
Information Processing Letters 110 (2010) 950–955
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A remark on the complexity of consistent conjunctive query answering
under primary key violations

Jef Wijsen

Université de Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 March 2010
Received in revised form 30 May 2010
Accepted 21 July 2010
Available online 3 August 2010
Communicated by J. Chomicki

Keywords:
Databases
Consistent query answering
Database repairing

A natural way for capturing uncertainty in the relational data model is by allowing
relations that violate their primary key. A repair of such relation is obtained by selecting a
maximal number of tuples without ever selecting two tuples that agree on their primary
key. Given a Boolean query q, CERTAINTY(q) is the problem that takes as input a relational
database and asks whether q evaluates to true on every repair of that database. In recent
years, CERTAINTY(q) has been studied primarily for conjunctive queries. Conditions have
been determined under which CERTAINTY(q) is coNP-complete, first-order expressible, or
not first-order expressible. A remaining open question was whether there exist conjunctive
queries q without self-join such that CERTAINTY(q) is in PTIME but not first-order
expressible. We answer this question affirmatively.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty can be captured in the relational data
model by allowing two or more tuples that agree on their
primary key. In this way, we model that only one of the
tuples can be true, but we do not know which one. If db
is a database that violates primary key constraints, then a
repair of db is obtained by selecting a maximal number
of tuples without ever selecting two tuples that agree on
their primary key. As observed in [1, p. 98], the number of
repairs can be exponential in the size of db. Then, given
a Boolean query q, rather than asking whether q evaluates
to true on db, we ask whether q evaluates to true on ev-
ery repair of db. This setting is a special case of the general
framework introduced in [2].

It is well-known that the data complexity of evaluat-
ing a first-order query q on a single database db is in
the low complexity class AC0. An interesting and impor-
tant question is: How does this complexity change if we
want to know whether q evaluates to true on every re-
pair of db? To study this question, let CERTAINTY(q) be
the set of databases (over some fixed schema) such that

E-mail address: jef.wijsen@umons.ac.be.
0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.07.021
CERTAINTY(q) contains db if and only if q evaluates to
true on every repair of db.

It was shown in [1, p. 103] that CERTAINTY(q1) is
coNP-complete for the conjunctive query q1 = ∃x∃y∃z
(T (x, y,a) ∧ T (z, y,b)), where the primary key of T is the
first coordinate of T . Throughout this article, primary key
coordinates will always be underlined.

On the other hand, there exist conjunctive queries q
such that CERTAINTY(q) is first-order expressible (and
hence in the low complexity class AC0). For example, it
is easy to see that for the query q2 = ∃xR(x,a), the set
CERTAINTY(q2) coincides with the set of databases satisfy-
ing ϕ2 = ∃x(R(x,a) ∧ ∀y(R(x, y) → y = a)). Thus, in order
to decide whether q2 evaluates to true on every repair of
some database db, it suffices to evaluate ϕ2 on the (pos-
sibly inconsistent) database db, without the need for com-
puting repairs. Since ϕ2 is first-order, it can be encoded in
SQL.

It is known that coNP-complete sets are not first-
order expressible. But we do not have to mount up to
intractability to get first-order inexpressibility: there ex-
ist conjunctive queries q such that CERTAINTY(q) is in
PTIME but not first-order expressible. The first example
of this was the conjunctive query with inequality q3 =
∃x∃y∃z(R(x, z) ∧ R(y, z) ∧ x �= y) found in [3]. An example

http://dx.doi.org/10.1016/j.ipl.2010.07.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jef.wijsen@umons.ac.be
http://dx.doi.org/10.1016/j.ipl.2010.07.021


J. Wijsen / Information Processing Letters 110 (2010) 950–955 951
without inequality appeared in [4], where it was shown
that for the query q4 = ∃x∃y(R(x, y) ∧ R(y,a)), the set
CERTAINTY(q4) is in PTIME but not first-order expressible.
It should be noticed that both q3 and q4 contain a self-join,
i.e. the same relation name occurs more than once in these
queries.

Fuxman and Miller [5] claim a dichotomy result for a
class of conjunctive queries without self-join: for every
query q in that class, either CERTAINTY(q) is first-order
expressible or coNP-complete. At the end of that article [5,
p. 634], they state as an interesting open problem whether
there are conjunctive queries without self-join such that
CERTAINTY(q) is in PTIME but not first-order express-
ible. In this article, we answer this question affirmatively.
For the conjunctive query q0 = ∃x∃y(R(x, y) ∧ S(y, x)), we
show that CERTAINTY(q0) is in PTIME but not first-order
expressible.

