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Motor strategies and adiabatic invariants: The case of rhythmic motion in parabolic flights
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The role of gravity in human motor control is at the same time obvious and difficult to isolate. It can be
assessed by performing experiments in variable gravity. We propose that adiabatic invariant theory may be used
to reveal nearly conserved quantities in human voluntary rhythmic motion, an individual being seen as a complex
time-dependent dynamical system with bounded motion in phase space. We study an explicit realization of our
proposal: An experiment in which we asked participants to perform ∞− shaped motion of their right arm during
a parabolic flight, either at self-selected pace or at a metronome’s given pace. Gravity varied between 0 and 1.8
g during a parabola. We compute the adiabatic invariants in the participant’s frontal plane assuming a separable
dynamics. It appears that the adiabatic invariant in vertical direction increases linearly with g, in agreement with
our model. Differences between the free and metronome-driven conditions show that participants’ adaptation to
variable gravity is maximal without constraint. Furthermore, motion in the participant’s transverse plane induces
trajectories that may be linked to higher-derivative dynamics. Our results show that adiabatic invariants are
relevant quantities to show the changes in motor strategy in time-dependent environments.

DOI: 10.1103/PhysRevE.104.024403

I. INTRODUCTION

Gravity obviously plays a role in human motor control, but
it is not easy to isolate. On one hand, the perception and inter-
nal representation of gravity in the brain results from a widely
distributed sensory process, including the vestibular system,
vision, and somatosensory information [1]. On the other hand,
the constant immersive nature of the body in the Earth’s
gravitational field calls for holistic experimental approaches
in contrast to focused interventions on isolated body parts.
In these settings, participants are exposed to variable gravi-
toinertial fields generated by human centrifuges or parabolic
flights. The rationale behind these experimental approaches
rest on Einstein’s equivalence principle (see, e.g., Refs. [2,3]):
Physics in an accelerated spacecraft (1 g) is undistinguishable
from physics on the ground. It does not, however, mean that
the brain does not attempt to identify the possible different
sources that give rise to the same consequences. Beyond the
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brain’s role, it is well known that variable gravity induces
various changes in human physiology, typically at the cardio-
vascular [4], neural [5] and musculoskeletal levels [6]. In the
present work, we do not focus on a particular physiological
aspect but rather adopt a global (bio)mechanical point of view.
Our main goal is to show that tools derived from mechanics
may lead to conserved measurable parameters that the brain
can exploit to plan and execute actions instead of relying on
an estimate of gravity acquired through a noisy and distributed
process.

Finding such conserved quantities requires us to know the
underlying dynamics, which is not an easy task in human
motion where a same–even simple–action requires sometimes
very different motor commands. For instance, consider reach-
ing for a cup of coffee on the breakfast table or in an aircraft
subject to turbulences, or drinking while seated or while walk-
ing. Planning efficient actions is challenging for the brain.
It is therefore natural that the central nervous system relies
on constants in this jungle of variability. Previous research
demonstrated that some classes of actions result from an
optimization process in which movement features are taken
into account, such as minimizing jerk [7], metabolic cost
[8,9] or maintaining a nearly constant mechanical energy
in level walking [10]. Here we study rhythmic motion in
time-changing gravity as a peculiar case of time-dependent
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dynamical system with bounded motion. The most powerful
tools known so far to study such systems are adiabatic in-
variants [11–13]. They have been applied in a wide range of
applications such as plasma physics [14] and cosmology [15].
In biomechanics, several studies have shown the invariance
of the action variable in time-independent conditions [16–19].
In a previous work, we went a step further and proposed to
use adiabatic invariants to study the changes in the motion of
upper arm rhythmic movements about the elbow at free pace
and amplitude in a centrifuge where the perceived gravity’s
intensity changed stepwise from 1 to 3 g and from 3 back
to 1 g [20]. The direction of $g was unchanged. It appeared
that the behavior of the adiabatic invariant I = 1

2π

∮
"

P dQ
computed from the latter one-degree-of-freedom motion was
compatible with a theoretically predicted linear increase with
g [21].

