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A B S T R A C T

This paper presents a stochastic framework for offering and bidding strategies of a hybrid power generation
system (HPGS) with a wind farm and two types of energy storage facilities, i.e., compressed air energy storage
(CAES) and battery energy storage (BES) systems. The model considers the participation of the HPGS in
consecutive electricity markets, i.e., day-ahead (DA) and intraday markets. To better address the proposed
trading strategy problem, the BES degradation cost is also incorporated into the model. Furthermore, a
mechanism based on energy procurement from demand response resources (DRRs) in the intraday demand
response exchange (IDREX) market for the HPGS is also established to offset unexpected energy imbalances
effectively. The suggested offering and bidding strategy is formulated as a three-stage stochastic programming
problem incorporating a risk-alleviating index, namely, the conditional value-at-risk (CVaR). Results from
several simulations indicate considerable profit gain and risk reduction achieved by the suggested offering
and bidding framework.
1. Introduction

Lessening dependence on fossil fuels and taking maximum advan-
tage of renewable energy sources to reduce greenhouse gas emissions
has become one of the main goals of communities and governments
around the world [1]. Moving toward a fully renewable energy power
sector without appropriate energy storage systems and flexible loads is
unattainable [2]. The importance of energy storage systems in reaching
a fully renewable energy power sector in the next 30 years for Europe
has been investigated in [3]. The results of [3] reveal that energy
storage technologies are able to play a crucial part in reducing the
levelized cost of electricity.

With the enormous growth of renewable energy sources, such as
wind energy, in all power system sectors, designing appropriate of-
fering strategies for optimal participation in the electricity markets is
identified as the most prominent concern of their owners [4]. In partic-
ular, the intermittent nature of prominent renewable energy resources
such as wind turbines is the origin of all these challenges and concerns.
In [5], the authors have focused on the operating framework of a
wind power plant in the day-ahead (DA) energy and reserve markets
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based on deep reinforcement learning. The application of second-order
stochastic dominance constraints as the risk handling method for the
optimal participation of a wind power plant has been proposed in [6].
The optimal participation model for paired wind power plants and
demand response providers has been presented in [7]. Similarly, op-
timal behavior of a renewable-based power plant having a demand
response provider was studied in [8]. In [9], the authors have suggested
an offering framework for wind and thermal units participating in
day-ahead, medium-term, and long-term electricity markets.

Other electricity market players, such as microgrids and virtual
power plants, are also found in the bidding and offering strategy
problems. Authors in [10] have designed a two-stage bidding structure
for a microgrid based on the mean–variance model. Following this,
a bidding strategy based on information gap decision theory (IGDT)
and stochastic programming for a reconfigurable microgrid in the DA
and real-time markets has been suggested in [11]. Analogous to [11],
in [12] and [13], the IGDT method was applied for the self-scheduling
of a virtual power plant in joint DA and balancing markets, respectively.
In [13], the authors have presented a risk-based scheduling model for
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Nomenclature

Indices

𝜃 Index of scenarios (1 to 𝑁𝜃).
𝑡 Index of scheduling periods (1 to 𝑁𝑇 ).
𝑑 Index of DRRs (1 to 𝑁𝐷).
𝑓 Index pertaining to segments of DRRs’ offer (1

to 𝑁𝐹 ).
𝑏 Index pertaining to blocks of the BES depth of

discharge (1 to 𝑁𝐵).