We point out that Fuxman and Miller claim the coNP-
completeness of CERTAINTY(q0) [5, p. 629], but that result
is based on a wrong argumentation and is refuted by our
results.

This article is organized as follows. Section 2 gives pre-
liminary definitions. Section 3 shows that CERTAINTY(q0)

is in PTIME. Section 4 shows that CERTAINTY(q0) is not
first-order expressible. Section 5 concludes.

2. Preliminaries

We assume denumerably many relation names. Each re-
lation name R has a unique signature, which is a pair [n,k]
where 1 � k � n: the integer n denotes the arity of R ,
and the set {1,2, . . . ,k} of coordinates is the primary key
of R . If R is a relation name with signature [n,k] and
a1, . . . ,an are constants, then R(a1, . . . ,an) is an R-fact (or
simply fact). It is common to underline the coordinates of
the primary key, as in R(a1, . . . ,ak,ak+1, . . . ,an). Upper-
case letters A, B will be used to denote facts. Two facts are
key-equal if they share the same relation name and agree
on all coordinates of the primary key of that relation name.
Every fact is key-equal to itself.

A schema is a finite set of relation names. The follow-
ing definitions are relative to a fixed schema. A database
is a finite set of facts using only the relation names of
the schema. A database is consistent if it contains no two
distinct facts that are key-equal. If A ∈ db, then � A�db de-
notes the set of all facts of db that are key-equal to A.
Thus, a database db is consistent if and only if for each
A ∈ db, � A�db is the singleton {A}. A repair of a (not nec-
essarily consistent) database db is a maximal consistent
subset of db.

A Boolean conjunctive query is a first-order sentence of
the form:

∃∗(R1(	x1) ∧ R2(	x2) ∧ · · · ∧ Rm(	xm)
)

where each Ri is a relation name of the schema and 	xi is
a sequence of variables and constants whose length is the
arity of Ri . This query is without self-join if i �= j implies
Ri �= R j (1 � i, j � m). Satisfaction of Boolean queries is
defined in the standard way (and omitted here).

Given a Boolean conjunctive query q, we define
CERTAINTY(q) as the set of databases (over the fixed
schema) containing database db if and only if every re-
pair of db satisfies q. The set CERTAINTY(q) is said to be
first-order expressible if there exists a first-order sentence ϕ
such that for all databases db, db ∈ CERTAINTY(q) if and
only if db satisfies ϕ . Such formula ϕ , if it exists, has also
been called a consistent first-order rewriting for q.

We assume two relation names R and S , both of sig-
nature [2,1]. The Boolean conjunctive query q0 is defined
by:

q0 = ∃x∃y
(

R(x, y) ∧ S(y, x)
)
.

If A is the fact R(a,b), then −A denotes the fact S(b,a).
Conversely, if A is the fact S(c,d), then −A denotes
the fact R(d, c). Clearly, since A and −A contain differ-
ent relation names, they cannot be key-equal. Notice that
−(−A) = A.

The following lemma is obvious.

Lemma 1. A database db satisfies q0 if and only if for some fact
A ∈ db, we also have −A ∈ db.

3. CERTAINTY(q0) is in PTIME

3.1. Every fact conflicting

From now on, the fixed schema is {R, S}. In this sec-
tion, we show that a database db has a repair that falsifies
q0 if for every fact A ∈ db, � A�db contains at least two
facts. The following definition introduces the construct of
secondary repair sequence; the notion of primary repair
sequence will be defined in Section 3.2.

Definition 1. Let db and r be databases (over schema

{R, S}). We write (db, r)
A−→ (db′, r′) if the following con-

ditions hold:

1. A is a fact of db satisfying � A�db = {A}, if such fact
exists; if no such fact exists, then A is an arbitrary fact
of db.

2. db′ = (db \ � A�db) \ {−A} and r′ = r ∪ {A}.

A secondary repair sequence for db is then a maximal se-
quence

(db0, r0)
A1−→ (db1, r1)

A2−→ (db2, r2) · · · An−→ (dbn, rn)

where db0 = db and r0 = {}. Clearly, the maximality con-
dition implies dbn = {}.

