiple of k.
Since k is an arbitrary element of {2, 3, . . . , n}, p is a multiple of 2, 3, . . . , n. Since
p < m, m �= lcm(2, 3, . . . , n), a contradiction. We conclude by contradiction that
θ is injective, hence m = |Om| = |θ (Om)| ≤ |G|. Since it is known [Nair 1982a;
Nair 1982b] that lcm(1, 2, 3, . . . , n) ≥ 2n if n ≥ 7, |G| ≥ 2n. This concludes the
proof.

6.2 Linear Tableau Queries

We now turn to query classes that allow nuclei of polynomial size, and we give
sufficient conditions under which these nuclei can be computed in polynomial
time. The query classes are obtained from CQ by limiting the number of occur-
rences of quantified variables.

Definition 6.7. A tableau query τ = (B, h) is said to be linear if every vari-
able that occurs more than once in B also occurs in h. The class of linear tableau
queries is denoted linCQ.

Note that (B, h) linear does not imply B linear. For example, the following
tableau query τ asking for models that exist in both upper and bottom priced
versions, is linear:

τ Model Version PriceRange
x y upper
x z bottom
x
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We now show that for any relation I and satisfiable set � of full dependen-
cies, I↓↑� has a linCQ-nucleus the size of which is polynomially bounded in |I |.
The proof relies on linearizations of tableaux, which are transformations that
copy constants through and replace each variable occurrence by a new distinct
variable.

Definition 6.8. Let F be a tableau of arity n. A linearization of F is a trans-
formation 
lin of F such that 
lin(t, j ) = t( j ) if t( j ) ∈ dom; otherwise 
lin(t, j )
is a new distinct variable not occurring elsewhere (t ∈ F , j ∈ {1, 2, . . . , n}).
Obviously, if 
lin is a linearization of F , then 
lin(F ) is a linear tableau. For
example,

F 1 2
a x
b x
x x


lin(F ) 1 2
a y
b z
v w


lin(F ) 1 2
a •
b •
• •

The linearization 
lin used is defined by 
lin(〈a, x〉, 1) = a, 
lin(〈a, x〉, 2) = y ,

lin(〈b, x〉, 1) = b, 
lin(〈b, x〉, 2) = z, 
lin(〈x, x〉, 1) = v, and 
lin(〈x, x〉, 2) = w.
Since 
lin(F ) is linear, variables can be replaced by the placeholder • without
loss of information.

Note that since no variable occurs more than once in a linear tableau G, an
equivalent reduced tableau can be computed in quadratic time. The computa-
tion starts from G and repeatedly removes some tuple t if there is a tuple s left
such that {s} � {t}. In the above example, 
lin(F ) can be equivalently reduced
by deleting its last tuple.

We show that the ground tuples in the answer to a linear tableau query are
not affected by linearization.

LEMMA 6.9. Let F be a tableau and 
lin a linearization of F . For every linear
tableau query τ , grd(τ (F )) = grd(τ (
lin(F ))).

PROOF. Let τ = (B, h) be a linear tableau query. It suffices to show
grd(τ (F )) ⊆ τ (
lin(F )) and grd(τ (
lin(F ))) ⊆ τ (F ).

Since F � 
lin(F ) is obvious, τ (F ) � τ (
lin(F )) by Lemma 3.4. By Lemma 2.4,
grd(τ (
lin(F ))) ⊆ τ (F ).

For the inclusion grd(τ (F )) ⊆ τ (
lin(F )), assume t ∈ grd(τ (F )). Hence, there
exists a substitution θ such that θ (B) ⊆ F and θ (h) = t. Let δ be a substitution
for the variables of B such that for every tuple s ∈ B, δ(s) = 
lin(θ (s)); δ(s(i)) =

lin(θ (s), i) for each i ∈ {1, 2, . . . , n}.

To prove that δ is well-defined, we have two show two things: (i) that δ is the
identity on constants, and (ii) that δ is never required to map two occurrences
of the same variable to distinct symbols. Proving (i) is straightforward; for (ii),
let t1, t2 be (not necessarily distinct) tuples of B and let i, j ∈ {1, . . . , n} such
that t1(i) = t2( j ) ∈ var, and either i �= j or t1 �= t2. Assume t1(i) = t2( j ) = x
without loss of generality. That is, the same variable x occurs more than once
in B. The definition of δ imposes δ(x) = 
lin(θ (t1), i) and δ(x) = 
lin(θ (t2), j ),
so we must show 
lin(θ (t1), i) = 
lin(θ (t2), j ). Since τ is linear, x occurs in h.
Then θ (x) must be a constant, or else θ (h) would not be ground, a contradiction.
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Since θ (x) is a constant and the linearization 
lin copies constants through,

lin(θ (t1), i) = 
lin(θ (t2), j ) = θ (x). It is correct to conclude that δ is well-defined.

We show that δ(h) = θ (h): δ(h(i)) = θ (h(i)) for each i ∈ {1, . . . , n}. Two cases
can occur:

—h(i) is a constant. Since δ and θ are the identity on constants, δ(h(i)) =
θ (h(i)) = h(i).

—h(i) is variable. Since h(i) must occur in B, we can assume s ∈ B and j ∈
{1, . . . , n} such that s( j ) = h(i). Since θ (h) is ground, θ (h(i)) = θ (s( j )) is a
constant. Since the linearization 
lin copies constants through, we obtain
δ(h(i)) = δ(s( j )) = 
lin(θ (s), j ) = θ (s( j )) = θ (h(i)).

It is correct to conclude δ(h) = θ (h) = t.
From δ(B) = 
lin(θ (B)) and θ (B) ⊆ F , it follows δ(B) ⊆ 
lin(F ), hence δ(h) =

t ∈ τ (
lin(F )). Since t is an arbitrary tuple of grd(τ (F )), grd(τ (F )) ⊆ τ (
lin(F )).
This concludes the proof.

THEOREM 6.10. Let � be a satisfiable set of full dependencies. For every re-
lation I, there exists a linCQ-nucleus of I↓↑� that is linear and whose size is
polynomially bounded in |I |.

PROOF. By Corollary 5.4, we can assume the existence of a CQ-nucleus G of
I↓↑� , τ (I↓↑�) = grd(τ (G)) for each tableau query τ . Let 
lin be a linearization of
G. For any linear tableau query τ , grd(τ (G)) = grd(τ (
lin(G))) by Lemma 6.9,
hence grd(τ (
lin(G))) = τ (I↓↑�). It follows that 
lin(G) is a linCQ-nucleus of I↓↑� .

Let H be a reduced tableau equivalent to 
lin(G). By Corollary 3.5, H is a
linCQ-nucleus of I↓↑� . Every symbol in H is either a constant in asd(I )∪asd(�)
or a variable, which may be denoted •. Let l be the length of �. Let n be the
arity of I . The number of constants appearing in I and � is at most n|I | + l .
Hence, H can contain no more than (n|I | + l + 1)n tuples, or else H would not
be reduced. This concludes the proof.

The following corollary is now straightforward.

COROLLARY 6.11. Let � a satisfiable set of full dependencies. If the complexity
of the set

{(I, t) | I ∈ R, t is a linear tuple and I↓↑� ∗� {t}}
is in P, then computing a linCQ-nucleus of I and � is in polynomial time in |I |.

