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Abstract. This work presents a GPU-based backtracking algorithm for
permutation combinatorial problems based on the Integer-Vector-Matrix
(IVM) data structure. IVM is a data structure dedicated to permuta-
tion combinatorial optimization problems. In this algorithm, the load
balancing is performed without intervention of the CPU, inside a work
stealing phase invoked after each node expansion phase. The proposed
work stealing approach uses a virtual n-dimensional hypercube topology
and a triggering mechanism to reduce the overhead incurred by dynamic
load balancing. We have implemented this new algorithm for solving
instances of the Asymmetric Travelling Salesman Problem by implicit
enumeration, a scenario where the cost of node evaluation is low, com-
pared to the overall search procedure. Experimental results show that
the dynamically load balanced IVM-algorithm reaches speed-ups up to
17× over a serial implementation using a bitset-data structure and up to
2× over its GPU counterpart.

Keywords: GPU computing · Backtracking · Depth-first search · Load
balancing · Work stealing

1 Introduction

Graphics Processing Units (GPUs) have been used to substantially accelerate
many regular applications. In such applications, the threads, organized in 1D,
2D or 3D blocks, perform identical operations on contiguous portions of data in
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a statically predictable manner [1]. However, there are applications where the
degree of parallelism, control flow, memory access and communication patterns
are irregular and unpredictable. They are known as irregular or unstructured
applications [11,18]. Backtracking, a search strategy that dynamically generates
and explores a tree in a depth-first order, falls into this class of applications.

Backtracking algorithms are highly parallelizable, because many processes
can explore different regions of the search space in parallel [10]. Due to the
pruning of branches, the shape of the explored tree is irregular and unpre-
dictable, resulting in load imbalance, diverging control flow and scattered mem-
ory accesses. These irregularities can be highly detrimental to the overall perfor-
mance of GPU-based backtracking algorithms [6]. Thus, load balancing is one
of the most critical components of parallel backtracking algorithms [11].

Some efficient strategies for load balancing inside the GPU were proposed for
depth-first Branch-and-Bound (B&B) algorithms applied to permutation prob-
lems [8]. B&B is a systematic tree search strategy that uses a bounding operator
which computes bounds on the optimal cost of subproblems to decide whether to
continue their exploration. These bounds are often obtained by solving a relax-
ation of the problem at hand. In B&B algorithms the bounding operator is often
very time-consuming. In this situation, the overhead induced by dynamic load
balancing is easily compensated by the performance gains that result from a more
regular workload. In such coarse-grained cases GPUs can provide speedup fac-
tors of 100 and more over sequential single-core CPU implementations. However,
GPU-based backtracking performs poorly in cases where the evaluation cost of
a node is low. It is reported that, in such irregular and fine-grained scenarios,
GPU-based algorithms may be outperformed by single-core CPU implementa-
tions, or, attain much lower speed-ups than the ones obtained in situations where
the node evaluation is computationally intensive [3,7–9].

In this paper we consider the case where the cost of evaluating a node is
very low, meaning that the focus is put on the implementation of the parallel
search process. For fine-grained problems, the implementations of such mecha-
nisms is even more challenging and it has been loosely addressed in the litera-
ture [9,11,13]. This work proposes a new load balance strategy for GPU-based
backtracking, based on the Integer-Vector-Matrix (IVM) data structure. In this
algorithm, load balancing is performed without intervention of the CPU, inside
a work stealing phase, which is invoked after each node expansion phase. The
proposed approach uses a virtual n-dimensional hypercube topology and a trig-
gering mechanism to reduce the overhead incurred by dynamic load balancing.

As a test-case, we solve instances of the Asymmetric Travelling Salesman
Problem (ATSP) by implicit enumeration, a scenario where the evaluation of
a node requires almost no arithmetic operations (two integer additions and one
comparison). We compare the proposed IVM-based algorithm with a bitset-based
GPU-backtracking algorithm for fine-grained problems and its serial version.
Experimental results show that the dynamically load balanced IVM-algorithm
outperforms the static bitset-based GPU algorithm on 60% of the test-cases
that show speedup. The proposed GPU-based backtracking algorithm reaches
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speedups up to 17× over the serial algorithm using a bitset-data structure and
up to 2× over the bitset GPU algorithm with no load balancing.