Example 1. Let db = {R(a,1), R(a,2), R(b,2), R(b,3),

S(1,a), S(1,b)}. Since every fact of db is key-equal to an-
other fact of db, the construction of a secondary repair
sequence starts with selecting an arbitrary fact of db;

let R(a,1) be the selected fact. We obtain (db, { }) R(a,1)−→
(db1, r1) with db1 = {R(b,2), R(b,3), S(1,b)} and r1 =
{R(a,1)}.

Since � S(1,b)�db1 = {S(1,b)}, the construction pro-

ceeds with (db1, r1)
S(1,b)−→ (db2, r2) with db2 = {R(b,2),

R(b,3)} and r2 = {R(a,1), S(1,b)}.



952 J. Wijsen / Information Processing Letters 110 (2010) 950–955
Next, either fact of db2 can be selected. If R(b,2) is

selected, we obtain (db2, r2)
R(b,2)−→ (db3, r3) with db3 = {}

and r3 = {R(a,1), S(1,b), R(b,2)}. This finishes the con-
struction.

We now provide a couple of properties of secondary
repair sequences.

Lemma 2. Let

(
db, { }) = (db0, r0)

A1−→ (db1, r1) · · · An−→ (dbn, rn)

be a secondary repair sequence for database db. Let 0 � i � n.
Then,

1. for all A ∈ dbi and B ∈ ri , A and B are not key-equal;
2. for all A ∈ dbi and B ∈ ri , A �= −B;
3. ri is consistent; and
4. ri falsifies q0 .

Proof. The proof is straightforward using induction on in-
creasing i. �
Lemma 3. Let db be a database such that for each A ∈ db,
� A�db contains two or more facts. Let

(
db, { }) = (db0, r0)

A1−→ (db1, r1) · · · An−→ (dbn, rn)

be a secondary repair sequence for db. For 0 � i � n,

1. there is at most one fact in dbi satisfying � A�dbi = {A};
and

2. every fact of db is key-equal to some fact in dbi ∪ ri .

Proof. Proof by induction on increasing i. The base case
i = 0 is trivial for both (1) and (2). For the induction step
i − 1 → i, let

dbi = (dbi−1 \ � Ai �dbi−1) \ {−Ai} and

ri = ri−1 ∪ {Ai},
where Ai is a fact of dbi−1 satisfying � Ai �dbi−1 = {Ai}, if
such fact exists; otherwise Ai is any fact of dbi−1. The
proof of the induction step is straightforward for (1). We
next show the induction step for (2).

(2) By the induction hypothesis, every fact of db is key-
equal to some fact of dbi−1 ∪ ri−1. It suffices to show that
every fact of dbi−1 ∪ri−1 is key-equal to some fact of dbi ∪
ri . Let A ∈ dbi−1 ∪ ri−1. We distinguish three cases:

• A ∈ � Ai �dbi−1 . Then A is key-equal to Ai . Hence, A is
key-equal to some fact in ri .

• A = −Ai . From item (2) in Lemma 2, it follows −Ai ∈
dbi−1. By item (1) of the current proof, the set {B ∈
dbi−1 | � B �dbi−1 = {B}} is either the empty set or
the singleton {Ai}. From Ai �= −Ai , it follows that
�−Ai �dbi−1 must contain at least two distinct facts.
Hence, we can assume B ∈ �−Ai �dbi−1 with B �= −Ai .
Since B ∈ dbi , A is key-equal to some fact in dbi .

• A /∈ � Ai �dbi−1 and A �= −Ai . Then, A ∈ dbi . �
Corollary 1. Let db be a database such that for each A ∈ db,
� A�db contains two or more facts. Let

(
db, { }) = (db0, r0)

A1−→ (db1, r1) · · · An−→ (dbn, rn)

be a secondary repair sequence for db. Then, rn is a repair of db
that falsifies q0 .

Proof. By Lemma 2, rn is consistent and falsifies q0. By
Lemma 3 and since dbn = {}, every fact of db is key-equal
to some fact of rn . It follows that rn is a repair of db. �
3.2. Polynomial time algorithm

The construct of primary repair sequence is defined
next; it differs in two respects from secondary repair se-
quences defined earlier. First, if some database dbi has
been constructed so far and every fact of dbi is key-equal
to another fact in dbi , then the primary repair sequence
halts; in this situation, a secondary repair sequence can
continue with selecting an arbitrary fact of dbi . Second, in
a primary repair sequence, a fact A ∈ dbi cannot be re-
moved if both � A�dbi and �−A�dbi are singletons.