6.3 Quantifier-free Tableau Queries

Quantifier-free tableau queries further restrict linear tableau queries. The fol-
lowing results correspond to those obtained for linear tableau queries.

Definition 6.12. A tableau query τ = (B, h) is said to be quantifier-free if
every variable that occurs in B also occurs in h. The class of quantifier-free
tableau queries is denoted qfCQ.

Obviously, qfCQ ⊂ linCQ ⊂ CQ.
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LEMMA 6.13. For every tableau F , for every quantifier-free tableau query τ ,
grd(τ (F )) = τ (grd(F )).

PROOF. Let τ = (B, h) be a quantifier-free tableau query. It suffices to show
grd(τ (F )) ⊆ τ (grd(F )) and τ (grd(F )) ⊆ grd(τ (F )).

Since F � grd(F ) is obvious, τ (F ) � τ (grd(F )) by Lemma 3.4. Since
τ (grd(F )) is ground, τ (grd(F )) ⊆ grd(τ (F )).

For the inclusion grd(τ (F )) ⊆ τ (grd(F )), assume an arbitrary ground tuple
t ∈ grd(τ (F )). We can assume a substitution θ such that θ (B) ⊆ F and θ (h) = t.
If θ (B) is not ground, then since (B, h) is quantifier-free, θ (h) is not ground, a
contradiction. We conclude by contradiction that θ (B) is ground, hence θ (B) ⊆
grd(F ). If follows t ∈ τ (grd(F )).

THEOREM 6.14. Let � be a satisfiable set of full dependencies. For every re-
lation I, there exists a qfCQ-nucleus of I↓↑� that is ground and whose size is
polynomially bounded in |I |.

PROOF. Similar to the proof of Theorem 6.10.

COROLLARY 6.15. Let � a satisfiable set of full dependencies. If the complexity
of the set

{(I, t) | I ∈ R, t is a ground tuple and I↓↑� ∗� {t}}
is in P, then computing a qfCQ-nucleus of I and � is in polynomial time in |I |.

7. KEY DEPENDENCIES

In this section and the following one, we show practical cases where the nu-
cleus construction (and hence consistent query answering) is tractable. We also
determine frontiers of tractability. We first look at relations I with a key con-
straint. For linear tableau queries, the nucleus construction takes O(m log m)
time, where m = |I |. Consistent query answering becomes intractable if we
omit the linearity restriction.

The dependency ε2 of Figure 1 encodes the key dependency key(Model,
Version). It is well-known how to express a key dependency as a set of fegd’s;
the following definition is included for completeness.

Definition 7.1. Assume arity n. Let K ⊆ {1, 2, . . . , n}. Let x1, y1, x2, y2, . . . ,
xn, yn be distinct variables. Let s = 〈x1, . . . , xn〉. Let t be a tuple such that for
every i ∈ {1, 2, . . . , n}, if i ∈ K , then t(i) = xi, else t(i) = yi. We write key(K )
for the set � of fegd’s containing ({s, t}, x j = y j ) for every j �∈ K (1 ≤ j ≤ n).
key(K ) is called a key dependency, and every i ∈ K is called a key attribute.
Curly braces will be omitted: we write key(i1, . . . , ik) for key({i1, . . . , ik}).
Figure 7 illustrates the construction of a linCQ-nucleus G of I↓↑key(1,2): for every
group J ⊆ I of tuples that agree on all key attributes, G contains a single tuple
t such that t(i) = c if s(i) = c for each s ∈ J ; otherwise t(i) is a new distinct
variable not occurring elsewhere (1 ≤ i ≤ n, c ∈ dom). It is clear that for any
relation I , this construction takes only O(m log m) time, where m = |I |, the
time to sort I by key values. We show that this construction is correct.
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Fig. 7. G is a linCQ-nucleus of I↓↑key(1,2).

LEMMA 7.2. Assume arity n and let K ⊆ {1, 2, . . . , n}. Let t be a linear tuple.
Deciding whether I↓↑key(K ) ∗� {t} is in polynomial time in the cardinality of the
input relation I.

PROOF. Let P be the partition of I defined by the equivalence relation ≡
defined as: s ≡ s′ if and only if for each i ∈ K , s(i) = s′(i) (s, s′ ∈ I ). For each
partition class P ∈ P, for each i ∈ {1, 2, . . . , n}, define Pi := {s(i) | s ∈ P}, the set
of constants occurring in the ith column of P . For every tuple r ∈ P1 × P2 ×· · ·×
Pn, let 
r : P ×{1, 2, . . . , n} → dom∪var denote the transformation such that
for each s ∈ P , for each i ∈ {1, 2, . . . , n}, 
r (s, i) = s(i) if s(i) = r(i); otherwise

r (s, i) is a new distinct variable not occurring elsewhere. It is easy to see that

r (P ) is a fix of P and key(K ), and that a chase of 
r (P ) by key(K ) ends with
{r}, which is ground and hence an uprepair. Hence, for every r ∈ P1 × · · · × Pn,
{r} is an uprepair generated by P and key(K ). It can be easily verified that fixes
containing variables in some of the key columns result in uprepairs properly
containing {r} for some r ∈ P1 × · · · × Pn. Then, P↓↑key(K ) � {t} if and only if
for every i ∈ {1, 2, . . . , n}, if t(i) is a constant, then for all s ∈ P , s(i) = t(i).
Since tuples belonging to different partition classes of P disagree on some key
attribute, I↓↑key(K ) � {t} if and only if for some P ∈ P, P↓↑key(K ) � {t}. It is easy
to see that the time complexity for deciding I↓↑key(K ) ∗� {t} is O(m log m) where
m = |I |.

THEOREM 7.3. Assume arity n and let K ⊆ {1, 2, . . . , n}. Constructing a
linCQ-nucleus of I↓↑key(K ) is in polynomial time in the cardinality of the input
relation I.

PROOF. From Lemma 7.2 and Corollary 6.11.

This result does not extend to not-necessarily-linear tableau queries, since con-
sistent query answering is NP-complete if we omit the linearity requirement.

THEOREM 7.4. For the Boolean tableau query

τ 1 2 3
x y a
z y b
1

,

CQA(key(1), τ ) is NP-complete.

PROOF. Membership of NP follows from Theorem 5.10. The proof, inspired
by Theorem 3.3 in Chomicki and Marcinkowski [2005a], is a reduction from
MONOTONE 3SAT. Let φ = ∧m

i=1 Ci where each Ci is either a disjunction of
three negated Boolean variables or a disjunction of three nonnegated Boolean
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variables. Construct a relation I such that for each i ∈ {1, . . . , n}, for each p
that occurs in Ci, if Ci contains ¬p, then I contains 〈i, p, b〉, else I contains
〈i, p, a〉, where a, b ∈ dom. That is, Ci = p ∨ q ∨ r gives rise to the tuples in I
shown below. For Ci = ¬p ∨ ¬q ∨ ¬r, simply replace a by b. It can be verified
that all fixes of I and key(1) must contain F1, F2, or F3 shown below, up to a
permutation of p, q, r; the chase results in G1, G2, and G3, respectively. Note
incidentally that the shown parts of F1, F2, and F3 are not comparable by �.

