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Abstract
We present arguments for the existence of charged, rotating black holes in d = 2N+1 dimensions,

with d ≥ 5 with a positive cosmological constant. These solutions posses both, a regular horizon

and a cosmological horizon of spherical topology and have N equal-magnitude angular momenta.

They approach asymptotically the de Sitter spacetime background. The counterpart equations for

d = 2N +2 are investigated, by assuming that the fields are independant of the extra dimension y,

leading to black strings solutions. These solutions are regular at the event horizon. The asymptotic

form of the metric is not the de Sitter form and exhibit a naked singularity at finite proper distance.
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I. INTRODUCTION

Recently, there was a lot of interest in black holes and black strings solutions is space-time
with arbitrary dimensions and with a cosmological constant Λ. In the case of a negative
cosmological constant, the interest of these solutions is related to the correspondance between
gravitating fields in an AdS space-time and the conformal field theory on the boundary of
the AdS space-time [1, 2].

Black-string solutions denote a string like generalisation of 4-D black hole solution of
d-dimensional Einstein gravity characterized with an event horizon of topology Sd−3 × S1

[3]. Black string for d = 5 and Λ < 0 they were first considered in [4] and then generalized
to d dimensions in [5]. The charged counterparts of these solutions for the minimal Einstein-
Maxwell (EM) gravity have been obtained recently [6]. For space-times of even dimensions
d ≥ 6, the Sd−3 part of the metric can be deformed by using the ideas of [7] in such a way
that some rotating black string solutions can be constructed while using normal differential
equations only. Rotating counterparts of the black strings of [5], constructed along these
lines, are also obtained in [6]. Another direction of investigation of these objects is non-
uniform black strings, where a non trivial dependence on the extra-dimension is required
[8]. Recently, Λ = 0 rotating nonuniform solutions have been considered as well [9].

Generalizing the solutions of Tangerlini [10] and of Myers-Perry [11], higher dimensional
charged, rotating black holes were constructed in [12] with asymptotically flat space-time
using the symmetries of [7]. Very recently, rotating black holes in Einstein-Maxwell (EM)
theory were constructed in [13] for odd space-time dimensions d ≥ 5 and Λ < 0.

The litterature investigating higher dimensional black holes and black strings with a
positive cosmological constant is by far less abundant, although the problem desserves to be
investigated for several reasons. Namely :

i) the recent experiments are rather consistent with a cosmological constant of the positive
sign,

ii) as observed e.g. in [14], a positive cosmological constant can have important conse-
quences on the physical properties of some classical solutions, these could play a role
in inflation

iii) it is mathematically interesting to see whether the solutions available for Λ < 0 can be
analytically continued for Λ > 0,

iv) it is numerically challenging since we expect a cosmological horizon to occur at an
intermediate value of the radial variable of space-time,

v) connections between quantum gravity in DeSitter space-time and conformal field theory
on the boundary exist, see e.g. [15],

vi) finally, such solutions would extend the pattern of already known solutions of Einstein
equations in higher dimensional space-times.

Up to now, several charged and/or rotating black holes solutions of the Einstein equations
coupled to an electromagnetic fields in space-times with d ≥ 4 (and Λ > 0) are known
[16], [17]; they are constructed with a Chern-Simons term which appears naturally in the
bosonic sector of minimal five-dimensional supergravity. Vacuum solutions of the vacuum
5-dimensional Einstein gravity with Λ > 0 were obtained in [18], but a systematic study

2



of (rotating) solutions of the minimal Einstein-Maxwell theory (with Λ > 0) has, to our
knowledge, not yet been adressed. Let us mention that static black rings solutions have
also been constructed for 5-d DeSitter supergravity theory [19]. Solutions of the Einstein-
Maxwell-dilaton system were are considered in [20] with both signs of the cosmological
constant.

Considering the minimal theories of Einstein and Einstein-Maxwell gravity with the same
kinds of symmetries of the fields as in [13] and [6] but with a positive cosmological constant
can lead to solutions presenting drastic differences with respect to the case of negative
cosmological constant, although the equations to solve are basically similar. In this paper,
we will reconsider the equations of [6, 13] for positive values of the cosmological constant
and construct several families of solutions of these equations. The paper is organized as
follow : Sect. 2 is devoted to rotating, charged black holes in odd dimensions. The ansatz,
the equations, the boundary conditions and the numerical results are presented successively.
Non-rotating and rotating black strings (in even dimensions) are described in Sect. 3,
following a similar pattern. The results are summarized in Sect. 4.

II. BLACK HOLES

We consider the Einstein-Maxwell action with a positive cosmological constant Λ

I =
1

16πG

∫

M

ddx
√
−g(R − 2Λ − FµνF

µν) − 1

8πG

∫

∂M

dd−1x
√
−hK, (1)

in a d−dimensional spacetime. The last term in (1) is the Hawking-Gibbons surface term
[21], which is required in order to have a well-defined variational principle. The factor K
represents the trace of the extrinsic curvature for the boundary ∂M and h is the induced
metric of the boundary. Along with many authors, we note Λ = ±(d − 2)(d − 1)/(2ℓ2), the
sign + will be considered throughout this paper.