Parameters

𝜋𝜃 Probability of a scenario occurrence.
𝛽 (𝛼) Parameters reflecting the risk-aversion (confi-

dence) level.
𝜑𝐵
𝑑,𝑡 Price of the bilateral contract between DRRs

and the HPGS, e/MWh.
𝜑𝐼𝑋
𝑑,𝑓 ,𝑡 Price pertaining to segments of the DRRs’ offer

in the IDREX market, e/MWh.
𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠(𝑐ℎ) Maximum discharging (charging) quantity of

the BES, MW.
𝐶𝑎𝑝𝐶𝐴,𝑐 Maximum compression quantity of the CAES,

MW.
𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝 Maximum expansion quantity of the CAES,

MW.
𝐶𝑎𝑝𝑊 Nominal capacity of the wind farm, MW.
𝐸𝐿𝐵𝑆(𝐶𝐴),𝑀𝑎𝑥 Maximum permissible stored energy in the BES

(CAES), MWh.
𝐸𝐿𝐿𝐵𝑆,𝑀𝑎𝑥 Maximum permissible stored energy in block

𝑏 of the depth of BES discharge of the system,
MWh.

𝛶 𝐵𝑆,𝑐ℎ(𝑑𝑖𝑠) BES efficiency pertaining to charging (dis-
charging) mode.

𝐻𝑡𝑟𝑑𝑖𝑠(𝑠) CAES heat rate in discharging (simple-cycle)
mode, MBtu/MWh.

𝑁𝑃𝐺 Price of natural gas, e/MBtu.
𝑂𝑀𝐸𝑥𝑝(𝐶𝑜𝑚) Maintenance and operation costs of the CAES

in expanding (compressing) mode, e/MWh.
𝐸𝑅 CAES energy ratio.
𝜆 A coefficient for determining the contribution

level in the intraday market.
𝜈𝑀𝑎𝑥
𝑑,𝑓 ,𝑡 Maximum purchased power in each segment of

the DRR’s offering curve, MW.
𝐶𝑎𝑝𝐷𝑅

𝑑 Total offering quantity by each DRR, MW.
𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑠𝑒𝑙𝑙 Maximum allowable selling power by the

HPGS system in the intraday market, MW.
𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑏𝑢𝑦 Maximum allowable buying power by the

HPGS system in the intraday market, MW.
𝑀𝐶𝑏 Marginal cost of degradation in block 𝑏 of the

depth of discharge of the BES system.

a virtual power plant participating in day-ahead energy and reserve
markets. Authors in [14] have focused on the stochastic self-scheduling
of a smart microgrid in the DA market.

Energy storage technologies are other inevitable facilities in all
power systems that bring more flexibility and reduce overall costs. A
comprehensive stochastic-robust participation framework for a battery
energy storage (BES) system has been introduced in [15]. Furthermore,
an offering model for joint operation of the BES system and a solar
2

plant employing adjustable robust optimization technique has been
Variables

𝛾 Value-at-risk, e.
𝜑𝐷(𝐼)
𝑡,𝜃 Price pertaining to the DA (intraday) market,

e/MWh.
𝜒𝐷(𝐼),𝑊
𝑡,𝜃 Offering quantity from the wind farm in the

DA (intraday) market, MW.
𝜒𝐷(𝐼),𝐵𝑆
𝑡,𝜃 Offering quantity from the BES system in the

DA (intraday) market, MW.
𝜒𝐷,𝐶𝐴,𝑑𝑖𝑠(𝑠)
𝑡,𝜃 DA offering quantity from the CAES system in

the discharging (simple-cycle) mode, MW.
𝜒𝐼,𝐶𝐴,𝑑𝑖𝑠(𝑠)
𝑡,𝜃 Intraday offering quantity from the CAES sys-

tem in the discharging (simple-cycle) mode,
MW.

𝜎𝐷,𝐵𝑆(𝐶𝐴)
𝑡,𝜃 Bidding quantity from the BES (CAES) system

in the DA market, MW.
𝜎𝐼,𝐵𝑆(𝐶𝐴)
𝑡,𝜃 Bidding quantity from the BES (CAES) system

in the intraday market, MW.
𝜎𝐼,𝑊𝑡,𝜃 Buying quantity from the wind farm in the

intraday market, MW.
𝜒𝑆𝑐ℎ,𝐵𝑆(𝐶𝐴),𝑑𝑖𝑠
𝑡,𝜃 Final scheduled power of the BES (CAES)

system in the discharging mode, MW.
𝜒𝑆𝑐ℎ,𝐶𝐴,𝑠
𝑡,𝜃 Final scheduled power of the CAES system in

the simple-cycle mode, MW.
𝜎𝑆𝑐ℎ,𝐵𝑆(𝐶𝐴),𝑐ℎ
𝑡,𝜃 Final scheduled power of the BES (CAES)

system in the charging mode, MW.
𝑃 𝑆𝑐ℎ,𝐻𝑃𝐺𝑆
𝑡,𝜃 Final scheduled power of the HPGS, MW.