I 1 2 3
...

i p a
i q a
i r a

...

F1 1 2 3
...

i p a
i • a
i • a

...

F2 1 2 3
...

i p a
i • a
• r a

...

F3 1 2 3
...

i p a
• q a
• r a

...

G1 1 2 3
...

i p a
...

G2 1 2 3
...

i p a
• r a

...

G3 = F3

Let B and h denote the body and the head of τ , respectively. We show that φ

has a satisfying truth assignment if and only if τ (I↓↑key(1)) = {}. For the if part,
assume τ (I↓↑key(1)) = {}. Since τ is Boolean, by Lemma 2.6 and Theorem 3.22,
for some fix F of I and �, G �� B where G is the final tableau in a chase of F
by key(1). For every i ∈ {1, 2, . . . , n}, G contains exactly one tuple of the form
〈i, α, β〉, where α is a Boolean variable and β ∈ {a, b}. Let θ be a truth assignment
such that θ (p) = true if 〈i, p, a〉 ∈ G, and θ (p) = false if 〈i, p, b〉 ∈ G. The same
variable cannot be assigned both true en false, or else G � B, a contradiction.
It can be easily verified that θ is a satisfying truth assignment of φ. The only-if
part is now straightforward.

Obviously, when tableau queries can appear disguised as ftgd’s, the restriction
to quantifier-free tableau queries does not lower the complexity of consistent
query answering.

COROLLARY 7.5. For the ftgd τ1 and the Boolean qfCQ query τ2,

τ1 1 2 3
x y a
z y b
1 1 1

τ2 1 2 3
1 1 1
1

,

CQA(key(1) ∪ {τ1}, τ2) is NP-complete.
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8. CONTRADICTION-GENERATING DEPENDENCIES

We study update-based repairing when all constraints are fegd’s of the form
(B, 0 = 1). The nucleus construction (and hence consistent query answering)
is tractable for quantifier-free tableau queries, but consistent query answering
becomes intractable for linear tableau queries.

8.1 Comprehensive Example

Definition 8.1. A contradiction-generating dependency (cgd) is an fegd of
the form (B, 0 = 1), where 0 and 1 are distinct constants.

An example is the cgd ε3 of our running example, which expresses that car
models available in luxury versions do not exist in bottom priced variants.
A fortiori, luxury models are never bottom priced (ε7). Each cgd corresponds
logically to a Horn clause without a positive literal: the cgd ε3 expresses ∀x∀ y∀z
(¬R(x, luxury, z) ∨ ¬R(x, y , bottom)).

ε3 Model Version PriceRange
x luxury z
x y bottom

0 = 1

ε7 Model Version PriceRange
x luxury bottom

0 = 1

Since ε3 logically implies ε7, {ε3, ε7} and {ε3} are equivalent sets of constraints.
An entry in (the body of) a cgd is irrelevant if it contains a variable that occurs
only once in the cgd; otherwise it is relevant. In ε3, the irrelevant entries are
the entries containing y and z; in ε7, the entry containing x is irrelevant.

We illustrate how the following relation CARS = {s, t} can be made subcon-
sistent relative to {ε3, ε7}. Obviously, every tableau that is subconsistent with
respect to to a set of cgd’s is also consistent.

CARS Model Version PriceRange
4 × 4 luxury medium (s)
4 × 4 luxury bottom (t)

The substitution θ1 = {x/4 × 4, y/luxury, z/medium} is a one-one homomor-
phism from the body of ε3 to CARS, hence CARS is inconsistent. In order to
gain consistency, we need to put a variable at any entry of CARS that is related
via θ1 to a relevant entry of ε3: at the first coordinate of s or t (both related to
x), the second coordinate of s, or the third coordinate of t. This will be encoded
as the fixset D1 = {(s, 1), (t, 1), (s, 2), (t, 3)} of CARS-entries. Note incidentally
that the third coordinate of s (medium) is related via θ1 to an irrelevant entry
of ε3 (the entry containing z) and that substituting a variable for “medium” is
useless for gaining consistency. Likewise, the substitution θ2 = {x/4 × 4} is a
one-one homomorphism from the body of ε7 to CARS, resulting in the fixset
D2 = {(t, 2), (t, 3)}. Note here that the entry containing x is not relevant in ε7.
For the current set of cgd’s, there are no further one-one homomorphisms.

Next, if E is a hitting set of {D1, D2} (E intersects both D1 and D2),
then CARS is rendered consistent by putting variables at all entries of E.
There are four minimal (with respect to ⊆) hitting sets: E1 = {(s, 1), (t, 2)},
E2 = {(s, 2), (t, 2)}, E3 = {(t, 1), (t, 2)}, E4 = {(t, 3)}. For example, we show the
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consistent tableau 
E1 (CARS) obtained from CARS by putting variables at the
entries of E1 (see Definition 5.6):


E1 (CARS) Model Version PriceRange
• luxury medium

4 × 4 • bottom

8.2 �-closed Sets of Contradiction-Generating Dependencies

The starting point of the introductory example is a set � = {ε3, ε7} of cgd’s such
that for any tableau F , if F is inconsistent, then the body of some cgd is one-one
homomorphic to F . The limitation to homomorphisms that are one-one is not
a limitation (Theorem 8.3) and eases the technical treatment to follow.

Definition 8.2. A set � of cgd’s is �-closed if and only if for every tableau
F , if F � B for some (B, 0 = 1) in �, then for some (B′, 0 = 1) in �, F � B′.

To see that {ε3} is not �-closed, it suffices to note that the body of ε3 is not one-
one homomorphic to the (inconsistent) body of ε7. On the other hand, {ε3, ε7} is
�-closed.

Theorem 8.3 shows that every set of cgd’s is equivalent to a �-closed set
of cgd’s. Moreover, the proof provides an effective way to construct a �-closed
equivalent set of cgd’s. It is not difficult to develop more efficient constructions
using most general unifiers [Abiteboul et al. 1995].

THEOREM 8.3. Every set � of cgd’s is logically equivalent to a �-closed set of
cgd’s.

PROOF. Assume arity n. For every cgd ε = (B, 0 = 1) of �, construct �ε as the
set of cgd’s containing (B′, 0 = 1) for every tableau B′ satisfying (i) asd(B′) ⊆
asd(B), (ii) |B′| ≤ |B|, and (iii) µ(B) = B′ for some substitution µ. Clearly, �ε

is finite because of (i) and (ii). Note incidentally ε ∈ �ε . Let �′ = ⋃
ε∈� �ε . It is

easy to verify that � and �′ are equivalent.
To show that �′ is �-closed, assume a tableau F such that F � B′ for some

cgd (B′, 0 = 1) in �′. The construction ensures the existence of a cgd (B, 0 = 1)
in � such that B′ � B. By transitivity, F � B. We can assume a substitution
θ for the variables in B such that θ (B) ⊆ F . Let C be the set of constants that
occur in θ (B) but not in B. For each c ∈ C, let xc denote a new distinct variable
not occurring elsewhere. Let µ be the substitution satisfying for each variable
x occurring in B, if θ (x) = c for some c ∈ C, then µ(x) = xc, else µ(x) = θ (x).