Definition 2. Let db and r be databases (over schema

{R, S}). We write (db, r)
A� (db′, r′) if the following con-

ditions hold:

1. A ∈ db such that � A�db = {A};
2. if −A ∈ db, then �−A�db contains two or more facts;

and
3. db′ = db \ {A,−A} and r′ = r ∪ {A}.

A primary repair sequence for db is a maximal sequence

(db0, r0)
A1� (db1, r1)

A2� (db2, r2) · · · An� (dbn, rn)

where db0 = db and r0 = {}.

Example 2. Let db = {R(a,b), R(c,b), S(b,a), S(b, c)}. The
construction of a primary repair sequence can start with
selecting R(a,b) ∈ db because � R(a,b)�db is a singleton

and � S(b,a)�db is not a singleton. We obtain (db, { }) R(a,b)�
(db1, {R(a,b)}) where db1 = {R(c,b), S(b, c)}. Since R(c,b)

= −S(b, c) and since both � R(c,b)�db1 and � S(b, c)�db1 are
singletons, the construction halts.

We now show a number of properties of primary re-
pair sequences. The ultimate result is that to decide db ∈
CERTAINTY(q0), we construct a primary repair sequence
for db. Let (dbn, rn) be the last element in this sequence.
Then, db ∈ CERTAINTY(q0) if and only if for some A ∈ dbn ,
� A�dbn is a singleton.

Lemma 4. Let

(
db, { }) = (db0, r0)

A1� (db1, r1) · · · An� (dbn, rn)

be a primary repair sequence for database db. For 0 � i � n,

1. for all A ∈ dbi and B ∈ ri , A and B are not key-equal;



J. Wijsen / Information Processing Letters 110 (2010) 950–955 953
2. for all A ∈ dbi and B ∈ ri , A �= −B;
3. ri is consistent;
4. ri falsifies q0;
5. every fact of db is key-equal to some fact in dbi ∪ ri ; and
6. for every repair rep of db such that rep falsifies q0 ,

6.1. ri ⊆ rep; and
6.2. rep contains a repair of dbi .

Proof. Proof by induction on increasing i. The base case
i = 0 is trivial for all items (1)–(6). For the induction step
i − 1 → i, let

dbi = dbi−1 \ {Ai,−Ai} and

ri = ri−1 ∪ {Ai},
where Ai is a fact of dbi−1 satisfying � Ai �dbi−1 = {Ai} and
either −Ai /∈ dbi−1 or �−Ai �dbi−1 contains at least two
facts. The induction steps for (1)–(4) are straightforward
and similar to corresponding items in Lemma 2. The induc-
tion step for (5) follows from the fact that if −Ai ∈ dbi−1,
then �−Ai �dbi−1 contains at least two facts, hence dbi con-
tains a fact that is key-equal to −Ai . Finally, we show the
induction step for (6).

(6) Let rep be a repair of db such that rep falsifies q0.
By the induction hypothesis, ri−1 ⊆ rep and rep contains
a repair of dbi−1. Since Ai ∈ dbi−1 and � Ai �dbi−1 = {Ai},
every repair of dbi−1 must contain Ai . It follows Ai ∈ rep.
Consequently, ri = ri−1 ∪ {Ai} ⊆ rep.

Since rep contains a repair of dbi−1 and � Ai �dbi−1 =
{Ai}, it follows that rep must contain a repair of dbi−1 \
{Ai}. Moreover, since Ai ∈ rep (preceding paragraph) and
rep falsifies q0, it must be the case that −Ai /∈ rep. Con-
sequently, rep contains a repair of dbi−1 \ {Ai,−Ai} =
dbi . �
Lemma 5. Let
(
db, { }) = (db0, r0)

A1� (db1, r1) · · · An� (dbn, rn)

be a primary repair sequence for database db. One of the follow-
ing conditions is true:

1. dbn = {};
2. dbn �= { } and for all A ∈ dbn, � A�dbn contains two or more

facts; or
3. there exists A ∈ dbn such that � A�dbn = {A}, −A ∈ dbn,

and �−A�dbn = {−A}.

Proof. Assume (1) and (2) are false. Then, there exists
A ∈ dbn such that � A�dbn = {A}. Since the primary repair
sequence is maximal, condition (2) in Definition 2 must be
false. Consequently, −A ∈ dbn and �−A�dbn = {−A}. �
Theorem 1. Let
(
db, { }) = (db0, r0)

A1� (db1, r1) · · · An� (dbn, rn)

be a primary repair sequence for database db. Then, db ∈
CERTAINTY(q0) if and only if � A�dbn = {A} for some A ∈ dbn.