𝜚𝐷(𝐼),𝐵𝑆,𝑑𝑖𝑠
𝑏,𝑡,𝜃 Offering quantity of the BES system from block

𝑏 of the depth of discharge in DA (intraday)
market, MW.

𝜚𝐷(𝐼),𝐵𝑆,𝑐ℎ
𝑏,𝑡,𝜃 Bidding quantity of the BES system from block

𝑏 of the depth of discharge in DA (intraday)
market, MW.

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠(𝑐ℎ)𝑏,𝑡,𝜃 Final scheduled power of the BES system from
block 𝑏 of the depth of discharge in discharging
(charging) mode, MW.

𝐸𝐿𝐿𝐵𝑆
𝑏,𝑡,𝜃 Stored energy in block 𝑏 of the depth of

discharge of the BES system, MWh.
𝐸𝐿𝐵𝑆(𝐶𝐴)

𝑡,𝜃 Stored energy in the BES (CAES) system, MWh.
𝑅𝑃𝑊

𝑡,𝜃 Realized generation power of the wind farm,
MW.

𝛿−(+)𝑡,𝜃 Downward (upward) imbalance, MWh.
𝛿𝑡,𝜃 Final energy deviations of the HPGS, MWh.
𝜌−(+)𝑡,𝜃 Price ratios pertaining to downward (upward)

imbalances.
𝜂𝜃 Subsidiary variable used for CVaR calculation.
𝑣𝑐ℎ(𝑑𝑖𝑠)𝑡 Binary variable reflecting the charging (dis-

charging) status of the BES.
𝑢𝑐ℎ∕𝑑𝑖𝑠∕𝑠𝑡 Binary variable reflecting the

charging/discharging/simple-cycle status
of the CAES.

𝐶𝐷𝑅𝑑,𝑡,𝜃 Cost pertaining to buying pool-based demand
response (DR) from DRRs, e.

𝐷𝑅𝑑,𝑡,𝜃∕𝜒
𝐵,𝐷𝑅
𝑑,𝑡,𝜃 Provided pool-based/bilateral-based DR from

DRRs, MW.
𝐶𝐹𝐶𝐴

𝑑,𝑡,𝜃 Cost pertaining to the CAES operation, e.

analyzed in [16]. A further mechanism for the trading strategy of a BES
system along with thermal units and a wind power station considering
environmental issues has been provided in [17]. Ref. [18] has provided
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a linear deterministic look-ahead optimization model for the optimal
involvement of a compressed air energy storage (CAES) system in
multiple electricity markets. A coordinated operation mechanism based
on the adaptive robust technique for a wind-CAES system has been
developed in [19]. Moreover, a stochastic offering mechanism for a
wind-CAES plant has been presented in [20]. In [21], the authors have
focused on expanding a coordinated trading method for a wind power
station and electric vehicles in DA and intraday markets.

The risk-based behavior of thermal units using under the uncer-
tainty of high-impact low-probability events under a hybrid
probabilistic–possibilistic approach [22] has been presented in [23].
The impact of transmission outage contingencies on the bidding strat-
egy of thermal units has been assessed in [24]. In [25], authors have
provided an scheduling model for a hybrid thermal-BES system while
dealing with the existing uncertainty using robust optimization. A
stochastic bidding structure for a price-maker retailer in the DA trading
floor has been provided in [26]. Authors in [27] have developed a
bi-level self-scheduling paradigm for power-to-gas facilities in the DA
market. In [28] and [29], authors have assessed the demand response
resources (DRRs) bidding strategy from various perspectives. In [28], a
robust framework has been applied for the bidding strategy of industrial
DRRs, whereas [29] has concentrated on the trading approach of
residential DRRs.