Let G = µ(B). Obviously, θ (B) � G. We have |G| ≤ |B|, G contains no
constants not in B, and G contains not more variables than B. Then, our con-
struction ensures that G � H for some cgd (H, 0 = 1) in �ε . From θ (B) ⊆ F , it
follows F � θ (B). By transitivity, F � G. Since G � H, F � H. This concludes
the proof.

8.3 Hitting Set

Hitting sets are well-known from complexity theory. Significantly, when we
refer to minimal hitting sets in the technical treatment to follow, minimality
refers to set inclusion, not cardinality.
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Definition 8.4. Let U be a finite set and S ⊆ 2U . A set E ⊆ U is a hitting
set of S if for every S ∈ S, E ∩ S �= {}. A hitting set E of S is said to be minimal
if no proper subset of E is also a hitting set of S.

LEMMA 8.5. Let U be a finite set. Let S ⊆ 2U . Let E be a minimal (with
respect to ⊆) hitting set of S. For every b ∈ E, there exists S ∈ S such that
E ∩ S = {b}.

PROOF. Assume b ∈ E. Since E is a hitting set of S, for every S ∈ S, E ∩ S �=
{}. Assume that for every S ∈ S, E ∩ S �= {b}. Then, E \ {b} is a hitting set of S,
hence E is not minimal, a contradiction. We conclude by contradiction that for
some S ∈ S, E ∩ S = {b}.
We provide a necessary and sufficient condition for the existence of a minimal
hitting set that contains a given element b.

THEOREM 8.6. Let U be a finite set. Let S ⊆ 2U and b ∈ U. Then, S has a
minimal (with respect to ⊆) hitting set containing b if and only if there exists a
set Sb ∈ S such that b ∈ Sb and for every S ∈ S, if b �∈ S, then S �⊆ Sb.

PROOF. If part. Assume Sb ∈ S such that b ∈ Sb and for every S ∈ S, b �∈ S
implies S �⊆ Sb, i.e. S \ Sb �= {}. Let E be a set such that b ∈ E and for every
S ∈ S such that b �∈ S, E contains an element of S \ Sb. Clearly, E is a hitting
set of S, and E \{b} is not a hitting set of S. It follows that E contains a minimal
(with respect to ⊆) hitting set E ′ of S such that E ′ contains b.

Only-if part. Assume E is a minimal (with respect to ⊆) hitting set of S
containing b. By Lemma 8.5, we can assume the existence of an element Sb ∈ S
such that Sb ∩ E = {b}. Assume S ∈ S such that b �∈ S. Since E is a hitting set
of S, we can assume c ∈ E such that c ∈ S. Assume c ∈ Sb. From c ∈ S and
b �∈ S, it follows c �= b. Then Sb ∩ E contains two distinct elements b and c, a
contradiction. We conclude by contradiction c �∈ Sb. Since c ∈ S, S �⊆ Sb.

Consequently, it can be decided in polynomial time in |S| whether some minimal
hitting set of S contains a given element b.

8.4 Fixes and Hitting Sets

An entry in a tableau F is not relevant if it contains a variable not occurring
elsewhere. Relevant entries are used for determining fixsets, as was shown in
the introductory example.

Definition 8.7. Let F be a tableau of arity n. An entry (t, i) of F is said to
be relevant in F if t(i) ∈ dom or if for some entry (s, j ) in F , (t, i) �= (s, j ) and
t(i) = s( j ). We write relev(F ) for the set of relevant entries of F .

Let I be a relation and � a set of cgd’s. If for some (B, 0 = 1) of �, the
substitution θ is a one-one homomorphism from B to I , then the set {(θ (t), i) |
(t, i) ∈ relev(B)} of I -entries is called a fixset of I and �. We write fixsets(I, �)
for the set of all fixsets of I and �.

The set fixsets(I, �) can be constructed in polynomial time in |I |: every cgd
(B, 0 = 1) results in no more than |I |m fixsets, where m = |B|. We show that
hitting sets correspond to consistent tableaux.
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LEMMA 8.8. Assume arity n. Let I be a relation and � a �-closed set of cgd’s.
Let E be a set of I-entries (i.e. E ⊆ I × {1, 2, . . . , n}). Then, E is a hitting set of
fixsets(I, �) if and only if 
E (I ) is consistent.

PROOF. If part. Assume E is not a hitting set of fixsets(I, �). We can assume
a cgd (B, 0 = 1) in � and a substitution θ such that θ (B) ⊆ I , θ identifies no two
distinct tuples of B, and E contains no element of the fixset {(θ (t), i) | (t, i) ∈
relev(B)}. Let ω be the substitution such that for each symbol p that occurs in
B (let (t, i) be a B-entry such that t(i) = p), ω(p) = 
E (θ (t), i).

We show that ω is the identity on constants: if t(i) is a constant (say a) for
some entry (t, i) in B, then, since (t, i) ∈ relev(B), (θ (t), i) �∈ E, hence ω(a) =

E (θ (t), i) = a. To show that ω is well-defined on variables, we prove that if
s( j ) = t( j ) is the same variable (say x) for distinct B-entries (s, j ) and (t, i),
then 
E (θ (t), i) = 
E (θ (s), j ). Since (t, i) ∈ relev(B) and (s, j ) ∈ relev(B), it
follows (θ (t), i) �∈ E and (θ (s), j ) �∈ E. Then, 
E (θ (t), i) = θ (t(i)) = θ (x) and

E (θ (s), j ) = θ (s( j )) = θ (x), hence 
E (θ (t), i) = 
E (θ (s), j ).

We have ω(B) = 
E (θ (B)) ⊆ 
E (I ), hence 
E (I ) is inconsistent.
Only-if part. Assume 
E (I ) inconsistent. Since � is �-closed, there exists

a cgd (B, 0 = 1) in � and a substitution θ such that θ (B) ⊆ 
E (I ) and θ

identifies no two distinct tuples of B. Let µ be the substitution such that for
every t ∈ 
E (I ), 
E (µ(t)) = t. Let ω = µ ◦ θ . Then, ω(B) ⊆ I and ω identifies
no two distinct tuples of B. Let K = {(ω(s), j ) | (s, j ) ∈ relev(B)}. Clearly,
K ∈ fixsets(I, �). To show that E is not a hitting set of fixsets(I, �), it suffices to
show that E contains no element of K . Assume, on the contrary, that E contains
(ω(s), j ) ∈ K . Two cases can occur:

Case s( j ) is a constant. From 
E (ω(s), j ) = 
E (µ(θ (s)), j ) = θ (s( j )), it fol-
lows 
E (ω(s), j ) is a constant. From (ω(s), j ) ∈ E, it follows 
E (ω(s), j ) is a
variable. Then dom ∩ var �= {}, a contradiction.

Case s( j ) is a variable. Since (s, j ) ∈ relev(B), there exists a B-entry
(t, i) distinct from (s, j ) such that t(i) = s( j ). From (ω(s), j ) ∈ E, it follows

E (ω(s), j ) is a new distinct variable not occurring elsewhere. On the other
hand, 
E (ω(s), j ) = 
E (µ(θ (s)), j ) = θ (s( j )) and 
E (ω(t), i) = 
E (µ(θ (t)), i) =
θ (t(i)). Since t(i) = s( j ), 
E (ω(s), j ) = 
E (ω(t), i), hence 
E (ω(s), j ) occurs twice
in 
E (I ), a contradiction.