A. The ansatz

To obtain rotating black hole solutions, representing charged U(1) generalizations of
the vacuum solutions discussed in [7], we consider space-times with odd dimensions and
possessing N = (d − 1)/2 commuting Killing vectors ηk = ∂ϕk

.
We use a parametrization for the metric, corresponding to a generalization of the Ansatz

previously used for asymptotically flat solutions [12]

ds2 = −b(r)dt2 +
dr2

f(r)
+ g(r)

N−1
∑

i=1

(

i−1
∏

j=0

cos2 θj

)

dθ2
i

+h(r)

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θk (dϕk − w(r)dt)2

+p(r)

{

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkdϕ2
k −

[

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkdϕk

]2






, (2)
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In the above formula θ0 ≡ 0 and θN ≡ π/2 are assumed; the non trivial angles have θi ∈
[0, π/2] for i = 1, . . . , N − 1, while ϕk ∈ [0, 2π] for k = 1, . . . , N . The functions b, f, h, g, w
depend on the variable r. The consistency of the ansatz imposes p(r) = g(r) − h(r).

The parametrization of the U(1) potential, consistent with the symmetries of the line
element (2) is

Aµdxµ = V (r)dt + aϕ(r)
N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkdϕk (3)

Here, the electric and magnetic potentials V (r) and aϕ(r) also depend on r. The Einstein-
Maxwell equations lead to a consistent system of ordinary differential equations in the dif-
ferent radial functions.

Without fixing a metric gauge, the ansatz presented above leads to following reduced
Lagrangean of the EM system, say L = Lg − LM . The Einstein part Lg and Mawxell part
LM read respectively :

Lg = (d − 3)g
(d−7)

2

√

bh

f
((d − 1)g − h) +

1

2

√

fhbg
(d−3)

2 (
b′

b
+ (d − 3)

g′

g
)(

h′

h
+ (d − 3)

g′

g
) (4)

−1

4
(d − 2)(d − 3)

√

fhbg
(d−7)

2 g′2 +
1

2
g

(d−3)
2 h

√

fh

b
w′2 − (d − 2)(d − 1)

ℓ2
g

(d−3)
2

√

bh

f

LM =
g

(d−7)
2

√
bfh

(

2b
(

2(d − 3)a2
ϕh + fg2a′2

ϕ

)

− 2fg2h(wa′

ϕ + V ′)2

)

. (5)

B. The equations

The EM equations obtained from the ansatz discussed above can be obtained in a standard
way. For the numerical construction of the solutions, the ”‘metric gauge”’ has to be fixed;
we find it is convenient to fix it by imposing g(r) = r2. With this gauge, the following field
equations are found after an algebra :

f ′ +
f

(d − 2)

(

− rh

2b
w′2 +

2r

b
V ′2 +

4rw

b
a′

ϕV ′ +
h′

h
(1 − rb′

2b
) − 2r(

1

h
− w2

b
)a′2

ϕ +
b′

b
(6)

+
(d − 1)(d − 4)

r

)

+
1

(d − 2)r3
((3d − 5)h + 4(d + 1)a2

ϕ − (d − 1)2r2) +
(d − 1)r

ℓ2
= 0,

b′′ +
1

d − 2

(

4(5 − 2d)wa′

ϕV ′ +
(d − 3)

2h
b′h′ − 2(d − 3)b

2rh
h′ − 2(2d − 5)V ′2 (7)

+
1

2
(3 − 2d)hw′2 − 2(

b

h
+ (2d − 5)w2)a′2

ϕ + (d − 2)

(

b′f ′

2f
− b′2

2b

)

+
(d − 3)2

r
b′

−(d − 3)b

r4f
(12a2

ϕ + h) +
(d − 3)b

r2

(

d − 1

f
+ 4 − d

)

+
(d − 1)(d − 2)b

ℓ2f

)

= 0,
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h′′ +
1

(d − 2)

(

(2d − 5)h2

2b
w′2 +

2h

b
V ′2 +

4hw

b
a′

ϕV ′ − (d − 2)h′

2
(
h′

h
− f ′

f
) (8)

+
(d − 3)

2b
b′h′ +

(d − 3)2

r
h′ + 2(

hw2

b
+ 2d − 5)a′2

ϕ − (d − 3)h

rb
b′ − (d − 3)(2d − 3)h2

r4f

−
12(d − 3)a2

ϕh

r4f
− (d − 3)(d − 4)h

r2
+

(d − 1)h

f
(
d − 2

ℓ2
− d − 3

r2
)

)