The remainder of this paper is organized as follows. Section 2 presents the
background and related works. Section 3 describes the proposed algorithm.
Section 4 presents details about methodology of evaluation and analysis of
results. Conclusions are presented in Sect. 5.

2 Context

2.1 Test Case: Asymmetric Travelling Salesman Problem

The Asymmetric Travelling Salesman Problem (ATSP) is a well-known permuta-
tion-based combinatorial optimization problem with many real-world applica-
tions [5]. It consists in finding the shortest Hamiltonian cycle(s) through a given
number of cities in such a way that each city is visited exactly once. For each
pair of cities i, j a cost cij is given and stored in a cost matrix CN×N . The
TSP is called symmetric if the cost matrix is symmetric (∀i, j : cij = cji), and
asymmetric otherwise.

The ATSP instances used in this case-study come from the instance genera-
tor proposed by [4], which creates instances using properties found in real-world
situations. Three classes of instances were selected: coin, modeling a person col-
lecting money from pay phones in a grid-like city; crane, modeling stacker crane
operations and tsmat, consisting of asymmetric instances where the triangle
inequality holds. We use instances from size 10 to 20.

2.2 Parallel Backtracking

Backtracking is a search strategy that consists in exploring the nodes of a tree,
which is dynamically generated in depth-first fashion [10]. Internal nodes of
this tree are incomplete solutions and leaves are solutions. The search begins
at the root of the tree. Each step of the algorithm generates and evaluates a
new node, more restricted than its father node. These newly generated nodes
are kept inside a data structure, usually a stack. At each iteration, a node is
removed from the data structure. The search strategy continues to generate and
evaluate nodes until the data structure is empty. During the search procedure, an
undesirable node may be reached, so the algorithm backtracks to an unexplored
(frontier) node. This action prunes some regions of the solution space, keeping
the algorithm from unnecessary computation.

Backtracking search strategies are well suited candidates for parallelization.
One parallel model consists in evaluating/expanding nodes in parallel. Another
approach, used in this work, consists in splitting the tree among processes, such
that each process independently explores a different part of the search space in
parallel [10,11].
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2.3 GPU-Based Backtracking Strategies

GPU backtracking strategies for fine-grained combinatorial problems usually
consist in two steps: initial CPU backtracking and parallel backtracking on
GPU [2,3,7,13,15,16]. The initial CPU search performs a depth-first search
(DFS) until a cutoff depth dcpu is reached. All objective nodes (frontier nodes
at dcpu) are stored in the Active Set Acpu, which keeps all nodes evaluated but
not yet branched. The cutoff depth is problem-dependent and ad-hoc defined
parameter. For a puzzle problem, the depth dcpu may, for instance, express the
configuration of the puzzle after dcpu modifications. For ATSP, it means a per-
mutation represented by an incomplete Hamiltonian cycle with dcpu cities.

After the initial CPU search, Acpu is sent to the GPU, and the backtracking
kernel is configured and launched by the CPU. In the kernel, each node belonging
to Acpu is a concurrent backtracking root Ri. Each thread Thi is responsible for
evaluating a subset Si of the solutions space concurrently, as one can see in
Fig. 1. The GPU search ends when all threads Thi have finished the exploration
of Si.

This kind of parallel backtracking strategy performs well in regular scenar-
ios [3,9,13], but faces strong performance degradations in more irregular ones [7].
The main reason is that it suffers from load imbalance and instruction flow diver-
gences. In order to achieve a good utilization of the multiprocessors, this kind
of parallel backtracking strategy needs to launch a huge amount of threads [9].

Fig. 1. Each thread Thi evaluates a subset Si of the solutions space.

2.4 Data Structures for GPU-Based Backtracking

Backtracking algorithms usually use a stack to store the frontier nodes. However,
dynamic memory allocations on GPUs are slow. So, the use of dynamically allo-
cated stacks may be harmful for the performance of GPU-based algorithms [15].

Other data structures may be used, such as bitsets [17]. Instead of performing
operations on each position of a vector, set operations can be done in constant
time using instruction-level parallelism. Backtracking algorithms may use bitsets
to accelerate set operations and reduce the amount of memory used per thread
[7,15]. Algorithms that apply this kind of instruction level parallelism are often
called bit-parallel algorithms (BP).
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The GPU-based backtracking algorithms mentioned in Sect. 2.3 use very sim-
ilar data structures, thus, we describe the one used by [2,3] for solving ATSP by
implicit enumeration. It is illustrated in Fig. 1.