We conclude by contradiction that E is not a hitting set of fixsets(I, �).

We show that fixes correspond to minimal (with respect to ⊆) hitting sets.

LEMMA 8.9. Assume arity n. Let I be a relation and � a �-closed set of cgd’s.
Let E be a set of I-entries. If 
E (I ) is a fix of I and �, then E is a minimal
hitting set of fixsets(I, �).

PROOF. Assume E is not a minimal hitting set of fixsets(I, �). If E is not a
hitting set, then 
E (I ) is inconsistent by Lemma 8.8. If E is a hitting set, then
we can assume E ′ � E such that E ′ is a minimal hitting set of fixsets(I, �).
Since 
E ′

(I ) is consistent by Lemma 8.8 and since I � 
E ′
(I ) � 
E (I ) is

obvious, 
E (I ) is not a fix of I and �.
Remarkably, the inverse is not true. For a counterexample, consider the relation
I = {s, t} and the cgd’s ε8, ε9, ε10 in Figure 8 (a, b, c, d ∈ dom). The cgd ε8 results
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Fig. 8.

in the fixsets D1 = {(s, 1), (s, 2)} and D2 = {(t, 1), (t, 2)}. The cgd ε9 results in the
fixset D3 = {(s, 2), (s, 3)}, and ε10 in D4 = {(t, 1), (t, 3)}. A minimal (with respect
to ⊆) hitting set of {D1, D2, D3, D4} is E = {(s, 1), (s, 3), (t, 2), (t, 3)}. We have
F = 
E (I ) but F is not a fix, since I � G � F and G is also consistent. Note
incidentally that G = 
E ′

(I ) with E ′ = {(s, 2), (t, 1)}, which is also a minimal
hitting set of {D1, D2, D3, D4}.
8.5 qfCQ-nucleus for Contradiction-Generating Dependencies

Finally, we show that for each relation I and satisfiable set � of cgd’s, a qfCQ-
nucleus of all uprepairs can be constructed in polynomial time. This is the
strongest result possible as any quantification results in intractability.

LEMMA 8.10. Assume arity n. Let I be a relation and � a coherent, �-closed
set of cgd’s. Let t ∈ I . Then, I↓↑� ∗� {t} if and only if for every i ∈ {1, 2, . . . , n},
there is no minimal hitting set of fixsets(I, �) containing (t, i).

PROOF. If part. Assume I↓↑� � ∗� {t}. From Lemma 2.6 and Theorem 3.22,
there is a fix F of I and � such that t �∈ F . By Lemma 5.7, for some set E of
I -entries, 
E (I ) � F . By Lemma 8.9, E is a minimal hitting set of fixsets(I, �).
Since t �∈ 
E (I ), E contains (t, i) for some i ∈ {1, 2, . . . , n}. Only-if part. Assume
the existence of a minimal hitting set E containing at least one entry of {(t, i) |
1 ≤ i ≤ n}. Since I � 
E (I ) is obvious and 
E (I ) consistent by Lemma 8.8,
there exists some fix F such that I � F � 
E (I ). Let E ′ = E \{(t, i) | 1 ≤ i ≤ n}.
Since E ′ � E, E ′ is not a hitting set of fixsets(I, �), hence 
E ′

(I ) inconsistent by
Lemma 8.8. Intuitively, 
E ′

(I ) can be obtained from 
E (I ) by “unfixing” t. The
fix F cannot contain t, or else F � 
E ′

(I ), hence F inconsistent, a contradiction.
We conclude that for some fix F of I and �, t �∈ F . Consequently, I↓↑� � ∗� {t}.
For example, for the coherent and �-closed set � = {ε11, ε12} and the relation
I = {s, t} shown next, we get fixsets(I, �) = {{(s, 1), (t, 1), (t, 2)}, {(t, 1), (t, 2)}}.
The minimal hitting sets of fixsets(I, �) are {(t, 1)} and {(t, 2)}. Since no minimal
hitting set contains (s, 1) or (s, 2), it follows that each fix contains s.

I 1 2
a b (s)
c c (t)

ε11 1 2
a y
x x
0 = 1

ε12 1 2
c c
0 = 1

COROLLARY 8.11. Let � be a satisfiable set of cgd’s. Let t a ground tuple.
Deciding whether I↓↑� ∗� {t} is in polynomial time in the cardinality of the input
relation I.
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PROOF. Clearly, if t �∈ I or � not coherent, then I↓↑� � ∗� {t}. Next assume t ∈ I
and � coherent. We first construct a �-closed set �′ equivalent to �, and then
compute fixsets(I, �′), which takes only polynomial time in |I |. The result then
follows from Lemma 8.10 and Theorem 8.6.

THEOREM 8.12. Let � be a satisfiable set of cgd’s. Constructing a
qfCQ-nucleus of I↓↑� is in polynomial time in the cardinality of the input re-
lation I.

PROOF. From Corollary 8.11 and Corollary 6.15.

Remarkably, a shift from quantifier-free to linear tableau queries results
in intractability. That is, although a linCQ-nucleus of polynomial size exists
(Theorem 6.10), its construction takes exponential time, unless P = NP.

THEOREM 8.13. Let � = {ε1, ε2, . . . , ε7} and τ as follows. Then, CQA(�, τ ) is
NP-complete.

ε1 1 2 3 4 5
c a x v w
x y u′ v′ w′

0 = 1

ε2 1 2 3 4 5
c a u x w
x y u′ v′ w′

0 = 1

ε3 1 2 3 4 5
c a u v x
x y u′ v′ w′

0 = 1

ε4 1 2 3 4 5
c b y v w
x y u′ v′ w′

0 = 1

ε5 1 2 3 4 5
c b u y w
x y u′ v′ w′

0 = 1

ε6 1 2 3 4 5
c b u v y
x y u′ v′ w′

0 = 1

ε7 1 2 3 4 5
x x u′ v′ w′

0 = 1

τ 1 2 3 4 5
c z u v w
1

PROOF. Membership of NP follows from Theorem 5.10. Reduction from
MONOTONE 3SAT. Let a, b, c be distinct constants. Let φ = ∧m

i=1 Ci, where
each Ci is a disjunction of three distinct Boolean variables. Let V be the set of
Boolean variables occurring in φ. The formula φ is encoded in a relation I as
follows. For every clause Ci = p ∨ q ∨ r, I contains a tuple 〈c, a, p, q, r〉. For a
clause Ci = ¬p∨¬q∨¬r, replace a by b. Furthermore, for each Boolean variable
p ∈ V , I contains a tuple tp := 〈p, p, p, p, p〉. For example, Ci = p ∨ q ∨ r gives
rise to the tuples in I shown below.

I 1 2 3 4 5
...

c a p q r
...

p p p p p (tp)
q q q q q (tq)
r r r r r (tr )

...

Fθ 1 2 3 4 5
...

