Nuclear Magnetic Resonance (NMR) relaxometry for the determination of ethanol content in alcoholic beverages: a tool for NMR education? **UMONS** Y. Gossuin^{1*}, Q. L. Vuong¹, L. Van Nedervelde², A. Pietercelie³ ¹ UMONS, Biomedical Physics, avenue Maistriau 25, 7000, Mons ² Institut de Recherche-Labiris & ³HELDB, avenue Emile Gryson, 1, 1070, Bruxelles Figure 1: Relaxation of nuclear magnetization after a 90° radiofrequency pulse (Wikipedia) Figure 2: Inner sphere relaxation mechanism *Presenting author, yves.gossuin@umons.ac.be, In this work, we propose a funny experiment to illustrate the phenomenon of Nuclear Magnetic Resonance (NMR) relaxation and to introduce two of the most important NMR sequences, namely the Carr-Purcell-Meiboom-Gill (CPMG) and Inversion Recovery (IR) sequences. ## 1. Nuclear Magnetic Resonance relaxation - ■NMR = resonance of nuclear spins when put in a B₀ magnetic field and excited by a suited RF field, - Relaxation = return to equilibrium of nuclear magnetization after an RF excitation, - •Two kinds of magnetization : longitudinal (along B_0 field) and transverse (in the plane \perp to B_0), - •Major influence of relaxation on the detected NMR signal, - •Must be understood before introducing Magnetic Resonance Imaging (MRI) and NMR spectroscopy, - •Measurement of longitudinal relaxation time (T_1) with the inversion recovery (IR) sequence¹, - •Measurement of transverse relaxation time (T_2) with the Carr-Purcell-Meiboom-Gill (CPMG) sequence². ## 2. Relaxation in water-ethanol solutions - ${}^{\blacksquare}T_1$ and T_2 of water protons spins decrease in the presence paramagnetic Gd³⁺ ions, - ■Relaxation due to dipolar interaction of proton spin with Gd³⁺ spin, inside the hydration sphere of Gd³⁺ - + exchange with bulk water protons = inner sphere relaxation mechanism, - ⇒ Importance of the accessibility of the hydration sphere for hydrogen protons, - ■In water-ethanol Gd³⁺ solutions, only water protons have access to the hydration sphere, - ⇒ faster relaxation for "OH protons" of water and "OH proton" of ethanol than for "CH protons" of ethanol => biexponential relaxation. Figure 3: Longitudinal and transverse relaxation in water-ethanol Gd3+ solution 90°(x') - Two fractions of the biexponential fitting - = fractions of OH (fast) and CH (slow) protons - Fitting equation for CPMG experiment: $signal = A_1 \exp(-t/T_{21}) + A_2 \exp(-t/T_{22})$ Test with 9 alcoholic beverages ## 3. NMR relaxometry to measure ethanol content in alcoholic beverages Same behavior for alcoholic beverages in which a small amount of Gd3+ has been added, - \Rightarrow Biexponential T_1 and T_2 relaxation during the IR and CPMG sequences, - ⇒ From the biexponential fractions, one obtains OH and CH fractions, - ⇒The volume fraction of ethanol of the beverage can be estimated. # Comparison with conventional method3 Good qualitative agreement CPMG method faster than IR Figure 4: Biexponential transverse relaxation of a vodka sample containing a small amount of Gd3+ # 4. Conclusions ### Simple experiments to illustrate: - Relaxation, - IR and CPMG sequences, - Proton exchange between water and ethanol OH - Effect of Gd³⁺ on water relaxation ### You need: -vodka, Gd3+ and a benchtop relaxometer - 1. Vold. R. L. et al. Chem. Phys. 1968, 48 (8), 3831-3832. 2. Meiboom, S. et al. Rev. Sci. Instrum. 1958, 29 (8), 688-691. - 3. Method 9.2.6 of the European Brewery Convention Figure 5: Comparison of ethanol content obtained with NMR and measured by the alcolyzer3