= 0,

w′′ − 4w

h
a′2

ϕ −
4a′

ϕV ′

h
+

(d − 3)w′

r
+

1

2

(

−b′

b
+

f ′

f
+

3h′

h

)

w′ = 0, (9)

for the gravity part, and

V ′′ − w

b
b′a′

ϕ +
w

h
a′

ϕh′ +
1

2
(
2(d − 3)

r
− b′

b
+

f ′

f
+

h′

h
)V ′

+(1 +
hw2

b
)a′

ϕw′ +
hw

b
V ′w′ +

2(d − 3)aϕhw

r4f
= 0, (10)

a′′

ϕ +
1

2
(
2(d − 3)

r
+

b′

b
+

f ′

f
− h′

h
)a′

ϕ − h

b
(wa′

ϕ + V ′)w′ − 2(d − 3)aϕh

r4f
= 0. (11)

for the U(1) potentials. It can easily be seen that the equations of motion present the first
integral

g
(d−3)

2

√

fh

b
(wa′

ϕ + V ′) = (d − 3)q. (12)

Thus, similar to the asymptotically flat case [12] case, the electric potential can be eliminated
from the equations (10) by making use of the first integral (12). The cosmological constant
parameter can be arbitrarily rescaled by a rescaling of the radial variable r and of the fields h
and w. In this section, we use this arbitrariness to choose rh = 1 without loosing generality.

Known solutions The vacuum black holes discussed in [7] are recovered for a vanishing
gauge field and

f(r) = 1 − r2

ℓ2
− 2MΞ

rd−3
+

2Ma2

rd−1
, h(r) = r2(1 +

2Ma2

rd−1
),

w(r) =
2Ma

rd−3h(r)
, g(r) = r2, b(r) =

r2f(r)

h(r)
, (13)

where M and a are two constants related to the solution’s mass and angular momentum
and Ξ = 1 + a2/ℓ2.

C. Constraint of regularity about the horizon

We are interested in black hole solutions, with an horizon located at r = rh. The solutions
can be expanded in the neighbourhood of the horizon in the same was as in the case of a
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negative cosmological constant [13], i.e.

b(r) = b1(r − rh) + O(r − rh)
2, f(r) = f1(r − rh) + O(r − rh)

2,

h(r) = h0 + h1(r − rh) + O(r − rh)
2, w(r) = wh + w1(r − rh) + O(r − rh)

2,

aϕ(r) = a0 + a1(r − rh) + O(r − rh)
2, V (r) = V0 + V1(r − rh) + O(r − rh)

2

Although it is not clear if the thermodynamical properties are well defined with the
presence of the cosmlogical horizon, one may still define them in the standard way. The
Hawking temperature and the event horizon area of these solutions can be obtained in a
standard way, leading to

TH =

√
f1b1

4π
, AH = Vd−2r

d−2
h . (14)

Along with [13], we also write the mass and the angular velocity at the horizon defined by
means of the appropriate Komar integrals :

MH =
Vd−2

8πGd

√

fhg2

b
(b′ − hww′)|r=rh

, JH =
Vd−2

8πGd
2

√

fg2h3

b
w′|r=rh

(15)

where Vd−2 denotes the area of the d− 2 dimensional sphere. These quantities can be easily
evaluated from the numerical solutions.

For the solutions to be regular at the horizon rh (or at the cosmological horizon rc), the
equation for h leads to the condition Γ1(x = rh) = 0 with

Γ1(x) ≡ 8b′h2(12a2 + 7h) + 4xb′hh′(12a2 + 5h)

− 32b′h2x2 + 8x3b′h(f ′h − 4h′)

+ 2hx4(
24

ℓ2
b′h2 − f ′(4(a′)2hw2 + 8a′hwV ′ + b′h′ + 5h2(w′)2 + 4h(V ′)2))

+ h′x5(−24

ℓ2
b′h2 − f ′(4(a′)2hw2 + 8a′hwV ′ − b′h′ − h2(w′)2 + 4h(V ′)2)) (16)

where we posed aφ ≡ a. The value f ′(xh) can be extracted from the equation for f , giving

f ′(xh) =
4b1h0

x3
h

6x4
h/ℓ

2 + 8x2
h − 12a2

0 − 5h0

8b1h0 + xh(4h0(V1 + a1w0)2 − b1h1 − h2
0w

2
1)

(17)

In the same way, the two Maxwell lead to a single condition Γ2(x = rh) = 0 with

Γ2(x) ≡ 4ab′h + x4f ′(hw′V ′ + a′hww′ − a′b′) (18)

D. The asymptotics and global charges

In this section, we follow the lines of [13] to present the global charges characterizing the
solutions asymptotically. This uses a formalism developped namely in [22, 23] and also used
in [14, 24] The metric functions have the following asymptotic behaviour in terms of three

arbitrary constants α, β and Ĵ

b(r) = −r2

ℓ2
+ 1 +

α

rd−3
+ O(1/r2d−6), f(r) = −r2

ℓ2
+ 1 +

β

rd−3
+ O(1/rd−1), (19)

h(r) = r2(1 +
β − α

rd−1
+ O(1/r2d−4)), w(r) =

Ĵ

rd−1
+ O(1/r2d−4),
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The asymptotic expression of the gauge potential is similar to the asymptotically flat case

V (r) = − q

rd−3
+ O(1/r2d−4), aϕ(r) =

µ̂

rd−3
+ O(1/r2d−4). (20)

The mass-energy of the solutions and angular momentum associated with an angular direc-
tion is

E =
Vd−2

16πGd
(β − (d − 1)α), J =

Vd−2

8πGd
Ĵ . (21)

The above relations can be proven by using a background subtraction approach or the
counterterm formalism [22, 23, 24].