• a p q r
...

p • p p p (t ′
p)

• q q q q (t ′
q)

r • r r r (t ′
r )

...
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The only tuples in � that can be mapped to tp are of the form 〈·, ·, u′, v′, w′〉.
Since u′, v′, w′ never occur more than once in the body of some cgd, every fix of
I and � must contain a tuple of the form 〈·, ·, p, p, p〉, which will be denoted t ′

p.
Furthermore, either t ′

p(1) or t ′
p(2) must be a variable because of ε7.

Since � contains only cgd’s and τ is a Boolean tableau query, it follows from
Theorem 3.22 that τ (I↓↑�) = {} if and only if τ (F ) = {} for some fix F of I
and �. Then, τ (I↓↑�) = {} if and only if some fix contains no occurrence of
the constant c in its first column. So it suffices to show that φ has a satis-
fying truth assignment if and only if some fix does not contain c in its first
column.

Assume that θ is a satisfying truth assignment of φ. For every p ∈ V , let
t ′

p = 〈p, •, p, p, p〉 if θ (p) = true, and let t ′
p = 〈•, p, p, p, p〉 if θ (p) = false.

Furthermore, each occurrence of c is replaced by a new distinct variable not
occurring elsewhere. Call the resulting tableau Fθ (see the example above where
θ (p) = θ (r) = true and θ (q) = false). It can be easily verified that I � Fθ and
Fθ consistent. We now show that Fθ is maximal (with respect to �). For every
tuple of the form 〈•, a, p, q, r〉 (encoding p∨q ∨r), we have t ′

p(1) = p or t ′
q(1) = q

or t ′
r (1) = r; otherwise the encoded truth assignment θ does not satisfy p∨q ∨r.

Then, we cannot substitute c for • in 〈•, a, p, q, r〉, or at least one of ε1, ε2, or ε3
would be falsified. Likewise, for every tuple of the form 〈•, b, p, q, r〉 (encoding
¬p ∨ ¬q ∨ ¬r), we have t ′

p(2) = p or t ′
q(2) = q or t ′

r (2) = r. Again, we cannot
substitute c for • in 〈•, b, p, q, r〉, or one of ε4, ε5, or ε6 would be falsified. It
follows that Fθ is a fix of I and � containing no occurrence of c.

Conversely, assume there exists a fix F containing no occurrence of the
constant c in its first column. Then, for each tuple 〈c, a, p, q, r〉 ∈ I , there
is a corresponding tuple 〈x, a, p, q, r〉 in F (x ∈ var). Since F is a fix and
I � idx = c(F ) � F , the tableau idx = c(F ) is not subconsistent; substituting c
for x results in a violation of some cgd, which must be one of ε1, ε2, or ε3. Then,
F must contain one of 〈p, •, p, p, p〉, 〈q, •, q, q, q〉, or 〈r, •, r, r, r〉. By the same
reasoning, for each tuple of the form 〈c, b, p, q, r〉 ∈ I (encoding ¬p ∨ ¬q ∨ ¬r),
F contains at least one of 〈•, p, p, p, p〉, 〈•, q, q, q, q〉, or 〈•, r, r, r, r〉. Then, a
satisfying truth assignment of φ is the truth assignment θ satisfying for every
p ∈ V , θ (p) = true if F contains 〈p, •, p, p, p〉, and θ (p) = false if F contains
〈•, p, p, p, p〉.

9. INEQUALITY AND UNION

We show that nuclei no longer exist if we extend tableau queries with inequal-
ities or unions.

9.1 Inequalities

Assume arity 1. Let I = {〈a〉} and � the singleton containing ({〈a〉}, 0 = 1). The
unique (up to ∼) fix is {〈x〉}, and the set of uprepairs is given by I↓↑� = {{〈p〉} |
p ∈ dom, p �= a}: every uprepair changes a in another constant.

For every constant c ∈ dom, let Q �=c be the query such that for every
relation J , Q �=c(J ) = {〈1〉} if J contains some tuple 〈b〉 with b �= c; other-
wise Q �=c(J ) = {}. That is, Q �=c corresponds to the first-order logic formula
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∃x(R(x) ∧ x �= c). Clearly,

Q �=c(I↓↑�) =
{

{〈1〉} if c = a
{} if c �= a

.

Let Q be the class of queries defined as Q = {Q �=c | c ∈ dom}. There is no
tableau F such that for every Q �=c ∈ Q, Q �=c(F ) = Q �=c(I↓↑�), because whenever
F is a tableau containing some constant, then Q �=c(F ) = {〈1〉} for some constant
c �= a, while a tableau F without constants cannot distinguish between a and
constants c �= a.

9.2 Union

Assume arity 2. Let I = {〈a, a〉} and � the singleton containing ({〈z, z〉}, 0 = 1).
The two unique (up to ∼) fixes are {〈a, y〉} and {〈x, a〉}. Let τ1 = ({〈a, w〉}, 〈1〉)
and τ2 = ({〈u, a〉}, 〈1〉), two Boolean tableau queries. Let τ1∨2 be the query such
that for each relation J , τ1∨2(J ) = τ1(J ) ∪ τ2(J ). Then, τ1∨2(I↓↑�) = {〈1〉} and
τ1(I↓↑�) = τ2(I↓↑�) = {}. Obviously, there is no single tableau F such that
τ1∨2(F ) = {〈1〉} and τ1(F ) = τ2(F ) = {}.
10. COMPARISON WITH RELATED WORK

We first summarize our main results, and then we compare our results with
existing work.

10.1 Summary of Main Results

This article extends and improves an earlier conference publication [Wijsen
2002]. The major contributions are: first, the new notion of update-based re-
pairing, and second, the construction of single databases, called nuclei, that
can replace all (possibly infinitely many) repairs for the purpose of consistent
query answering. The major technical contributions are listed below. Recall
that CQ denotes the class of conjunctive queries, linCQ is the class of conjunc-
tive queries in which no quantified variable occurs more than once, and qfCQ is
the class of quantifier-free conjunctive queries. Obviously, qfCQ ⊂ linCQ ⊂ CQ.
All complexity results refer to data complexity.

—Fix checking is in P for full dependencies. Consistent query answering is in
NP for full dependencies and conjunctive queries.

—For each relation I and set � of full dependencies, there exists a computable
CQ-nucleus of all uprepairs (generated by I and �). There exists a set of full
dependencies such that for every n ≥ 7, there exists a relation with n − 1
tuples allowing no CQ-nucleus of size less than 2n.

—For each set of full dependencies, the size of a linCQ-nucleus is polynomially
bounded in the size of the input relation.

—For each key dependency key(K ), a linCQ-nucleus of all uprepairs can be
computed in polynomial time in the size of the input relation, but consistent
query answering becomes NP-complete for CQ queries.

—For each set of contradiction-generating dependencies, a qfCQ-nucleus of all
uprepairs can be computed in polynomial time in the size of the input relation,
but consistent query answering becomes NP-complete for linCQ queries.
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Fig. 9. Complexity of CQA(�, τ ) for different classes of constraints and queries. The P cases also
have a nucleus constructible in polynomial time.

The complexity results for consistent query answering are summarized in
Figure 9.