An obvious direction to generalize the framework of
Ref. [20] is that of motions involving more than 1 degree
of freedom. We first show in Sec. II that a linear link
between the adiabatic invariant and g is expected for any
potential energy, only assuming a separable dynamics. Our
model is then applied to analyze the data of Ref. [22] in
Sec. III. In this last work, participants were asked to con-
tinually perform an ∞−shaped trajectory during a parabolic
flight. The three-dimensional kinematics of the hand has been
recorded and adiabatic invariants can be computed from it.
Gravity during the parabolas varied between 0 and 1.8 g.
We present our results in Sec. IV and discuss them in
Sec. V.

II. THE MODEL

A. Adiabatic invariants in variable gravity

We assume that human voluntary rhythmic motion in
variable gravity g(t ) may be seen as a dynamical system
with bounded motion in phase space, described by a sep-
arable Hamiltonian H (Iα, θα, λ(t )) =

∑D
α=1 Hj (Iα, θα, λ(t )).

The Hamiltonian depends on action-angle variables Iα and
θα , respectively, and on a time-dependent function λ(t ), ac-
counting for the modifications induced by g(t ). The various
ingredients underlying the latter assumption deserve further
comments. First, Hamiltonian dynamics being the most pow-
erful formulation of classical Mechanics, it is rather natural
to adopt a Hamiltonian approach. This being said, not every
dynamics is Hamiltonian: A sufficient criterion for a Hamil-
tonian to exist is that the total time derivative applied to the
Poisson bracket of two functions defined on phase space obeys
the Leibniz rule [13, Chap. 5]. The latter criterion cannot a
priori be checked from our experimental setup: We will a
posteriori confirm that the observed phase-space trajectories
are not incompatible with a Hamiltonian dynamics. Second,
the dynamics has a priori no reason to be separable. The main
interest we have in assuming the separability is that it allows
a clear separation between vertical and horizontal directions
(with respect to $g), the dynamics in the vertical direction being
intuitively the most strongly impacted by the variations of
g . Again, the separability hypothesis will only be checked a
posteriori by observing the phase-space trajectories, see the
next Section.

It can then be shown that [11, Eqs (50,10)-(50,11)]

İα = − ∂H
∂θα

= −
(

∂'

∂θα

)

Iα ,λ

λ̇, (1a)

θ̇ α = ∂H
∂Iα

= ωα +
(

∂'

∂Iα

)

θα ,λ

λ̇, (1b)

where the partial derivatives have to be computed while keep-
ing constant the indexed variables and where ωα are the
motion’s frequencies. The function ' is the action of the
system; it is sufficient for our purpose to state that it is a
periodic function of the angle variables. Hence, according to
Ref. [11], ' =

∑+∞
)1=−∞ · · ·

∑+∞
)D=−∞ ei$)·$θ'$) with '$) ∈ C,

$) = ()1, . . . , )D) ∈ ZD and

∂'

∂θα
=

+∞∑

)1=−∞
· · ·

+∞∑

)D=−∞
i)αei$)·$θ'$). (2)

We moreover assume that λ = λ0 + εg(t ) with εg(t ) & λ0,
i.e., that the modifications induced by variable gravity may be
computed at first order in ε. Equation (1a) therefore leads to

İα = −ε ġ
+∞∑

)1=−∞
· · ·

+∞∑

)D=−∞
i)αei$)·$θ'$), (3)

or

dIα
dg

= −ε

+∞∑

)1=−∞
· · ·

+∞∑

)D=−∞
i)αei$)·$θ'$). (4)

Let us define the times tn such that the values θα (tn) are
all equal (modulo 2π ). The existence of tn is guaranteed for
periodic dynamics such as the one that we consider here. Then
it can be said that

dIα
dg

∣∣∣∣
t=tn

= I1 ⇒ Iα (tn) = Iα;0 + Iα;1 g(tn), (5)

with Iα;0 and Iα;1 two real numbers such that |Iα;1/Iα;0| & 1.
Equation (5) defines our model: The adiabatic invariant is
expected to behave linearly in g when computed at a given
position in the consecutive cycles performed.