The search strategy applied is a non recursive version of backtracking that
uses no dynamic data structures. On the CPU, for representing a node that
keeps the current state of the search the algorithm uses a char vector of size
dcpu and two integer variables. The vector of char keeps the incomplete solution
and the first integer contains the cost of this sub-cycle. The second integer is
seen as a bitset that keeps track of the cities already visited by the salesman.
The bit k of this integer is set if the city k has already been visited.

When the initial CPU search finds an objective node at depth dcpu, it stores
this node and its properties in the so-called active set Acpu. The active set
Acpu contains three vectors: Acpu.cycles, Acpu.bitsets, Acpu.costs. In order to
avoid dynamic memory allocations, the memory required for storing Acpu is
pre-allocated, based on the upper bound of nodes expected at depth dcpu, i.e.
maxcpu = (N−1)!

(N−dcpu)!
nodes. So, the vector Acpu.cycles requires maxcpu × dcpu

bytes. The vectors Acpu.bitsets and Acpu.costs require maxcpu × sizeof(int)
bytes each. Once the active set Acpu is filled, it is sent to the GPU.

On the GPU, each thread Thi uses its own vector of char of size N , bitset and
integer variables. Before beginning the search, each explorer thread initializes its
local data structure with the values of the root node represented by Ai

cpu.

2.5 Load Balancing Strategies for GPU-Based Backtracking

Load balancing mechanisms are critical components of parallel backtracking
algorithms [11]. The employed load balancing approach is intimately linked to
the data structure which is used to store and manage the pool of frontier nodes.
For instance, if each explorer has its own stack, a work stealing approach using
stack splits may be used. In this approach idle explorers steal a fixed portion of
another explorer’s stack.

A CPU-GPU stack-splitting strategy is proposed in [9]. In this algorithm,
each warp has its own stack and the load-balancing is done by the CPU after each
iteration of the algorithm. However, due to the irregular and fine-grained nature
of the problem solved, this strategy could not obtain high speedups compared
to the serial version of the same algorithm, reaching speedups up to 2.25×. In
the node-based approach described on Sect. 2.3, the node representation makes
difficult to share work among processes. On this scope, a trigger mechanism to
halt the kernel and redistribute the load among the processors was proposed for
SIMD architectures by [11].

In order to tackle the workload imbalance in GPU DFS-B&B algorithms for
permutation problems, a work stealing approach has been proposed by [8]. This
approach uses an Integer-Vector-Matrix (IVM) [14] data structure, dedicated to
permutation COPs, that will shortly be discussed in detail. The load balancing is
performed without intervention of the CPU, inside a work stealing phase, which
is invoked after each node expansion phase.
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3 A GPU-Based Backtracking Algorithm for Permutation
Problems

IVM-based work stealing approaches are proposed for multi-core and, respec-
tively, GPU-based B&B algorithms in [8,14]. In B&B algorithms the cost of
evaluating a node is usually high and the overhead induced by work stealing is
easily compensated by the performance gains that result from a more regular
workload. Furthermore, the high cost of the node evaluation function may justify
the use of a second level of parallelism, in which the generated children nodes
are evaluated in parallel. Using such a two-level parallelization, as in [8], means
that fewer explorers are needed to yield good device occupancy.

In this paper, we consider the opposite case, where the cost of evaluating a
node is very low. As a consequence, only parallel tree exploration but no further
parallelization of the node evaluation is used. In this section, we present a GPU
backtracking algorithm based on the IVM data structure. In this algorithm,
load balancing is performed without intervention of the CPU, inside a work
stealing phase, which is invoked as soon as the workload decreases below a certain
level. The new algorithm has been implemented for solving ATSP by implicit
enumeration.

The evaluation of a node consists in updating the current cost of the sub-
cycle and comparing this partial cost with the best solution found so far. Nodes
whose partial cost is greater than the best solution found so far are eliminated.
Using such a naive bounding operator, the considered workload is extremely fine-
grained, providing a good test-case for the proposed load-balancing mechanism.
The concepts herein applied can be used to solve other permutation based prob-
lems, such as N-Queens, flow shop scheduling problem and quadratic assignment
problem.