The electric charge and the magnetic moment of the solutions are given by

Q =
(d − 3)Vd−2

4πGd

q, µ =
(d − 3)Vd−2

4πGd

µ̂ . (22)

The ansatz in f, b, h has to advantage to present a direct connection with the closed
form vacuum rotating solution.

E. Numerical results

The system of equations above does not admit, to our knowledge, explicit solutions
for generic values of wh and Vh. We therefore relied on a numerical method to construct
solutions. We solved the equations in the case d = 5 and we hope that this case catches the
qualitative properties of the pattern of the solutions; the numerical solver Colsys [25] was
used throughout this paper.

The positive cosmological constant leads to the occurence of a cosmological horizon at
r = rc (with rh < rc < ∞) where f(rc) = b(rc) = 0. This creates a difficulty since rc

constitutes an apparent singular point of the equations. In order to overcome this difficulty,
we have solved the equations in two steps. In the first step, we supplemented the system by
the trivial equation dℓ2/dx = 0 and impose the conditions of two regular horizon at r = rh

and r = rc, fixing rc, rh by hand and solve the equations for r ∈ [rh, rc]. The appropriate set
of twelfe boundary conditions at the two horizons then read

f = 0 , b = 0 , b′ = 1 , w = wh , V = 0 , a′ = a′

h , Γ1 = 0 , Γ2 = 0 for r = rh (23)

f = 0 , b = 0 , Γ1 = 0 , Γ2 = 0 for r = rc (24)

The functions Γ1,2 are defined above; here we take advantage of the arbitrary scale of the
field b(r) to impose b′(rh) = 1 and of the arbitrary additive constant of the electric potential
to assume V (rh) = 0. The function b(r) will be renormalized appropiately after the second
step in order to set (19). The values wh and a′

h are, a priori, arbitrary and control the total
angular momentum and the (electric and magnetic) charges of the black hole.

The numerical value of ℓ2 is determined by the first step, together with the values of
all the fields at r = rc. Use of these fields and of the value of ℓ2 can then be used as a
suitable set of Cauchy data to solve the equations for r ∈ [rc,∞]. The disatvantage of the
method is that we cannot perform a systematic analysis of the solution for a fixed value of
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the cosmological constant. Fortunately, the numerical value of ℓ2 depends only a little on
w(rh) and a(rh) once rh, rc are fixed.

In the following, we present the results corresponding to rh = 1, rc = 3, this case corre-
sponds to a large value of the coupling constant but allows one to analyze the effect of Λ on
the solution. We hope that the results for this case capture the main features of the solutions
for generic values of Λ The profiles of the solution corresponding to wh = 0.6, a′

h = 0.5 are
presented in Fig. 1. It corresponds to 1/ℓ2 = 0.0945 and q = −0.08538. The smoothness of
the profile at r = rc can be appreciated on the plot. It is also worth to point out that the
numerical solutions approach the asymptotic behaviour (19) although all boundary condi-
tions are imposed at r = rc for the second step of our construction. We supplemented Fig.
1 with the plot of the tt component of the metric gtt = b − hw2, showind that there is a
small region around the event horizon where gtt is negative, defining an ergoradius re where
gtt(re) = 0 (on the figure, re ≈ 1.17).

FIG. 1: The profiles of a generic solution correponding to rh = 1, rc = 3 , wh = 0.6, a′h = 0.5

We manage to construct several branches of solutions for different values of a′

h and in-
creasing the parameter wh. For fixed a′

h, the solutions exist only for sufficiently large values
of wh, this is illustrated on Fig.2 where we plot the asymptotic charges M, J, Q, µ as func-
tions of wh for two values of a′

h; for a′

h = 0.1 (resp. a′

h = 0.5) the branch exist for wh > 0.1
(resp. wh > 0.465). We strongly suspect that another branch of solutions, with a larger
mass exist, terminating at the same value of wh but we cannot construct it at this moment.
The numerical integration between the two horizons and the related constraints make the
construction of an eventual second branch very tricky. We nevertheless observe that the
asymptotic mass is positive for all values of the parameters that we have explored. The
figure further suggests that, if a second branch exists, its asymptotic mass will be larger
than the one of the first branch that we constructed. The magnetic moment is rather in-
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dependant on the parameter wh. Also, when we solved the equation for larger values of rc,
corresponding to smaller values of Λ, we observe that the asymptotic quantities plotted on
Fig. 2 depend weakly on rc.
The numerical values of the different fields at the horizon rh are presented on Figs. 3 and

FIG. 2: The asymptotic charges M,J,Q, µ are presented as functions of wh for a′h = 0.1 and

a′h = 0.5

4 for the case a′

h = 0.1 and a′

h = 0.5 respectively. The value ah is negative and depends
weakly on wh, e.g. we find ah ∼ −0.049 (resp. ah ∼ −0.215) for a′

h = 0.1 (resp. a′

h = 0.5);
correspondingly we find ℓ2 ∼ 10.3 and ℓ2 ∼ 10.6 (ℓ2 is indicated on Fig. 4 only).