B. Definition of Iα

The action variables are defined from positions (Qα ) and
momenta (Pα ) degrees of freedom as follows:

Iα = 1
2π

∮

"α

Pα dQα, (6)

where "α is the projection of the bounded trajectory in the
plane (Qα, Pα ) for fixed α . Note that, with a kinetic energy of
the standard form Ec ∼

∑D
α=1 Q̇α 2, one is led to a form for the

adiabatic invariant which is straightforward to compute:

Iα (t ) ∼
∫ t+T

t
Q̇α 2(u) du, (7)

with T the period of the phase-space cycle "α starting at t .
This last equation provides a way to compute the adiabatic

invariant from experimental data provided Qα (t ) is known,
which is not so obvious since a mathematical description of

024403-2



MOTOR STRATEGIES AND ADIABATIC INVARIANTS: … PHYSICAL REVIEW E 104, 024403 (2021)

FIG. 1. (a) Typical plot of the ∞−shaped motion in frontal plane (x, y) during one parabola. A participant in the FREE condition has been
chosen. (b) g(t ) profile during the same parabola. (c) The Cartesian frame is displayed.

voluntary human motion may involve higher derivative dy-
namics, see, e.g., Refs. [23–25]. Two cases should therefore
be considered. First, the motion’s dynamics does not involve
higher derivative terms. In this case Qα may directly be iden-
tified to, say, one anatomical landmark’s trajectory xα (t ), and
Pα ∼ ẋα . Second, the motion’s dynamics is a higher-derivative
one. Then Qα and Pα can, in principle, be computed from
xα (t ) but their definition is more involved. We refer the in-
terested reader to the case of Pais-Uhlenbeck oscillator [26],
that is a higher-derivative generalization of standard harmonic
oscillator for which adiabatic invariants can be analytically
computed [21].

III. THE EXPERIMENT

A. Parabolic flights

During parabolic flights, participants were asked to contin-
ually perform an ∞−shaped trajectory oriented crosswise to
the body around two virtual obstacles situated 3 m in front
of them. An optoelectronic device (OptoTrak 3020 system,
Northern Digital, Waterloo, Ontario, Canada) recorded the
position of three infrared LEDs placed on the object with
a resolution of 0.1 mm. A three-dimensional accelerometer
fixed on the floor of the aircraft recorded its acceleration.
The two synchronized acquisition systems recorded param-
eters at a sampling rate of 200 Hz. During a parabola, the
aircraft performs a series of manoeuvres to allow for changes
of effective gravity. This allows one to run experiments at
0 (microgravity), 1 and approximately 1.8 g (hypergravity),
albeit for a short time. The micro and hyper gravity phases last
around 20 s with transition periods shorter than 5 s. Typical
plots of the motion performed and of the g(t ) profile are shown
in Fig. 1. The Cartesian frame we use is also displayed.

Participants executed ∞−shaped movements in two con-
ditions. In the free condition (FREE), the motion was

self-paced. Four participants, totalling 24 parabolas, per-
formed the motion in the FREE condition. In the metronome
condition (METRO), participants had to adopt 1.5-s con-
stant pace prompted by a metronome. Seven participants,
totalling 42 parabolas, performed the motion in the METRO
condition. Before starting the parabolic flights, participant’s
health was assessed by their individual National Centres for
Aerospace Medicine as meeting the requirement “Jar Class
II” for parabolic flight. No participant reported sensory or
motor deficits and they all had normal or corrected-to-normal
vision. All participants gave their informed consent to partic-
ipate in this study and the procedures were approved by the
European Space Agency (ESA) Safety Committee and by the
local ethics committee. Their motion was recorded during six
consecutive parabolas. We refer the reader to Ref. [22] for a
more detailed presentation of the experiment.