In this paper, a comprehensive offering and bidding model for a hy-
brid power generation system (HPGS) composed of wind farms, CAES,
and BES system is presented. In addition to the benefits of coordination
among offering and bidding of all resources, a mechanism based on
the energy transaction between the HPGS and DRRs is considered.
The suggested model takes into account the DA market, the intraday
market, and the balancing market as intended trading floors. In this
regard, the proposed structure is not only capable of extracting selling
offers (offering curves), but also provides the ability to derive the
purchasing bids (bidding curves) in the DA market. The present offering
and bidding mechanism is developed as a three-stage stochastic pro-
gramming pattern while the uncertainties arising from the electricity
prices and wind generation are characterized through a scenario set.
Lastly, to further investigate the different offering and bidding schemes
in the decision-making process, an effective risk metric, i.e., conditional
value-at-risk (CVaR) is included in the framework.

The main innovative contributions of this work are as follows:

• Proposing a comprehensive model for the joint operation of a
wind farm, BES, and a CAES system in the form of an HPGS
for participation in successive electricity markets. To the best
of the authors’ knowledge, there is no relevant publication that
addresses the integrated operation of wind, CAES, and BES system
in electricity markets. It is important to note that the wind-CAES
offering model proposed in [20] suffers from two weaknesses in
its methodology: (1) the authors considered the charging power of
the CAES in the scheduled power of the integrated wind-CAES sys-
tem, while it should not be regarded (in other words, the charging
energy is utilized for increasing the energy level of the storage
systems, and it must not be calculated in the scheduled energy
of the HPGS for coping with its balancing market deviations) and
(2) the operating modes of the CAES facility must be counted in
modeling the upper bound of the system’s downward imbalance,
while they have been neglected in [20].

• Presenting a novel three-stage stochastic trading model which
is capable of deriving both offering (selling) and bidding (pur-
chasing) curves in the DA market. Other significant difference
between this paper and the methodology proposed in [20] is
that the operating modes of the CAES facility, i.e., charging,
discharging, simple-cycle, have been considered as a function of
stochastic scenarios, while this assumption cannot represent the
3

real operation of a CAES unit. p
• Providing energy transaction capability between the HPGS and
DRRs by means of the intraday demand response exchange
(IDREX) market and thoroughly examining this facility on the
operation of all resources, especially BES and CAES systems.

• Incorporating the BES degradation cost into the suggested offering
and bidding architecture and analyzing its influence from the
perspective of coordinated and uncoordinated operations.

• Analyzing different aspects of the proposed risk-based offering
and bidding strategy with a detailed numerical result.

In the next section, materials and methods are discussed. Section 3
presents the simulation results and discussion, and the last section is
dedicated to the conclusion and future work.

2. Materials and methods

2.1. Decision-making framework

As stated in the previous section, the HPGS aims for an optimal
participation in the DA and intraday markets, as two consecutive
trading floors. In order to achieve optimal operation of the HPGS in all
trading floors, system uncertainties must be well addressed. Generally,
the system uncertainties concern the DA market, intraday market, and
balancing market prices along with wind power generation. Multi-stage
stochastic programming is one of the most prevailing methodologies
for addressing uncertainties, and this has been properly adapted to
electricity market problems [30]. In this work, a three-stage stochas-
tic programming structure is employed whose corresponding decision
variables are categorized into three stages:

1. First stage: the first-stage decisions concern the operating status
of the BES and CAES systems, and optimal offering and bidding
curves of the HPGS in the DA market for the whole scheduling
horizon. These decisions are called here-and-now decisions that
are made while all uncertain parameters are unknown to the
HPGS.