The physical parameters characterizing the solutions at the horizon can then be computed
from the numerical data. In particular, the natural normalisation of the function b (i.e.
such that b(r) → −r2/ℓ2 for r → ∞) which renders the space-time asymptoticall DeSitter
is determined from the solution in the asymptotic region. On Fig. 5, we have superposed
the Hawking Temperature TH , the mass and angular momentum at the horizon as functions
of the parameter wh for the solutions obtained with a′(xh) = 0.1 (corresponding to 1/ℓ2 =
0.097) and existing for wh > 0.1 and a′(xh) = 0.5 (corresponding to 1/ℓ2 = 0.094) and
existing for hh > 0.462). We see in particular that the Komar mass is positive at the even
horizon. For the sake of completeness, the same quantities relative to the cosmological
horizon rc are presented on Fig. 6. These physical parameters depend only weakly of a′(rh)
when the parameter wh becomes sufficiently large. We note that the mass Mc is negative due
to the fact that b′(rc) is negative and the rotation energy, although positive, is not enough
to make the combination in 15 positive at r = rc.
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FIG. 3: Some numerical parameters characterizing the solution at the horizon as functions of wh

for a′h = 0.1

III. BLACK STRINGS

Black strings solutions can also be constructed in the framework of the model (1) but we
will limit our investigations to pure gravity in this case. One of the spacelike dimensions of
space-time, say z ≡ xd−1 plays a special role in a sense that the metric is the warped product
of a d−1-dimensional black hole metric with the extra dimension. The corresponding horizon
has the topology of Sd−3 × S1 [3]. In the case of non-rotating, uniform black strings, the
fields do not depend on the coordinate z and the metric takes the form

ds2 = a(r)dz2 +
dr2

f(r)
+ r2dΩ2

d−3 − b(r)dt2 (25)

where dΩ2
d−3 denotes the metric on sphere Sd−3. Solutions of the corresponding Einstein

equations are constructed in [5] for Λ < 0 and in [18] for Λ > 0. For d even, the part of the
metric related to the d−3-dimensional sphere can be deformed according to the lines of Eq.
(2) and rotating black strings can be constructed. The equations can be found in Eqs.(4.2)
of the recent [6] by changing ℓ2 → −ℓ2 but we will write them here for completenes. A
convenient metric gauge choice in the numerical procedure is h(r) = r2. In this gauge, the
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FIG. 4: Some numerical parameters characterizing the solution at the horizon as functions of wh

for a′h = 0.5

field equations read :

a′

a
= −

[

2ℓ2fg (rgb′ + b(2g + (d − 4)rg′))

]−1[

b

(

4(d − 1)(d − 2)rg2 − 4(d − 4)ℓ2g
(

(d − 2)r − fg′
)

+(d − 4)rℓ2(4r2 + (d − 5)fg′2)

)

+ 2ℓ2fg((d − 4)rb′g′ + g(2b′ + r3w′2))

]

,

f ′ =
1

d − 2

(

(d − 4)(2d − 3)r3

g2
− (d − 4)(d − 2)r

g
− (d − 1)(d − 2)r

ℓ2

+(
a′

a
+

b′

b
)((d − 4)

rg′

2g
− d + 3)f +

rfa′b′

2ab
− (d − 3)(d − 4)fg′

g

+
(5 − 2d)r3f

2b
w′2 +

(d − 5)(d − 4)rf

4g2
g′2

)

, (26)

b′′ =
1

d − 2

(

(d − 4)(d − 5)b

4g2
g′2 +

(2d − 3)r2

2
w′2 − (d − 3)(d − 4)

2g
b′g′ +

(d − 4)b

2ag
a′g′

−(d − 2)

2f
b′f ′ +

(d − 2)b′2

2b
− (d − 3)

2a
a′b′ +

ba′

ra
− (d − 3)b′

r

+
(d − 4)bg′

rg
+

(d − 4)r2b

fg2
− (d − 2)(d − 4)b

fg
− (d − 1)(d − 2)b

ℓ2f

)

(27)
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FIG. 5: The Hawking temperature at the event horizon TH , the horizon mass Mh and the horizon

angular momentum Jh are represented respectively in solid, dashed and dotted lines as functions

of wh for a′h = 0.1 and a′h = 0.5

g′′ =
1

d − 2

(

r2g

2b
w′2 − d2 − 7d + 4

4g
g′2 − (d − 2)

f ′g′

2f
+ (

a′

a
+

b′

b
)(

g

r
− g′) +

ga′b′

2ab
− 2g′

r

+
(4 − 3d)r2

fg
+

d(d − 2)

f
− (d − 1)(d − 2)g

ℓ2f

)

,

(g
d−4
2

√

afh3

b
w′)′ = 0 .