B. Phase-space trajectories and action variables

The speeds vα = ẋα are first computed from the positions
xα recorded by the optoelectronic device through a finite dif-
ferentiation. Typical speed-position plots are shown in Fig. 2.

The x and y directions show (quasi)-periodic trajectories
of elliptic type, compatible with a standard Hamiltonian dy-
namics. Hence we proceed as follows to compute the action
variables. First, we identify Qα to xα and Pα to Q̇α - up to
an arbitrary mass scale that is set equal to 1 kg. Second, the
beginning and end of each cycle "α in phase-space plane
(Qα, Pα ) are computed. The end of the cycle starting at t is
chosen as the time t+ which is the smallest time after t at
which the euclidean distance between (Qα (t+), Pα (t+)) and
(Qα (t ), Pα (t )) is minimal. Once t+ is identified, the adiabatic
invariant is computed by quadrature from Eq. (4): Iα (t ) =∫ t+t+

t Q̇α 2(u) du . Then, to apply our model, only adiabatic
invariants corresponding to a given value of the angle variable
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FIG. 2. (a) Typical speed-position plot of the motion in (x, vx ) plane during several cycles, same participant as Figs. 1(b) and 1(c). Same
data in the (y, vy ) and (z, vz ) planes, respectively. The crosses show the trajectory obtained from Eq. (8) with A0 = 0.092 m, A1 = 0.065 m,
A2 = 0.060 m, ω = 2π rad/s, φ1 = 0 rad, and φ2 = −1 rad.

have to be collected. We only consider the instants at which
Pα = 0 and Qα was maximal since they are easily identified.

As can be seen in Fig. 2, the trajectory in the (z, vz ) plane
intersects itself during one cycle. The underlying dynamic is
therefore called nonautonomous in the theory of dynamical
systems. Participant’s motion in the z direction actually con-
tains two distinct frequencies. One is the whole ∞−shaped
movement’s pulsation, say ω, and the other is a forward-
backward oscillation at 2ω. A trajectory of the form

z(t ) = A0 +
∑

j=1,2

Aj sin( jωt + φ j ) (8)

has the qualitative features of what is observed in the (z, vz )
for appropriate values of the real constants ω, Ai and φi.

Several effective models may produce trajectories such
as Eq. (8). (a) An oscillator with pulsation ω plus an ex-
ternal, time-dependent, periodic force with pulsation 2ω. A
textbook example is the Duffing oscillator. The complete
set of solutions of a forced, non-harmonic oscillator is un-
known a priori but some special solutions are known that
perfectly match the observed motion. (b) A system of coupled
harmonic oscillators oscillating near its equilibrium posi-
tion provided that the frequencies of some normal modes
are equal to ω and 2ω. The dynamics of the various joints
of the arm may be approximated by such a system. (c) A
second-order Pais-Uhlenbeck harmonic oscillator. As shown
in the Appendix A, an autonomous higher-derivative os-
cillator may actually mimic the dynamics of one peculiar
degree of freedom in a system of coupled oscillators. An
obvious advantage in resorting to Pais-Uhlenbeck harmonic
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TABLE I. 95% confidence intervals for the slopes I1;α , Pearson’s correlation coefficients rα and intercepts I0;α obtained through the fit (5)
of the computed Iα vs g in each parabola for all conditions. The p values of the ANOVA for the effect of condition are also given.