In what follows, we detail the IVM data structure, the work stealing phase
and the trigger mechanism used by the proposed algorithm.

3.1 IVM Data Structure

Integer-Vector-Matrix (IVM) [14] is a data structure dedicated to permutation
problems. It is illustrated in Fig. 2, using a permutation problem of size four. The
left-hand side (Fig. 2a) shows a tree-based representation in which the horizontal
and vertical solid lines represent the state of the corresponding stack. In the
tree-based representation, each node designates an incomplete solution (partial
permutation) or a full solution (permutation). For the ATSP, the cities before
the “/” symbol are visited while the following ones remain to be visited. On the
right-hand side (Fig. 2b) the corresponding IVM data structure is represented.

At each moment, IVM indicates the next node (subproblem) to be processed.
The integer I of IVM indicates the level of the next subproblem and at each level
k ≤ I the components V [k] of the vector point to the selected cities. In this exam-
ple, cities 2 and 3 are visited at levels 0 and 1, respectively. The triangular matrix
M contains the cities that remain to be visited at each level. A subproblem is
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decomposed by increasing the level, i.e. the value of I, and copying all cities
except the selected one to the next row in M . In this example, cities 1, 3 and 4
are copied to row 1, as city 2 is selected at level 0.

Using the matrix M , the vector V indicates the position of a subproblem
among its sibling nodes in the tree. Therefore, throughout the depth-first explo-
ration process, the vector V behaves like a factoradic counter. In the example
of Fig. 2b, the vector successively takes the values 0000, 0010, 0100, . . . , 3200,
3210. These 24 values correspond to the numbering of the 4! solutions using the
factorial number system [12] in which the weight of the ith position is equal to
i! and the digits allowed for the ith position are 0, 1, . . . , i.

In the example of Fig. 2b, the serial backtracking algorithm explores the
interval [0000, 3210[. It is possible to have two IVM-based workers, R1 and R2,
such that R1 explores [0000,X[ and R2 explores [X, 3210[. If R2 ends exploring
its interval before R1 does, then R2 steals a portion of R1’s interval. Therefore,
R1 and R2 can exchange their interval portions until the exploration of all [0, N ![.
In the IVM-based approach intervals of factoradics are used as work units.

Each cell of the triangular N×N matrix corresponds to a subproblem which,
in the tree-based representation, is kept in memory as a permutation of N inte-
gers. Thus, the worst-case memory footprint of IVM is N times lower than the
worst-case memory requirements for stack-based DFS. Moreover (as for bitset
representations), the memory requirements of IVM are known in advance, mak-
ing the IVM data structure particularly suitable for a GPU implementation of
DFS.

However, because of the matrix M IVM has a larger memory footprint than
the bitset representation introduced in Sect. 2.3. This larger memory footprint
can be seen as a tradeoff for having work units that can be efficiently split among
workers.

Fig. 2. Example of a pool of subproblems and an IVM-structure obtained when solving
a permutation problem of size four.

3.2 Work Stealing for GPU-based Parallel Backtracking

In this section we present the work stealing mechanism for the IVM-based back-
tracking algorithm. The pseudo-code of this algorithm is shown in Algorithm1.
Before starting the exploration, the interval [O,N ![ is partitioned into T parts,
where T is the number of IVM structures used (line 2 ). These intervals are
copied to the device (line 3 ).
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Algorithm 1. IVM-Backtracking
1: procedure IVM-backtrack
2: intervals←divide-interval([0,N!])
3: copyH2D(intervals)
4: repeat
5: count←0 ; copyHostToDevice(count) ;
6: call kernel TreeExplore(count)
7: call WorkStealing-phase � shown in Algorithm 2
8: call kernel determine-end(end-all,states)
9: copy DeviceToHost(end-all)
10: until (end-all)
11: end procedure
12: procedure kernel : TreeExplore(count)
13: Thi ← blockIdx.x*blockDim.x+threadIdx.x
14: repeat
15: if (not-interval-empty(Thi)) then
16: go to next node using IVM(Thi)
17: state[Thi] ← 1
18: else
19: state[Thi] ← 0
20: atomicIncrement(count);
21: break;
22: end if
23: until (count<TRIGGER)
24: end procedure

The algorithm starts by initializing a global device variable count at 0 (line
6 ). Its purpose will be explained shortly. Then, the kernel TreeExplore is
launched with T threads (line 6 ). The body of this kernel is shown in lines
11 to 24 of Algorithm 1. In this kernel each thread Thi ∈ {0, ..., T − 1} uses its
IVM structure to explore a distinct interval (line 16 ).