The last equation in the relations above implies the existence of the first integral

w′ = αg−
d−4
2

√

b

afh3
, (28)

where α is a constant controling the total angular momentum J of the solutions. For
the numerical analysis, we fix the arbitrary rescaling of the radial variable by demanding
ℓ2 = 2000.

For later use, we give here the expression of the Kretschmann invariant with the metric
(25). The expression of this quantity turn out to be particularly simple :

K =
d − 3

r4
(r2(f ′)2 + 2(d − 4)(f − 1)2) (29)
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FIG. 6: The Hawking temperature at the cosmological horizon TH , the horizon mass Mc and the

horizon angular momentum Jc are represented respectively in solid, dashed and dotted lines as

functions of wh for a′h = 0.1 and a′h = 0.5

A. Boundary Conditions and asymptotic behaviour

In order to construct black string solutions with the equations above, we have to impose
the appropriate boundary conditions at the horizon r = rh which we require to be regular.
For this purpose, we set

f(rh) = 0 , b(rh) = 0 , a(rh) = 1 , b′(rh) = 1 , w(rh) = wh (30)

plus another condition ensuring that the equation for g is regular at the horizon that we
do not write here (it is Eq.(4.5) of [6]). The first condition above is necessary to produce
a ”‘black”’ object, the second one is necessary for regularity of the equation for b. The
third and fourth conditions fix the arbitrary scales of the functions a and b. Finally the last
condition involves an arbitrary parameter wh which control the angular velocity of the black
string at the horizon. The Horizon mass and angular velocity of the solution can, again, be
determined with suitable Komar integrals, leading to

Mh =

√

f

bhg2
(b′ − hww′) , J = 2

√

afg2h3

b
w′|r=rh

(31)
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The complete specification of the boundary values needs three extra conditions which have
to be looked for in the asymptotic region. Examining the asymptotic behaviour compatible
with the classical equations reveals at least two possibilities. The first one corresponds to
the metric of a De Sitter space-time

a(r) = −r2

ℓ2
, b(r) = −r2

ℓ2
, f(r) = −r2

ℓ2
, g(r) = r2 , w(r) = J(

l

r
)d−2 (32)

more details about the corresponding asymptotic expansion of this solution are given in
[6]. Correspondingly, the Kretschmann invariant approached a constant asymptotically.
However (32) is not the only possibility, there exist a second one where the fields decay
power likely according to

a(r) = A(
r2

ℓ2
)α/2 , b(r) = B(

r2

ℓ2
)β/2 , f(r) = F (

r2

ℓ2
)φ/2 , g(r) = r2 , w(r) = Ω ℓ4(

ℓ2

r2
)ω/2

(33)
with

α = β = −2(d−3)−
√

2(d − 2)(d − 3) , φ = 2(d−2)+2
√

2(d − 2)(d − 3) , ω = 2+
φ

4
(34)

This leads to a singularity of the Kretschmann invariant in the limit r → ∞ for d > 3. More
details about the asymptotic expansion of (33) are presented in the next section.

B. Non rotating solution

In the case w = 0, the equation for w is trivial and the equation for g is satisfied by
g = r2. We will show that the remaining equations can be written in a decoupled form. We
consider both Λ > 0 and Λ < 0 ; to this use, we define ǫ = −Λ/|Λ|.

First, let us define

A(r) =
ra′

a
B(r) =

rb′

b
(35)

in terms of which the equations for f, a, b rewrite :

rf ′ = 2(d − 4) (k − f) − 2(d − 1)
r2

ǫl2
− f(r) (A + B) (36)

rB′f = (d − 1)(2 − B)
r2

ǫl2
− (d − 4)kB = 0 (37)

(AB + 2(d − 3)(A + B) − 2(d − 3)(d − 4)) f = 2k(d − 3)(d − 4)− 2(d − 1)(d − 2)
r2

ǫl2
(38)

Solving the third equation for A = A(B, f), substituting A(B, f) in the first equa-
tion and solving for B = B(f, f ′) and finaly evaluating the second equation with A =
A(B(f, f ′), f), B = B(f, f ′) leads to the following decoupled equations :
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r2ff ′′ = −rff ′ + (rf ′)
2
+ 2

(

(d − 1) − (d − 4)
r2

ǫl2

)2

(39)

− 2(d − 4)

(

(d − 1) − (d − 4)
r2

ǫl2

)

f − 3

(

k(d − 1) − (d − 4)
r2

ǫl2

)

rf ′

B± = −B̃(r, d, l) (40)