Proof. (⇒) By contraposition. Assume that for all A ∈ dbn ,
� A�dbn contains at least two facts. By Corollary 1, we can
assume a repair rep′ of dbn such that rep′ falsifies q0. By
items (3) and (1) in Lemma 4, rn is consistent, and for
all A ∈ rn and B ∈ dbn , A and B are not key-equal. Since
rep′ ⊆ dbn , it follows that no fact of rn is key-equal to
some fact of rep′ . Since rep′ is consistent, it follows that
rn ∪ rep′ is consistent. By item (5) in Lemma 4, every fact
of db is key-equal to some fact of rn ∪ dbn . Since rep′ is a
repair of dbn , every fact of dbn is key-equal to some fact in
rep′ . It follows that every fact of db is key-equal to some
fact of rn ∪ rep′ . Consequently, rn ∪ rep′ is a repair of db.
By items (4) and (2) of Lemma 4, rn falsifies q0, and for all
A ∈ rn and B ∈ rep′ , A �= −B . It follows rn ∪ rep′ falsifies
q0. Consequently, db /∈ CERTAINTY(q0).

(⇐) Assume that for some A ∈ dbn , we have � A�dbn =
{A}. By Lemma 5, we can assume A ∈ dbn such that
� A�dbn = {A}, −A ∈ dbn , and �−A�dbn = {−A}. Assume
db /∈ CERTAINTY(q0). We can assume a repair rep of db
such that rep falsifies q0. By item (6) of Lemma 4, rep
contains a repair of dbn . Consequently, {A,−A} ⊆ rep. But
then rep satisfies q0, a contradiction. We conclude by con-
tradiction db ∈ CERTAINTY(q0). �

Theorem 1 immediately leads to the following quadratic
time algorithm for deciding db ∈ CERTAINTY(q0). Let
N be the number of facts in db. First, database db is
sorted in time O(N log N) such that key-equal facts are
grouped together. The algorithm then starts the construc-
tion of a primary repair sequence for db. Every transition

(dbi−1, ri−1)
Ai� (dbi, ri) goes as follows. Database dbi−1 is

scanned once to find a fact Ai satisfying � Ai �dbi−1 = {Ai}.

• If no such Ai is found, then (dbi−1, ri−1) is the last
element in the primary repair sequence; the algorithm
outputs db /∈ CERTAINTY(q0) and halts.

• If such Ai is found, dbi−1 is scanned a second time
to determine whether −Ai ∈ dbi−1 and �−Ai �dbi−1 =
{−Ai}. If this is the case, then the algorithm outputs
db ∈ CERTAINTY(q0) and halts, because Ai and −Ai

cannot be deleted by later transitions. Otherwise, i.e. if
−Ai /∈ dbi−1 or if −Ai ∈ dbi−1 and �−Ai �dbi contains
two or more facts, then dbi and ri are constructed as
dbi = dbi−1 \ {Ai,−Ai} and ri = ri−1 ∪ {Ai}.

Thus, each transition can be done in linear time, by two

database scans. Since the number of
Ai�-transitions in a

primary repair sequence is at most the cardinality of db, it
follows that deciding membership of CERTAINTY(q0) can
be done with quadratic time data complexity. Thus we
have the following result.

Corollary 2. CERTAINTY(q0) is in PTIME.

4. Inexpressibility result

The proof of the following theorem is based on Hanf-
locality of first-order logic. It relies on constructs defined
in Chapter 4 of [6]. We prefer not to copy–paste these
definitions here, because they are rather lengthy, and the
treatment in [6] is excellent.



954 J. Wijsen / Information Processing Letters 110 (2010) 950–955
Fig. 1. Graphical representation of the databases db(k)
yes and db(k)

no . Straight edges pointing to the right represent R-facts. Curved edges pointing to the left

represent S-facts. The rightmost diagram shows a repair of db(k)
no that falsifies q0.
Theorem 2. CERTAINTY(q0) is not first-order expressible.