Direction Condition I1;α (kg.m) rα I0;α (J.s)

x FREE [−0.014, 0.005] [−0.150, 0.082] [0.327, 0.371]
METRO [−0.010, 0.004] [−0.182, 0.109] [0.177, 0.205]
p 0.884 0.969 <0.001

y FREE [0.017, 0.033] [0.291, 0.518] [0.187, 0.296]
METRO [0.005, 0.14] [0.117, 0.332] [0.106, 0.120]
p <0.001 0.014 <0.001

oscillators is that the effective dynamics in the z direction
would be autonomous and that adiabatic invariants are well-
defined once phase-space is properly built from the position
degree of freedom and its time derivatives [21]. Hence, our
model can, in principle, be adapted to the z direction. How-
ever, such higher-derivative adiabatic invariants involve not
only ż but at least z̈ and ˙̇ ˙z [21]. The experimental precision
reached in the measurement of z does not allow for a reliable
computation of those higher derivatives from our experimen-
tal data and we chose not to make further computations as far
as the (z, vz ) plane is concerned.

IV. ACTION VARIABLES IN TERMS OF GRAVITY:
THE RESULTS

We have linearly fitted Iα versus g for each available
parabola in order to check whether model (5) is observed at
an individual level or not. The variable g refers to the average
value of g(t ) within the considered cycle "α . The parameters
of the fit are I1;α (slope), rα (Pearson’s correlation coefficient),
and I0;α (intercept). A two-way ANOVA may be performed
on the parameters of the fit with factors condition (FREE or
METRO) and parabola number (1 to 6). The latter factor is
introduced to check whether a learning effect is present or
not during the consecutive parabolas a given participant has
experienced. The ANOVA was performed using SigmaPlot
software (v.11.0, Systat Software, San Jose, CA, United States
of America), with significance level 0.05. It appears that no
significant effect of the parabola number can be found in the
fit parameters which means that the model parameters are
stable over time, with values set from the outset. Interactions
between condition and parabola number are not significant
either. However, the condition has a significant impact on I0;α ,
I1;y, and ry, as shown in Table I.

From Table I, the following global features of participant’s
motion can be deduced. (a) The action variable Ix does not
show a well-defined linear behavior versus g: both the slopes
and the Pearson’s correlation coefficients are comparable with
0. The action variable Ix can be considered as constant with
g, although it is significantly lower in the METRO condition
than in the FREE condition. Let us note that the x direction
is orthogonal to gravity while the y direction is aligned with
gravity (see frame in Fig. 1). This observation may intuitively
explain why there is no trend versus g for the x dynamics.
(b) However, the trend of Iy vs g is compatible with model
(5) for positive I1;y well smaller than the intercept I0;y. It is
coherent with our initial assumption to work at first order in
g. Furthermore, the slope and the intercept are significantly

lower in the METRO condition than in the FREE one. (c) The
clearest linear trend is observed for the action variable Iy in
the FREE condition. An example of linear fit is displayed in
Fig. 3.

The global trend of Iy vs g can be observed by averaging
Iy over participants by condition (FREE and METRO) and
by gravity condition, i.e., by gathering computed adiabatic
invariants into bins of 0.1 g, ranging from 0 to 1.8 g. Only the
bins containing more than 10 points were finally kept. This
threshold is arbitrary but avoids almost empty bins in the fast
transition regions between 0 and 1 g and between 1 and 1.6
g. The results of this analysis are displayed in Fig. 4. The
observed trends are compatible with IFREE

y = 0.210 + 0.015 g
and IMET RO

y = 0.106 + 0.015 g; an ANCOVA further shows
that the slopes are not significantly different with condition
(p = 0.994), while the intercepts significantly depend on con-
dition (p < 0.001). Finally, it is also worth highlighting the
fact that some bins (e.g., [1.3; 1.4[) capture values of gravity
in the ascending but also descending parts of the parabolic
profile.