When a thread finds its interval empty, then its state flag is set to empty
and the variable count is atomically incremented in global memory (lines 19–
21 ). As mentioned, this global counter is reset to 0 before the launching of the
TreeExplore kernel and it is only incremented by threads that have run out of
work. Before exploring a new node, each thread checks the value of this counter
and compares it to a fixed value trigger (line 23 ). If the value of the counter is
greater than trigger, the thread stops the exploration process. In other words,
the kernel TreeExplore kernel terminates only if at least trigger explorers have
finished exploring their local interval.

A trigger value equal to 1 corresponds to the situation where the work stealing
phase is invoked as soon as a single explorer finds it interval empty. If trigger
is set to a value ≥T no load balancing is used, since the work stealing phase is
only triggered if all intervals have been explored.

After the termination of the TreeExplore kernel, the algorithm enters a
work stealing phase where workers with empty intervals try to acquire work from
workers with non-empty intervals (line 7 ). The pseudo-code for the work stealing
phase, which is explained shortly, is shown in Algorithm2. Following each work
stealing phase a parallel reduction is performed on the vector of states in order
to determine whether all IVMs are in the empty state (Algorithm 1, line 8 ). Until
this condition is true (line 10 ), the algorithm continues to alternate exploration
and work stealing phases.
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In the work stealing phase, an empty IVM becomes a thief that tries to
steal a portion of an exploring IVM’s (a victim’s) interval. These work steal-
ing operations must be performed in parallel and without using synchronization
primitives. The work stealing phase, described in Algorithm2, is composed of
several kernels. First, the length of all intervals and the mean interval-length
are computed (lines 2–3 ). This information is used in the victim selection phase
where a mapping of empty onto exploring IVMs is build. As the stealing oper-
ations are carried out in parallel, the parallel victim selection must avoid the
double selection of victims.

In the victim selection phase (lines 4–8 ), IVMs are seen as vertices of a n-
dimensional p-ary hypercube. Each IVM is labeled with a unique ID R that can
be written as R = (an−1, an−2, ..., a0) in base p. We assume that the number of
IVMs, say T , is a power of p, i.e. T = pn. Two IVMs whose base-p label differs
in one single digit are connected to each other. Thus, in this topology, each IVM
has n(p − 1) neighbors and the diameter of the graph connecting IVMs is n.

The victim selection phase is an iterative procedure which consists in launch-
ing a kernel (n − 1)(p − 1) times (line 6). The pseudo-code of this kernel is
given in lines 11–17. At iteration i · p + j (i = 0, . . . , n − 1; j = 1, . . . , p − 1),
an attempt is made for all empty IVMs to select the IVM of ID Rv =
(an−1, an−2, · · · , (ai + j)%p, ..., a0) as a victim.

The matching succeeds if the IVM Rv has not yet been selected, and IVM Rv

has a non-empty interval whose length is greater than the mean interval-length.
The ID of an IVM Rv that is selected as a victim by IVM R is stored at the Rth

position of a vector victim, i.e. victim[R] = Rv (lines 14, 15). This mapping
of empty onto exploring IVMs is used in the kernel stealWork, where IVM R
steals the right half of IVM R’s interval.