Proof. Assume to the contrary that ϕ is a first-order sen-
tence such that for every database db, db ∈ CERTAINTY(q0)

if and only if db |� ϕ . From Theorem 4.12 in [6], it fol-
lows that ϕ is Hanf-local. Let d � 0 be the Hanf-locality
rank of ϕ . Choose integer k such that k > d and k � 2,
and take two databases db(k)

yes and db(k)
no as shown in Fig. 1,

where straight edges represent R-facts, and curved edges
represent S-facts. Notice that all straight edges point from
left to right, and all curved edges point from right to left.
Databases db(k)

yes and db(k)
no contain the same R-facts. The

S-fact S(2k,2k − 1) is in db(k)
yes but not in db(k)

no , while

S(4k,4k − 1) is in db(k)
no but not in db(k)

yes .

The property db(k)
yes ∈ CERTAINTY(q0) can be directly

verified on the graph of db(k)
yes in Fig. 1 (left): in the upper

connected component (i.e. the component with vertices
1,2, . . . ,2k), it is impossible to choose one outgoing edge
from each vertex without creating a cycle of size 2. On the
other hand, Fig. 1 (right) shows a repair of db(k)
no that falsi-

fies q0, hence db(k)
no /∈ CERTAINTY(q0).

Let dom(k) = {1,2, . . . ,4k}. Clearly, the active domains
of db(k)

yes and db(k)
no are both equal to dom(k) . The definitions

of radius d ball and d-neighborhood can be found in [6].
For every i ∈ dom(k) , the radius d ball around i in both
db(k)

yes and db(k)
no is given by:

Bd(i) =
{ [i − d, i + d] ∩ [1,2k] if i ∈ [1,2k],

[i − d, i + d] ∩ [2k + 1,4k] if i ∈ [2k + 1,4k].
Since k > d, there is no i ∈ dom(k) such that Bd(i) contains
both 1 and 2k. Likewise, no Bd(i) contains both 2k + 1 and
4k.

Let f : dom(k) → dom(k) be the bijection defined by Ta-
ble 1; for every i ∈ dom(k) that does not occur in the first
column, let f (i) = i. It can be easily verified that for each
i ∈ dom(k) , the d-neighborhood of i in db(k)

yes is isomorphic

to the d-neighborhood of f (i) in db(k)
no . Since d is the Hanf-

locality rank of ϕ , db(k)
yes and db(k)

no must agree on ϕ , but



J. Wijsen / Information Processing Letters 110 (2010) 950–955 955
Table 1
Elements where f is not the identity.

i f (i)

2k − d 4k − d
2k − d + 1 4k − d + 1
.
.
.

.

.

.
2k − 1 4k − 1
2k 4k
4k − d 2k − d
4k − d + 1 2k − d + 1
.
.
.

.

.

.
4k − 1 2k − 1
4k 2k

db(k)
yes ∈ CERTAINTY(q0), and db(k)

no /∈ CERTAINTY(q0). We
conclude by contradiction that CERTAINTY(q0) is not first-
order expressible. �
5. Conclusion

We showed that for the query q0 = ∃x∃y(R(x, y) ∧
S(y, x)), the set CERTAINTY(q0) is in PTIME but not first-
order expressible. In particular, deciding membership of
CERTAINTY(q0) can be done with quadratic time data
complexity. In this way, we answered an interesting open
question raised in [5].

Our result provides a useful new insight in the practice
of consistent query answering under primary keys. It im-
plies that first-order logic is not sufficiently expressive to
capture all tractable instantiations of CERTAINTY(q) with
q conjunctive and without self-join.

References

[1] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance
using tuple deletions, Inform. Comput. 197 (1–2) (2005) 90–121.

[2] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in in-
consistent databases, in: PODS, ACM Press, 1999, pp. 68–79.

[3] A. Fuxman, R.J. Miller, Towards inconsistency management in data in-
tegration systems, in: S. Kambhampati, C.A. Knoblock (eds.), IIWeb,
2003, pp. 143–148.

[4] J. Wijsen, On the consistent rewriting of conjunctive queries under
primary key constraints, Inf. Syst. 34 (7) (2009) 578–601.

[5] A. Fuxman, R.J. Miller, First-order query rewriting for inconsistent
databases, J. Comput. System Sci. 73 (4) (2007) 610–635.

[6] L. Libkin, Elements of Finite Model Theory, Springer, 2004.


	A remark on the complexity of consistent conjunctive query answering under primary key violations
	Introduction
	Preliminaries
	CERTAINTY(q0) is in PTIME
	Every fact conﬂicting
	Polynomial time algorithm

	Inexpressibility result
	Conclusion
	References