±

√

B̃(r, d, l)2 − 2(d − 3)(d − 4)

(

1 − 1

f

)

− 2(d − 3)
rf ′

f
− 2(d − 1)(d − 4)

r2

ǫl2
1

f

where B̃(r, d, l) ≡
(

(d − 4) + 1
2

rf ′

f
+ (d − 4) 1

f
− (d − 1) 1

f
r2

ǫl2

)

A =
−2(d − 1)(d − 2) r2

ǫl2
+ 2(d − 3)(d − 4)f + 2(d − 3)fB

2(d − 3)f + fB
(41)

Note that the decoupling is still valid in the more general case considered in [5] where
topological black holes are investigated as well (i.e. space-times where the spherical part
dω2

d−3 in (25) is replaced by the metric of an hyperbolic or flat manifold with the same
dimensions)

C. Asymptotics

We have not been able to solve (40) explicitely, but we can study the asymptotic behavour
of f with this equation. In fact, at first order, it appears that

f(r) ≈ F0r
φ (42)

for a constant F0 and for any φ ∈ {2}∪]4,→, so we cannot conclude on the asymptotic
behavour of f at this point. In fact, it is not possible to fix analytically φ, but it is possible
to give a description of the asymptotic behavour of the metric functions in terms of only
one parameter.

We have to consider two cases : φ = 2 and φ > 4. In the case ǫ = +1, where the
cosmological constant is negative, asymptotics obey φ = 2 [5]. In the case ǫ = −1, there are
strong evidence that φ = 2 leads to singular solutions [18]. Since this paper focus on the
case ǫ = −1, we will assume φ > 4, which is equivalent to assume that the argument in five
dimensions generalises to d dimensions.

It turns out that the asymptotic behavour of the metric functions is given by a one
parameter family of functions:

f → F0r
φ , φ = −β2 + 2(d − 4)β + 2(d − 3)(d − 4)

β + 2(d − 3)
(43)
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A(r) → α(β) = −2(d − 3)(d − 4) + 2(d − 3)β

β + 2(d − 3)
(44)

B(r) → β (45)

Since these behavour are compatible with the equations of motion for each value of β
such that φ > 4, it is not possible to fix β without more asomptions, but there are strong
numerical evidences for a(r) = b(r) at first order in the asymptotic region. This means that
the value of β chosen by the system is a fixed point of α(β) are exactly the values (34). Note
the particular relation between the exponents :

α + β + φ + 2(d − 4) = 0 (46)

We have constructed the higher order corrections for the function f(r) and obtained

f(r) = F0r
φ − d − 1

d − 3 + β

r2

l2
+

d − 4

d − 4 + β
(47)

with φ discussed previously. The reparametrisation of F0 used in (33) figure out the peculiar
dependance of the solution under rescaling of ℓ and r

D. Energy of the solution

The energy of the solution is given by the following quantity [21]

E = −2Md−2
P

∫

S∞

t

N (Kd−2 − K0,d−2) (48)

where MP is the Planck Mass, N being the full spacetime lapse function.

The trace extrinsic curvature of the border at fixed time, K(d−2) is well defined, although
space-time is asymptotically singular :

K(d−2) =
√

f

(

(d − 3) + β
2

r

)

(49)

This quantity, once integrated according to (48), is not divergent. That’s the reason why
we won’t consider a reference background. Moreover, it is not clear wich background to use
with such an asymptotic.

We can now compute the energy of the solutions which exhibits an asymptotic behavour
as described in the previous section. By (46), the energy is simply given by

E = Md−2
P Ad−3L

√

2F0(d − 2)(d − 3) (50)

where L is the length of the extradimension in the y direction and Ad−3 is the area of the
unit d − 3 sphere. This energy is finite and depend only on F0 wich depends essentially on
the dimension of space-time and of the cosmological constant, further results will be given
in Sect. 3.7.
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E. Geodesic Equations and Curvature Invariant

We computed the Kreshman curvature invariant (29): and it turns out that the spacetime
is asymptotically singular, with the asymptotic behavour of previous section.
Moreover, the geodesic equation at fixed θi (the angular sector of the metric),

ṙ2 =
E2

b
− Z2

a
− m2 (51)

where E ,Z are conserved quantities along the geodesic, implies that this singularity can be
reached in a finite proper time for an observer of mass m from outside the horizon. A similar
result holds for null motion.

F. Numerical Results

We solved numerically equations (35), (36) and (37) with the boundary conditions for
many values of the horizon rh. It turns out that in the regular case, the asumption a = b
holds everywhere, independently of the number of dimensions. This can be understood since
a and b both play a ”spectator role” in the metric. Nothing explicitely depends on z, neither
on t in the metric, so in a sense, a and b play the same role, at least in the regular case, since
the initial values for a and b are the same On fig.6, we present the evolution of the ratio
rf ′/f for non rotating black string solutions and for several values of d and rh = 0.5 . The
figure clearly demonstrates that the power law configuration (33) is approached. The exact
values of the exponents coincide with our numerical values within the numerical accuracy
required for the numerics, i.e. typically 10−8.