Algorithm 2. Work stealing phase
1: procedure WorkStealing-phase
2: call kernel computeLengths
3: call kernel computeMeanLength
4: for (i:1→n) do
5: for (j:1→p) do
6: call kernel trySelect(i, j, victim, ...)
7: end for
8: end for
9: call kernel stealWork(victim, ...)
10: end procedure
11: procedure Kernel trySelect(i, j, victim, ...)
12: /*NB: the operations in this kernel can be performed in base 10 - for clarity this

pseudo-code describes them in base p*/
13: (an−1, an−2, ..., a0)←blockIdx.x*blockDim.x+threadIdx.x;
14: if (has-work(an−1, ..., (ai + j)%p, ..., a0) AND length(an−1, ..., (ai +

j)%p, ..., a0)>mean-length) then
15: victim[(an−1, an−2, ..., a0)]← (an−1, ..., (ai + j)%p, ..., a0)
16: end if
17: end procedure
18: procedure Kernel stealWork(victim,...)
19: ivm←blockIdx.x*blockDim.x+threadIdx.x
20: v←victim[ivm]
21: interval[ivm]←steal-half(interval[v])
22: end procedure
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4 Performance Evaluation

In this section, we evaluate the parallel backtracking algorithm proposed in
Sect. 3. In Sect. 4.1, we describe the experimental protocol. In Sect. 4.2, we pro-
vide additional parameter settings. Finally, we report and discuss the results in
Sect. 4.3.

4.1 Experimental Protocol

We compare the algorithm proposed in Sect. 3 to the bit-parallel version of the
GPU-based backtracking algorithm described in Sect. 2.3 (BP-DFS) and its serial
version.

To compare the performance of two backtracking algorithms, both should
explore the same search space. When an instance is solved twice using a parallel
tree search algorithm, the number of explored nodes varies between two resolu-
tions. Therefore, for all instances, the initial upper bound (cost of the best found
solution) is set to the optimal value, and the search proves the optimality of this
solution. This initialization ensures that exactly the critical subtree is explored,
i.e. the nodes visited are exactly those nodes who have a partial cost lower than
the optimal solution. For each of the ATSP instances coin10–20, crane10–20,
tsmat10–19, the number of nodes (in millions) that are decomposed for proving
the optimality of the initial upper bound is shown in Table 1. For tsmat20, the
time limit of 6 h of parallel processing was exceeded.

As one can see from Table 1 the size of the explored tree increases rapidly
with the instance size, ranging from a few thousand to millions of millions of
nodes. On each experiment, execution times and resulting backtracking tree have
been collected.

Table 1. Number of nodes decomposed during the resolution of ATSP instances
coin10–20, crane10–20, tsmat10–19 (in 106 nodes), initialized at the optimal solution

Instance-# 10 11 12 13 14 15 16 17 18 19 20

crane 0.04 0.11 0.67 3.81 43.6 218.8 1,088 6,954 37,916 245,204 1,055,804

coin 0.11 0.43 1.87 10.7 107.8 500.4 1,379 3,710 15,089 116,840 674,308

tsmat 0.03 1.01 0.71 26.4 89.8 6,578 3,979 240,292 2,903,808 6,866,667 –

4.2 Parameters Settings

According to preliminary experiments the number of used IVM-structures is
set to T = 85 = 32, 768. Moreover, preliminary experiments were conducted
to find a suitable value for the work stealing trigger. Figure 3 shows the node
processing speed (in decomposed nodes/second) for different values of the trigger
when solving instance coin15.

As explained in Subsect. 3.2, if the value of the trigger is too low, too much
time is spend in the work stealing phase. On the other hand, if the trigger-value
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Fig. 3. Experimental calibration of the trigger value: node processing speed for different
trigger-values, solving instance coin15 using 32,768 IVM structures.

is too high, load balance degrades too much as the work stealing mechanism
becomes inefficient. As one can see in Fig. 3, the best performance is reached for
a value of about 3, 000, i.e., about 10% of the used 32, 768 IVM structures.

BP-DFS is a revisited version of the backtracking algorithm proposed by [2]
for solving ATSP. This implementation is different from the original version
as it uses a bitset-based data structure, as described in Sect. 2.3. The values
chosen for block size and depth dcpu are 128 and 7, respectively. The setting of
parameters, such as block size, dcpu and number of explorers was determined
experimentally, since these parameters are influenced by instance’s properties
and system’s characteristics [2,8,13,15].

Both GPU-implementations are based on CUDA C 7.5 and compiler versions
NVCC 7.5 and GCC 4.8.2 are used. The kernel execution time is measured
through CUDA’s cudaEventRecord function, whereas the clock function of C is
used to measure the overall application time. The testbed environment, operating
under Linux Ubuntu 14.04.3 LTS 64 bits, is composed of an Intel Xeon E5-2630
v3 @ 2.40 GHz with eight cores and 32 GB RAM. It is equipped with a GeForce
NVIDIA GTX 980 (GM204 chipset, 4 GB RAM, 2048 CUDA cores @ 1126 MHz).

