Nuclear Magnetic Resonance (NMR) relaxometry for the determination of ethanol content in alcoholic beverages: a tool for NMR education?

UMONS

Y. Gossuin^{1*}, Q. L. Vuong¹, L. Van Nedervelde², A. Pietercelie³ ¹ UMONS, Biomedical Physics, avenue Maistriau 25, 7000, Mons ² Institut de Recherche-Labiris & ³HELDB, avenue Emile Gryson, 1, 1070, Bruxelles

Figure 1: Relaxation of nuclear magnetization

after a 90° radiofrequency pulse (Wikipedia)

Figure 2: Inner sphere relaxation mechanism

*Presenting author, yves.gossuin@umons.ac.be,

In this work, we propose a funny experiment to illustrate the phenomenon of Nuclear Magnetic Resonance (NMR) relaxation and to introduce two of the most important NMR sequences, namely the Carr-Purcell-Meiboom-Gill (CPMG) and Inversion Recovery (IR) sequences.

1. Nuclear Magnetic Resonance relaxation

- ■NMR = resonance of nuclear spins when put in a B₀ magnetic field and excited by a suited RF field,
- Relaxation = return to equilibrium of nuclear magnetization after an RF excitation,
- •Two kinds of magnetization : longitudinal (along B_0 field) and transverse (in the plane \perp to B_0),
- •Major influence of relaxation on the detected NMR signal,
- •Must be understood before introducing Magnetic Resonance Imaging (MRI) and NMR spectroscopy,
- •Measurement of longitudinal relaxation time (T_1) with the inversion recovery (IR) sequence¹,
- •Measurement of transverse relaxation time (T_2) with the Carr-Purcell-Meiboom-Gill (CPMG) sequence².

2. Relaxation in water-ethanol solutions

- ${}^{\blacksquare}T_1$ and T_2 of water protons spins decrease in the presence paramagnetic Gd³⁺ ions,
- ■Relaxation due to dipolar interaction of proton spin with Gd³⁺ spin, inside the hydration sphere of Gd³⁺
- + exchange with bulk water protons = inner sphere relaxation mechanism,
- ⇒ Importance of the accessibility of the hydration sphere for hydrogen protons,
- ■In water-ethanol Gd³⁺ solutions, only water protons have access to the hydration sphere,
- ⇒ faster relaxation for "OH protons" of water and "OH proton" of ethanol than for "CH protons" of ethanol => biexponential relaxation.

Figure 3: Longitudinal and transverse relaxation in water-ethanol Gd3+ solution

90°(x')

- Two fractions of the biexponential fitting
- = fractions of OH (fast) and CH (slow) protons
- Fitting equation for CPMG experiment: $signal = A_1 \exp(-t/T_{21}) + A_2 \exp(-t/T_{22})$

Test with 9 alcoholic beverages

3. NMR relaxometry to measure ethanol content in alcoholic beverages

Same behavior for alcoholic beverages in which a small amount of Gd3+ has been added,

- \Rightarrow Biexponential T_1 and T_2 relaxation during the IR and CPMG sequences,
- ⇒ From the biexponential fractions, one obtains OH and CH fractions,
- ⇒The volume fraction of ethanol of the beverage can be estimated.

Comparison with conventional method3 Good qualitative agreement

CPMG method faster than IR

Figure 4: Biexponential transverse relaxation of a vodka sample containing a small amount of Gd3+

4. Conclusions

Simple experiments to illustrate:

- Relaxation,
- IR and CPMG sequences,
- Proton exchange between water and ethanol OH
- Effect of Gd³⁺ on water relaxation

You need:

-vodka, Gd3+ and a benchtop relaxometer

- 1. Vold. R. L. et al. Chem. Phys. 1968, 48 (8), 3831-3832. 2. Meiboom, S. et al. Rev. Sci. Instrum. 1958, 29 (8), 688-691.
 - 3. Method 9.2.6 of the European Brewery Convention

Figure 5: Comparison of ethanol content obtained with NMR and measured by the alcolyzer3