However, nothing garanties that this asumption will still hold true in the black string
case, because the boundary conditions break this ”symetry”. We checked numerically the
validity of the asumption a = b in the asymptotic region and it turned out that it is still
verified. Moreover, we noticed that the ratio a/b behaves like 1/rh for the normalisation of
b we used. This factor can be absorbed in a rescalling of t. It is reasonable to think that
a natural rescaling of t is such that a/b → C, with C independant of rh. This implies that
b′(rh) = f ′(rh) wich reminds the 4-dimensionnal Schwarzchild (with or without cosmological
constant).

We also investigated the solution in the interior region, i.e. for r ≤ rh, to check whether
there exist a second horizon which would ”‘hide the asymptotic singularity”’, but it turns
out that this is not the case. We have a naked singularities both, at r = 0 and at r = ∞. We
are tempted to interpret this solution as an hypercylindre with an horizon at some equator
by matching the origin with the point at infinity by means of an appropriate system of
coordinates, still to be found, but that we expect to exist.

G. Rotating black strings

In absence of explicit solutions, we have integrated numerically the equations for rotating
black strings for r ∈ [rh,∞] for several values of rh and wh by trying to interpolate between
the local behaviour (30) and one of the possible asymptotic behaviours (32) or (33). Here we
solved the equations for d = 6 but the results obtained for non rotating black string for d > 6
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FIG. 7: The ratio xf ′/f is given for several values of d

strongly suggest that rotating solutions exist also for higher dimensions. As can be expected
from the non rotating case, our numerical results strongly suggest that the rotating solutions
behaving regularly at the event horizon naturally evolve into the asymptotics determined
by (33). The profiles of a rotating black string corresponding to rh = 0.5, wh = 0.5 is
presented of Fig. 8. The metric functions profile are shown on this figure. We supplemented
gtt = b − r2ω2, showing that there is a small ergoregion about the horizon where gtt < 0 for
rh ≤ r ≤ re where re denotes the ergo-horizon (on the figure re ≈ 0.537). For this solution
we further found F ≈ 1.125, A ≈ 0.0741, B ≈ 0.0186 and Ω ≈ 0.0073 for the parameters
defined in (33).

We also studied the dependance of different parameters characterizing the solution as
functions of rh and wh. One main feature is that the values of F, A, B depend weakly of
these parameters (e.g. for wh = 0.5, rh = 0.8 we find F ≈ 1.125, A ≈ 0.0738, B ≈ 0.0260).
The dependance of Ω on wh is more sensible. On fig. 9 we have superposed Ω, f1, w′

h

and the ergo-horizon re as functions of wh for rh = 0.5. The qualititive behaviour of these
parameters remains similar for different values of rh. We noticed that, while increasing wh,
the function w(r) becomes very peaked at the horizon, with a large derivative w′(xh). This
renders the numerical integration tricky in this region but we have not detected a signal of
a second branch of rotating black string.

Before finishing this section, we would like to mention that an analytic solution of the
Lagrangian under consideration is available in the case d = 4 [26], see also [27] where
this solution is interpreted in the context of gravitating cosmic strings. This solution was
obtained with a different parametrisation of the metric, the correspondic space-time becomes
periodic in the radial variable; the Kretschmann scalar possesses singularities, so this solution
is clearly not of the DeSitter type asymptotically.
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FIG. 8: The profiles of a rotating black string for rh = wh = 0.5

IV. SUMMARY

In this paper, we have studied the Einstein-Maxwell equations in space-times of arbitrary
dimensions d and with a positive cosmological constant. By using appropriate ansatzes for
the metric and the U(1)-fields, the equations can be transformed into a system of ordinary
differential equations for odd values of d in the case of black holes and even d for black
strings. Imposing a consistent set of boundary conditions, we solved these equation numer-
ically, constructed several families of rotating black holes and black string solutions. For
both cases, the conditions of an event horizon are imposed ar r = rh. The main difference
between black holes and black strings resides in the way space-times reaches its asymptotic
form. In the case of black holes, space-time becomes asymptotically DeSitter, after crossing
a regular cosmological horizon. In the case of black strings, our numerical results strongly
suggest that the metric fields evolve asymptotically according to some power of the radial
variable r with well specified non integer exponants depending on d. The evaluation of the
Kretschmann invariant reveals that space-time become singular in the limit r → ∞ for
d ≥ 5. In order to confirm these numerical results by an analytic argument, we manage
to put the equations of [4, 5] in a decoupled form which makes slighly easier to construct
the next to leading order of the asymptotic evolution of the fields. Althought we were not
able to give an exact solutions to this decoupled form, we found interesting informations on
the behavour of the solutions. We also showed that the energy of this kind of solution is finite.
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FIG. 9: The values of g, f ′, w′ at the horizon, of the ergo radius and the parameter Ω are presented

as functions of wh for rh = 0.5
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