4.3 Experimental Results and Discussion

Figure 4 shows the achieved node processing speed (in 106 nodes/sec) for both
GPU-based implementations, considering only the kernel time and the tree
processed on GPU. For the BP-DFS implementation, the node processing rate
grows for instances from size 10 to 14, where it reaches a peak. This behavior is
strongly related to the occupancy achieved, as mentioned in Sect. 2.3.

For instance, the initial CPU search is able to generate more threads for
the instance tsmat15. Thus, tsmat15 reached occupancy of 75% (the same for
tsmat11), resulting in a bigger nodes/sec rate. Instances coin15 and crane15
reached occupancy of 64% and 57%, respectively. For problems of size 14, coin14
could reach occupancy of 66%, while tsmat14 and crane14 could reach 61% and
56% respectively. For the IVM-based implementation, the occupancy value is
almost constant for instances of size bigger than 13 cities, reaching on average



A GPU-Based Backtracking Algorithm 321

Fig. 4. Node processing speed (in 106 Nodes/sec) for ATSP instances crane10–20,
tsmat10–19 and coin10–20 initialized at the optimal solution.

65% of occupancy. Due to shared memory utilization, the occupancy of the IVM-
kernel was limited to 75%.

The IVM implementation reaches low nodes/seconds rates for instances of
size 10 to 13, being much slower than the BP-DFS implementation. The reso-
lution time for those instances is in the order of a few milliseconds. There are
two reasons for this poor performance on small instances. On the one hand, for
instances 10–13 the overhead induced by work stealing amounts on average for
60% of the execution time. One can see this in Fig. 5, which shows the percentage
of time the IVM-based algorithm spends in both phases. For instances of size
14–16 the IVM-algorithm spends 10–20% of time in the load balancing phase
and work stealing amounts for less than 2% for instances of sizes 17–20. The
time spent in the work stealing phase is also a good indicator for the irregularity
of an instance. For example, comparing the instances of size 15 one can see that
relatively few time is spent in work stealing for the tsmat class. At the same time
Fig. 4 shows that BP-DFS perform particularly well for tsmat15. On the other
hand, the IVM-based exploration process is more costly than the bitset-based
approach. In other words, for small and/or regular workloads the IVM-based
approach is clearly outperformed by its bitset-based counterpart.

Fig. 5. Percentage of execution time spent in work stealing and exploration phases for
ATSP instances crane10–20, tsmat10–19 and coin10–20.

Figure 4 also shows that node processing rate achieved by BP-DFS varies
strongly according to the instance being solved (comparing, for example tsmat15
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and tsmat16). In contrast, the IVM-based algorithm maintains similar node
processing rates for all instances larger than size 14. Table 2 shows the serial
execution time (in seconds) and the speedups obtained by the IVM and BP-DFS
algorithms, respectively. It also shows the speedup of the IVM-based implemen-
tation over BP-DFS. Contrary to Fig. 4, the time required for initial memory
allocations, copies and CUDA API calls is included in Table 2. Speedups greater
than one are printed in boldface characters.

Both parallel implementations are unable to obtain speedups on instances
of sizes smaller than 13 cities. Instances of size 10–12 have the serial execution
time of a fraction of second. For these instances, the cost of memory allocation
on GPU, data transfer and CUDA calls exceeds the time required to processing
the tree sequentially on the CPU.

Table 2. Serial execution time (in seconds) and speedups for the IVM and BP-DFS
algorithms.