To simplify the notation, we have assumed a unirelational database con-
taining a single relation of arity n. Nevertheless, all results extend to mul-
tirelational databases. It suffices to add relation symbols to distinguish tuples
belonging to different tableaux. For example, let � = {∀x∀ y (R(x, y) → S(x)),
∀x∀ y (R(x, y) ∧ S( y) → 0 = 1)}. That is, S contains every constant that occurs
in the first column of R, and no constant of the second column of R. Let I =
{R(a, b), S(b)}. The two fixes are F1 = {R(a, b), S(x)} and F2 = {R(a, y), S(b)}.
A chase of F1 by � results in G1 = {R(a, b), S(x), S(a)} ∼ {R(a, b), S(a)}. A
chase of F2 by � results in G2 = {R(a, y), S(a), S(b)}. A CQ-nucleus is H =
{R(a, w), S(a)}. The consistent answer to the linear query 〈x〉 ← R(x, y) ∧ S(x)
is {〈a〉}.

10.2 Comparison with Related Work

10.2.1 Defining Repairs. Although theoretical approaches to reasoning
with inconsistent information date back to the 80s, the distinction between
“consistent” and “inconsistent” answers to queries on databases that violate
integrity constraints, is often attributed to Bry [1997], who founded the idea
on provability in minimal logic. Consistent query answering gained momen-
tum with the advent of a model-theoretic construct of repair [Arenas et al.
1999]: a repair is a model of the integrity constraints that is “as close as pos-
sible” to the original database. Bertossi and Chomicki [2003] give an overview
of database repairing and consistent query answering up to 2002. The clear
distinction between possibly incorrect data and correct integrity constraints
distinguishes database repairing from work on reasoning in inconsistent
knowledge-bases [Arieli 2000; Grant and Subrahmanian 1995].

Nearly all model-based approaches define repairs in terms of the sets of
inserted and deleted tuples. Insertions and deletions are mostly treated sym-
metrically [Arenas et al. 1999]. For example, a relation I = {〈a〉} has two repairs
relative to the constraint R(a) → R(b): we can either delete 〈a〉, giving U1 = {},
or insert 〈b〉, giving U2 = {〈a〉, 〈b〉}. An asymmetric treatment of insertions and
deletions is the loosely-sound semantics introduced by Calı̀ et al. [2003a], which
minimizes (with respect to ⊆) the set of deleted tuples, irrespective of the tuples
to be inserted. Under these semantics, U2 is the only repair. The wish to delete
as few data as possible also governs our approach: I itself would be the only
fix, and U2 the only uprepair. In Greco et al. [2003a], the symmetric treatment
of insertions and deletions can be overruled by user-defined prioritized update
rules: the rule insert(〈b〉) ! delete(〈a〉), for example, states that inserting 〈b〉 is
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to be preferred over deleting 〈a〉. In Chomicki and Marcinkowski [2005a], only
tuple deletions are allowed.

Most approaches minimize sets of deleted and/or inserted tuples relative to
set inclusion. Some authors also consider minimization with respect to cardi-
nality [Arieli et al. 2002, 2004; Lin and Mendelzon 1998]. Greco et al. [2003b]
propose a formalism where preferences among repairs can be specified by a
user-defined evaluation function.

Instead of defining a repair as a set of plain tuples, de Amo et al. [2002]
distinguish between true and controversial tuples within a repair. The modal
operator • in front of an atom indicates that the atom is controversial. For
the foregoing example, the two repairs of I = {〈a〉} are U ′

1 = {•〈a〉} and U ′
2 =

{〈a〉, •〈b〉}. The first repair switches 〈a〉 from true to controversial; the second
repair switches 〈b〉 from false (or absent) to controversial. The use of more-than-
two-valued logic for characterizing uncertainty about a tuple also appears in
Arenas et al. [2000] and Arieli et al. [2002].

A distinguishing feature of our approach is that it does not treat tuples as
atomic units of repairing. It is easy to think of applications where this way of re-
pairing is more satisfactory than deletion/insertion-based repairing. Consider a
patient record in a medical database, storing a large number of measurements.
When we find out that some value is physiologically impossible (for example,
hematocrit above 80%), probably due to an input error, then we generally do
not want to delete the entire tuple nor do we wish to mark the entire tuple as
controversial. Our approach allows “hiding” the faulty value, while keeping the
patient record. Franconi et al. [2001] define a repair as a mapping from a pos-
sibly inconsistent relation to a new consistent relation, and thus also consider
changes in attribute values as basic repair actions.

10.2.2 Complexity Results. So far, we found no instance of the consis-
tent query answering problem that is known to be tractable under deletion/
insertion-based repairing and intractable under update-based repairing, or vice
versa:

Key dependency. For a single key dependency, our Theorem 7.4 imitates
Theorem 3.3 in Chomicki and Marcinkowski [2005a], meaning that consistent
query answering is intractable for tableau queries in both repairing paradigms.
The problem becomes tractable for linear tableau queries (see our Theorem 7.3).
Although we were not able to find any explicit references that a restriction to
linear tableau queries also gives us tractability under deletion/insertion-based
repairing (for quantifier-free tableau queries, this follows from Theorem 3.1 in
Chomicki and Marcinkowski [2005a]), it is not difficult to see that the construc-
tion of Theorem 7.3 carries over to deletion/insertion-based repairing. So consis-
tent query answering is tractable for linear tableau queries in both paradigms.

In the case of a single key dependency, update-based and deletion/insertion-
based repairing yield the same consistent answers to linear tableau queries, but
can differ on nonlinear queries. For example, consider the relation PERSON of
Figure 10 where Name is the primary key, and the nonlinear query τ asking for
persons living in their place of birth. Under deletion/insertion-based repairing,
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Fig. 10.

“Ed” is in the consistent answer. However, the consistent query answer is empty
under update-based repairing. To see why, notice that F is a fix generating the
uprepair J .

Contradiction-generating dependencies. For cgd’s, it is not difficult to adapt
our Theorem 8.13 to deletion/insertion-based repairing, meaning that con-
sistent query answering is intractable for linear tableau queries in both
paradigms. On the other hand, the problem is tractable for quantifier-free
tableau queries in both paradigms (see our Theorem 8.12 and Theorem 3.1
in Chomicki and Marcinkowski [2005a]).

Chomicki and Marcinkowski [2005a, 2005b] extensively discuss our previ-
ous work, and mention intractability of repair checking in our approach (see
Theorem 5.3 in Chomicki and Marcinkowski [2005a]). The same result has ap-
peared in Wijsen [2004]. It is important to mention here that this complexity
result holds if fixes are allowed to contain multiple occurrences of the same
variable. In Section 5, we disallowed multiple occurrences of the same variable
in a fix. This restriction not only leads to more natural uprepairs in general,
but also gives us tractability. So our Theorem 5.9 is not in contradiction with
Theorem 5.3 reported in Chomicki and Marcinkowski [2005a].

We have noticed that it is generally a waste of time to examine more than
one representative of an ∼-equivalence class. For space efficiency reasons, we
may be interested in using a reduced representative—a representative of the
smallest possible size. In general, deciding whether a tableau can be reduced
such that its cardinality drops below a given size k, is an NP-complete problem.
On the other hand, it is straightforward to minimize (with respect to size) a
linear tableau in polynomial time. Fagin et al. [2003] identify more general
classes of tableaux that allow a polynomial time minimization.