V. DISCUSSION OF THE RESULTS

The trajectory in the z direction contains two distinct
frequencies leading to intersecting trajectories in the (z, vz )
plane, see Fig. 2. Effective dynamics in this plane there-
fore cannot be described by a time-independent standard
dynamics: Either higher derivatives or time-dependent forces

r = 0.405 (<0.01)0.8
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FIG. 3. Adiabatic invariant Iy versus g computed from experi-
mental data in the FREE condition for the same participant as in
Fig. 1 (points), compared to the best linear fit of the form (5). Pear-
son’s correlation coefficients is also indicated. Iy has been normalized
so that its average value is 1 at 1g.
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FIG. 4. Adiabatic invariant Iy versus g computed from experi-
mental data in the FREE (grey points) and METRO (yellow points)
conditions. A linear fit is given (solid lines) with its 95% confidence
interval (colored bands) in each condition. Pearson’s correlation co-
efficients are also indicated. The 1-g bin is marked with a vertical
dashed line.

have to be included. We believe that the appearance of such
features could be explained by shoulder biomechanical con-
straints. The main shoulder movements required to execute the
∞−shaped movement are abduction and adduction. During
shoulder abduction-adduction movements, rotations are usu-
ally observed [27]. It is well known that external rotation of
the shoulder is adopted during abduction to clear the major
tubercule of humerus from beneath acromion for preventing
impingement [28,29]. The movement strategy spontaneously
chosen by participants is therefore not located on a single
plane with constant z, leading to the observed nontrivial pat-
tern. As previously said, the current experimental accuracy
along the z axis does not allow for a more detailed study
of a potential higher-derivative effective dynamics. Note that
it has already been successfully conjectured that a higher-
derivative action principle such as S =

∫
˙̇ ˙x 2 dt—a jerk-based

cost function—may constrain nonrhythmic voluntary human
motion [24]. However, such an action principle does not lead
to periodic solutions, that is why a Pais-Uhlenbeck oscillator
seems more relevant to us. In the motion we observe, the
two frequencies have an integer ratio, therefore stability of
the motion is not guaranteed in such a resonant case [21].
It has recently been understood that extra interaction terms
may stabilize periodic solutions of resonant higher-derivative
oscillators [30]: We hope to investigate the applicability of
such models to human rhythmic motion in future works.

By definition, the adiabatic invariant in x and y directions
is proportional to

Iα ∼ T 〈Ec,α〉, (9)

where T is a given cycle duration in the vertical direction—the
duration of the cycle starting at the same time is twice that
value in the x direction—and where 〈Ec,α〉 is the averaged ki-
netic energy on the considered cycle. The protocol of Ref. [22]
is such that T FREE < T MET RO: The pace imposed by the
metronome was chosen to be slower than participants’ sponta-
neously chosen paces. Since, at given g, the adiabatic invariant
in the FREE condition is always larger than in METRO con-
dition, it can be concluded that 〈EFREE

c,α 〉 > 〈EMET RO
c,α 〉. The

smaller kinetic energy in METRO condition thus follows from
the fact that participants have to move slower than in the FREE
condition in order to follow the metronome’s pace. Note
that IMET RO

1;y < IFREE
1;y : The extra constraint imposed by the

metronome actually prevents the participant from optimally
adapting his/her motion when g is changing, assuming that
the optimal motor strategy is reached in the FREE condition.
It is also known that T is a decreasing function of g in either
METRO or FREE conditions [22]. Since I1;y > 0, 〈Ec,y〉 has
to be an increasing function of g: The participant’s arm moves
with higher typical vertical speed at higher values of g.

Definition (9) explicitly makes appear the links between
adiabatic invariant and kinetic energy. Another interpretation
of the adiabatic invariant, focusing on external forces, is rele-
vant to clarify the influence of gravity on it. To this aim, the
virial theorem may be used to state that

Iα ∼ T 〈Fαxα〉, (10)

where Fα is an external force acting on the pointlike object
whose trajectory is xα . The latter force should involve mus-
cular forces as well as gravity. One can reasonably assume
that Fα = F0α + F1αg, in coherence with the previously found
linear trend of Iα vs g. A priori, F1y + F1x since gravity’s in-
fluence should mostly concern the vertical direction. Changes
induced by F1x are probably unnoticeable up to our current
experimental precision.