crane coin tsmat
Inst-# tserial (sec)

tserial
tIVM

tserial
tBP−DFS

tIVM
tBP−DFS

tserial (sec)
tserial
tIVM

tserial
tBP−DFS

tIVM
tBP−DFS

tserial (sec)
tserial
tIVM

tserial
tBP−DFS

tIVM
tBP−DFS

10 0.004 0.007 0.01 0.70 0.01 0.02 0.03 0.67 0.002 0.004 0.006 0.67
11 0.012 0.02 0.04 0.50 0.04 0.06 0.11 0.55 0.06 0.1 0.17 0.59
12 0.066 0.1 0.2 0.50 0.16 0.25 0.44 0.57 0.06 0.09 0.16 0.56
13 0.265 0.4 0.7 0.57 0.66 0.6 1.6 0.38 1.2 1.1 2.8 0.39
14 2.2 1.9 4.0 0.48 4.7 3.7 6.9 0.54 3.6 1.3 5.0 0.26
15 10.2 5.9 8.0 0.74 22.2 8.8 12.2 0.72 220 11.6 16.2 0.72
16 53.0 13.4 10.6 1.26 63.8 13.1 13.0 1.01 171 14.7 12.0 1.23
17 350 16.6 11.4 1.46 183 15.3 12.0 1.28 8,952 13.3 16.3 0.92
18 1,946 16.6 10.4 1.60 830 17.1 12.9 1.33 110,282 13.8 12.7 1.09
19 12,839 16.4 8.3 1.98 6,662 17.4 13.1 1.33 325,744 16.1 13.7 1.18
20 56,900 15.7 8.2 1.91 37,191 15.8 11.7 1.35 – – – –

Compared to the IVM-based version, the BP-DFS implementation has low
overhead of CUDA API calls. It has only one kernel call and low memory require-
ments per thread. The IVM-based algorithm requires more memory, performs
an initial partitioning of the interval [0, N ![ and uses multiple kernel calls. This
explains, for example why BP-DFS reaches a higher speedup for crane15 (8.0×
against 5.9× for IVM) although the node processing rate (excluding initializa-
tion) achieved by the IVM-based algorithm is nearly equivalent (Fig. 4).

The IVM implementation is outperformed by its BP-DFS counterpart in 9 of
22 test cases that reach speedups over the sequential algorithm. These instances
are the medium-sized instances crane14–15, coin13–15 and tsmat13–15. In these
cases the benefit of a more balanced work load does not outweigh the penalty of
using a less efficient data structure and of performing work stealing operations.
In tsmat17, BP-DFS could reach high nodes/sec rate and outperform the IVM-
based implementation as well.

However, as shown in Table 2, the dynamically load-balanced IVM implemen-
tation outperforms BP-DFS in 13 of 22 test cases that reach speedups over the
sequential algorithm. The IVM-based algorithm reaches speedups up to 17× over
a serial algorithm using a bitset-data structure, and is up to 2 times faster then
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the BP-DFS version for instances crane19–20. Based on the results, BP-DFS
may be preferable to solve small instances or to perform a complete enumeration
of the search space in a depth-first manner, a quite regular application [2,9,13].
However, this is not an usual backtracking application. For larger instances,
the experimental results reveal the superiority of the IVM-based algorithm over
BP-DFS, an optimized version of a well-known lightweight backtracking strat-
egy. Aside from being faster than BP-DFS for most instances that last at least
one minute, the IVM-based approach is less subject to performance variations
according to different tree shapes.

5 Conclusions and Future Works

We have presented a GPU-based backtracking algorithm for permutation combi-
natorial problems. The presented algorithm is based on the IVM data structure.
In this algorithm, the load balancing is performed without intervention of the
CPU, inside work stealing phases which are triggered as soon as the workload
decreases below a predefined level.

The experimental results show that algorithm benefits from a more regu-
lar load even in extremely fine-grained irregular scenarios. The performance of
the load-balanced IVM-based algorithm has been compared to a bitset-based
backtracking (BP-DFS) implementation. Although the bitset-based data struc-
ture is less costly to maintain than IVM, the IVM-based algorithm outperforms
BP-DFS in 60% of the test-cases that show speedup over the sequential imple-
mentation and is up to 2 times faster.

For some smaller instances, the cost of work-stealing strategy is high com-
pared to the cost of exploring the whole tree. In such cases, the BP-DFS algori-
thm outperforms its IVM-based counterpart. For medium and large-sized
instances the overhead induced by work stealing is largely compensated by the
benefits of a more regular workload.

As a future work, a dynamic trigger mechanism could be considered to over-
come the limitations of the proposed algorithm while solving smaller instances.
Also, we plan to investigate whether the use of CUDA Dynamic Parallelism
(CDP) can help to better address recursive patterns of computation on GPUs,
like the ones considered in this work.
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