10.2.3 Computing Repairs and Consistent Query Answers. Several au-
thors have investigated the use of logic solvers for database repairing. In Arenas
et al. [2003a]; Arieli et al. [2004] and Greco et al. [2003a], the database and in-
tegrity constraints are rewritten into a logical theory that associates to each
atom p a new “switch” or “update” atom (denoted p′ in Arenas et al. [2003a],
sp in Arieli et al. [2004], pu in Greco et al. [2003a]). Every model M of the new
theory leads to a database repair by inserting or deleting atoms p depending
on the truth value of p’s “switch” atom. In Arieli et al. [2002], the role of the
switch atom is played by a truth value ", which is distinct from true and false:
if the truth value of p is " in the three-valued model M , then p must be deleted
from the database if p is in the database; otherwise p must be inserted. These
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approaches thus reduce the computation of repairs to the computation of mod-
els in some logical framework for which resolution methods exist. They are not
restricted to full dependencies and can be used to compute consistent answers
to any first-order query.

In Arieli et al. [2004], quantifiers in integrity constraints are restricted to
range over the active domain of the database (i.e. the set of constants appear-
ing in the database), which allows quantifier elimination. In our approach,
variables in fixes can be thought of as being existentially quantified, but as we
do not assume active domain semantics, the number of uprepairs is infinite in
general.

Theorem 4.14 in Greco et al. [2003a] implies that for full inclusion de-
pendencies, it can be decided in polynomial time which ground tuples are in
every repair under deletion/insertion-based repairing. In our framework, if
� is a set of full tuple-generating dependencies, then a relation is its own
fix and the corresponding uprepair is obtained in polynomial time by the
chase.

A major motivation for our restriction to full dependencies is the termination
of the chase. Nevertheless, not-necessarily-full tuple-generating dependencies
are of practical importance for capturing inclusion dependencies and referen-
tial integrity in general. The chase also terminates for the class of acyclic inclu-
sion dependencies defined in Sciore [1983]. Consistent query answering under
such acyclic inclusion dependencies is studied by Bravo and Bertossi [2004].
Significantly, Fagin et al. [2002] recently showed termination of the chase
for the larger class of weakly-acyclic tuple-generating dependencies, which
strictly includes both full tuple-generating dependencies and acyclic inclusion
dependencies.

An elegant approach to computing consistent query answers is query rewrit-
ing: a given query is rewritten such that the new query is guaranteed to return
the consistent answers on any, possibly inconsistent, database. Obviously, if the
rewritten query is wished to be first-order expressible [Arenas et al. 1999; Celle
and Bertossi 2000], then unless P = NP, this approach is limited to sets � of
constraints and queries τ for which consistent query answering (the complexity
of CQA(�, τ )) is in P.

For example, assume an SQL table containing columns K and A, where K
is the primary key. Then, the SQL query:

SELECT DISTINCT A FROM I

may be rewritten as:

SELECT DISTINCT I1.A FROM I AS I1 WHERE NOT EXISTS
(SELECT * FROM I AS I2 WHERE I2.K=I1.K AND I2.A<>I1.A)

It can be easily verified that the rewritten query on the original database gives
us consistent query answers under both update-based and deletion/insertion-
based repairing [Chomicki et al. 2004a]. The original query can be expressed
as a linear tableau query, and the time required to answer the rewritten
query is no less than the time needed for constructing a linCQ-nucleus (i.e.
O(m log m) where m = |I |, see Theorem 7.3). So in this example, nuclei may be
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a useful alternative to query rewriting. The results on the nucleus construction
presented in Section 4 do not rely on the actual notion of repair, meaning that
nuclei can be constructed for deletion/insertion-based repairs. From the discus-
sion earlier in this section, it follows that in the case of a single key depen-
dency, update-based and deletion/insertion-based repairing share linCQ-nuclei,
but differ on CQ-nuclei. The nucleus idea was largely unexplored until now. In
Bertossi and Schwind [2002, 2004], we just found one phrase where the authors
wonder whether they “can obtain an implicit and compact representation of the
database repairs.”

For deletion/insertion-based repairing in a multirelational setting, Fuxman
and Miller [2005] give an algorithm for first-order rewriting of restricted simple
conjunctive queries when there is at most one key dependency per relation,
which implies tractability of consistent query answering under these conditions.
A conjunctive query is simple if no relation symbol occurs more than once in it.
Our query classes do not limit the number of occurrences of relation symbols,
but the number of occurrences of quantified variables (0 for qfCQ, 0 or 1 for
linCQ, unlimited for CQ). In particular, a linCQ query need not be simple, and
a simple query need not be linear.

Chomicki et al. [2004a, 2004b] have realized a practical implementation for
consistent query answering in the case of denial constraints, a generalization
of cgd’s. The same constructs are used in Arenas et al. [2003b] for consistent
answering to aggregate queries in combination with functional dependencies.
We explain the technique for a set � of cgd’s. Define the conflict hypergraph
of a relation I and � as the set S ⊆ 2I such that S contains θ (B) whenever
(B, 0 = 1) is a cgd in � and θ (B) ⊆ I for some substitution θ . A maximal
independent set of S is a maximal (with respect to ⊆) subset of I that contains
no element of S as a subset. The implementation relies on the easily verifiable
property that every maximal independent set is a deletion-based repair, and
vice versa. It is not hard to see that J is a maximal independent set of S if
and only if I\J is a minimal hitting set of S. So our characterization of fixes in
terms of hitting sets is reminiscent of this work. A crucial difference, however,
is that in our approach, fixes correspond to hitting sets, but the inverse is not
true (see Lemma 8.9 and the discussion after it).

10.2.4 Data Exchange. Lemma 3.10, which appeared in Wijsen [2002] and
imitates Lemma 3 in Beeri and Vardi [1984], implies that the chase of a sub-
consistent tableau F by a satisfiable set of full dependencies produces a con-
sistent tableau that is homomorphic to each consistent relation I satisfying
I � F . The same property appeared at the same time in Fagin et al. [2002,
Theorem 1] and is used to compute universal solutions in a data exchange
setting. In that paper, the authors mention that they “have not been able to
find any explicit references to the fact that the chase can produce instances
that have homomorphisms to all instances satisfying the dependencies under
consideration.”

So, universal solutions in Fagin et al. [2002] share the same property as
the tableaux obtained from chasing fixes in our framework. In both works,
this property underlies the usage of chase results for query answering (see
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Proposition 2 in Fagin et al. [2002] and our Lemma 3.21). A distinguished step
in our framework is that in the case of multiple fixes, a nucleus is obtained
as the maximal (with respect to �) tableau homomorphic to all the tableaux
obtained from chasing fixes. Note that the nucleus construction itself does not
use the chase.

All approaches cited so far (including ours) assume a single database context.
In data integration systems [Lembo et al. 2002; Bravo and Bertossi 2003; Calı̀
et al. 2003b, 2004], queries are asked against a global database that results
from integrating local source databases, and inconsistency arises relative to
integrity constraints expressed over the global schema.
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