Around 1g, Iy is lower than expected from the 95% con-
fidence interval of the linear fit. In that familiar environment,
participants “know” the most economic strategy when they are
allowed to move freely in Earth’s gravity. In the METRO con-
dition, that drop in Iy is not observable: The extra constraint
imposed by the metronome does not allow participants to fol-
low that optimal strategy. Furthermore, our results also reveal
that microgravity is a special case. While the linear fit holds
true for the whole explored gravitational values ([0g; 1.8g]),
there is a significant gap between 0.3 g and 0.7 g in our data.
Hypogravity values are not explored. Our study again reveals
that 0 g acts as a singular value for the brain [22]. Finally,
adiabatic invariants do not behave like parameters measured
in most motor control investigations. Indeed, while errors in
reaching movements perturbed by force fields require tens of
trials to vanish [31], safety margins in object manipulation in
altered gravity need an exposure to six parabolas to decrease
to normal values [32] and some behaviors in conflicting force
fields or visuomotor rotations do even not adapt at all [33];
adiabatic invariants seem to be set to their nominal values
from the outset.

VI. CONCLUDING COMMENTS

To conclude this work, it is worth linking it to well-known
frameworks in motor control. Participants have many more
kinematic degrees of freedom than necessary to fulfill the
demanded task, i.e., the ∞−shaped movement. The coordi-
nation of kinematically redundant systems was formulated by
Bernstein as the degrees of freedom problem [34]. The main
difficulty of Bernstein’s problem is that the nervous system
must conciliate two apparently conflicting abilities: (a) the
realization of a movement from the choice of one among an
infinite number of motor patterns; (b) the absence of univocal
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relationship between the movement realized and motor pat-
terns used, known as motor equivalence. Although it remains
unclear as to whether and how the brain can estimate adiabatic
invariants, such quantities puts constraints on the allowed
strategies, i.e., strategies keeping Iα invariant at constant g. In
this picture, an increase (decrease) in Iα (g) may be related to
an increase (decrease) of the allowed motor patterns.

When subjects are free to point to a target, they automati-
cally scale movement duration with movement amplitude and
choose a trade off between movement speed and accuracy to
touch the target. It is known as Fitts’s law [35]. The adiabatic
invariant is the area of a closed trajectory in phase space: Iα ∼
Aα vmax

α , with Aα and vmax
α the amplitude and maximal speed of

the movement in the direction α, respectively. Its invariance at
given g implies that, if maximal speed increases (decreases),
amplitude decreases (increases). In our experiment, the max-
imal speed is an obvious measure of the movement’s speed,
and the amplitude can be seen as an index of precision. In-
deed, the instruction given to the participant is to avoid two
targets by turning around. Thus, if the amplitude decreases
(increases), the participant increases (decreases) the chances
of hitting the target, and he/she is less (more) precise. The
adiabatic invariant can then be seen as an explicit realization
of the speed-accuracy-trade off scenario. The modification
of its value with g actually changes the acceptable values of
maximal speed and amplitude involved in this trade off.

In summary, our results indicate that adiabatic invariants
deserve a particular attention in biomechanical approaches
of human motion. They are indeed able to capture one indi-
vidual’s reaction to time-dependent external conditions, even
in extreme cases such as variable gravity. Adiabatic invari-
ants seem very robust in this context. Further studies are
now needed to clarify the links between adiabatic invariant
theory and celebrated motor control paradigms such as speed-
accuracy-trade off.
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APPENDIX A: HIGHER DERIVATIVE DYNAMICS AND
RHYTHMIC MOTION

Let us consider a system with N degrees of freedom xα

described by the Lagrangian

L = 1
2 gαβ (x)ẋα ẋβ − U (xγ ) (A1)

with gαβ being the components of a real, symmetric, and
positive-definite matrix G that we call the kinetic matrix. Note
that it is not necessarily constant and may depend on the
dynamical variables. If necessary after a translation of the
origin of the coordinates, we may assume that xα = 0 (∀ α)
is an equilibrium position: ∂U

∂xα |xγ =0 = 0 . Such a Lagrangian
may model the motion of several joints, the potential energy
U being an a priori complicated function of the degrees
of freedom. If only small oscillations around equilibrium
position are considered, the equations of motion read ẍα +

γ αδUδβxβ = 0 , with γ αβ the components of the inverse of
the matrix G0 of components γαβ := gαβ (0) . In other words,
one has γ αδγδβ = δα

β . One defines the potential matrix U with
components

Uαβ = ∂2U
∂xα∂xβ

∣∣∣∣
xδ=0

. (A2)

Solving the eigenequation V α
β ξβ

a = λa ξα
a for the ma-

trix V = G−1
0 U with components V α

β = γ αδ Uδβ , with a =
1, . . . , N , allows us to solve the equations of motion in terms
of the normal coordinates Qa(t ):

xα = ξα
a Qa(t ) with Q̈a = −λa Qa, (A3)

and without any summation over the index a . Therefore,
for the given dynamical system described by the variables
xα , any small oscillatory motion about the minimum of the
potential in configuration space can therefore be decomposed
as a linear combination of elementary oscillations along the
normal modes, each one at the frequency νa = ωa/2π , where
λa = ω2

a . In particular, for appropriate initial conditions it is
possible to only excite the normal mode Qa(t ) for a given
value of the index a . The dynamical system as a whole will
then oscillate at the single frequency νa , without exciting the
modes Qb(t ) with b -= a . The interested reader may find a
detailed discussion about small oscillations around an equi-
librium position in Ref. [11, Chap. 5], or in Ref. [36, Part 2,
Chap. 5] for a more precise mathematical formulation.

Note that, from the datum of the normal modes Q’s with
their frequencies ν’s, one can go back and access the informa-
tion contained in the kinetic and potential matrices G and U .
This is because the normal modes are orthogonal with respect
to the metric G , and using the latter metric together with the
eigenvalues of V := G−1U gives U up to a reordering of the
dynamical variables xα .

In a human rhythmic motion, if the participant is asked to
perform a periodic motion, say with the forearm, one observes
that the projection of the motion of the hand along the three
spatial directions gives rise to a very small set of frequencies
that are all integer multiples of a fundamental one. In this de-
scription, we neglect the quasiperiodic motion of the forearm
due to physiological noise. Of course, the forearm is a very
complicated system with dozens of components linked in a
complicated fashion, giving rise to a configuration space Q of
very large dimension N . In principle (but not in practice), it is
possible to describe it by a Lagrangian of the form (A1) and
there will N normal modes Qa’s with possible degeneracies
in the frequencies. The observed motion of the forearm of the
participants is, instead, very simple and degenerate.

Instead of trying to find the realistic Lagrangian description
(A1) of the forearm, from the sole observation of a very lim-
ited set of forced periodic motions with distinct frequencies
ωa’s, motions that we view as analogous to the distinct normal
modes of a dynamical system, we propose an effective model
whose purpose it to reproduce those “normal modes” without
any diagonalization of any potential matrix V . The operator

F = 2n
a=1

(
1 + 1

ω2
a

d2

dt2

)
(A4)
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is such that Fxα = 0 for all α because FQa = 0 for all
a , by construction. Here, by an abuse of notation we have
denoted by Qa(t ) the n & N simple and pure harmonic modes
observed in the participant’s motion. The latter describes the
motion in a configuration space of very large dimension N
whereas we effectively reduce the dynamics to a configura-
tion space of dimension n way smaller than N . Therefore,
in our effective description of the motion based on a

specific set of harmonic oscillations observed in the forearm’s
motion, every single dynamical variable xα for α fixed obeys
the equation of motion of a Pais-Uhlenbeck oscillator whose
Lagrangian reads LP−U = − 1

2 xα F xα [26]. If at least two
frequencies ωa are different, the effective dynamics of a given
degree of freedom can be mimicked by a particular solution
of the equations of motion of a higher-derivative harmonic
oscillator.
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