2. Second stage: these decisions deal with buying and selling
energy in the intraday market along with traded pool-based
and bilateral-based demand response (DR) between DRRs and
the HPGS. These decisions depend on the DA market scenarios
while the intraday market prices, balancing prices, and wind
power production are still unknown at this stage. The set of the
second-stage decisions are called wait-and-see1.

3. Third stage: the last stage decisions are related to balancing
market deviations of the HPGS. These decisions are named wait-
and-see2 and are made after satisfying all uncertain variables.

For the stochastic modeling of the uncertain sources, proper proba-
ility distribution functions are chosen. Normal and Rayleigh probabil-
ty distributions are picked to model market prices and wind speed,
espectively. Next, the roulette wheel technique is implemented for
cenario generation [31]. Since running multi-stage stochastic program-
ing problems with a large amount of scenarios results in a significant

omputational burden, a scenario reduction technique, by means of
antorovich distance, is utilized [32].

In the next part, first, the mathematical formulation of the HPGS
rading behavior in DA and intraday trading floors is thoroughly given.
hen, the aforementioned formulation is updated considering the BES
egradation cost.

.2. Problem formulation in the absence of degradation cost

The aim of the offering and bidding mechanism for the HPGS is
o maximize the expected profit throughout the scheduling horizon.
his includes a coordinated decision-making system for all available
esources, i.e., wind farm, BES, and CAES, that specifies the optimal

articipation of all units in the DA and intraday trading floors. In order
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to handle the risk associated with stochastic parameters, the CVaR
metric is considered in the proposed structure. A graphical overview of
the developed methodology is shown in Fig. 1. The objective function
of the HPGS offering and bidding strategy can be written as (1).

Max PF1 =
𝑁𝜃
∑

𝛩=1

𝑁𝑇
∑

𝑡=1
𝜋𝜃 ×

[

𝜑𝐷
𝑡,𝜃𝜒

𝐷,𝑊
𝑡,𝜃 + 𝜑𝐷

𝑡,𝜃𝜒
𝐷,𝐵𝑆
𝑡,𝜃 + 𝜑𝐷

𝑡,𝜃𝜒
𝐷,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃

+ 𝜑𝐷
𝑡,𝜃𝜒

𝐷,𝐶𝐴,𝑠
𝑡,𝜃

− 𝜑𝐷
𝑡,𝜃𝜎

𝐷,𝐵𝑆
𝑡,𝜃 − 𝜑𝐷

𝑡,𝜃𝜎
𝐷,𝐶𝐴
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝑊
𝑡,𝜃

+ 𝜑𝐼
𝑡,𝜃𝜒

𝐼,𝐵𝑆
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝐶𝐴,𝑠
𝑡,𝜃

− 𝜑𝐼
𝑡,𝜃𝜎

𝐼,𝑊 − 𝜑𝐼
𝑡,𝜃𝜎

𝐼,𝐵𝑆
𝑡,𝜃 − 𝜑𝐼

𝑡,𝜃𝜎
𝐼,𝐶𝐴
𝑡,𝜃

−

(𝑁𝐷
∑

𝑑=1
𝐶𝐷𝑅𝑑,𝑡,𝜃 + 𝜑𝐵

𝑑,𝑡𝜒
𝐵,𝐷𝑅
𝑑,𝑡,𝜃

)

− 𝐶𝐹𝐶𝐴
𝑡,𝜃 +

(

𝜑𝐷
𝑡,𝜃𝜌

+
𝑡,𝜃𝛿

+
𝑡,𝜃

)

−
(

𝜑𝐷
𝑡,𝜃𝜌

−
𝑡,𝜃𝛿

−
𝑡,𝜃

)

]

+ 𝛽

(

𝛾 − 1
1 − 𝛼

𝑁𝜃
∑

𝛩=1
𝜋𝜃𝜂𝜃

)

(1)

where PF1 refers to the objective function of the HPGS without consid-
ering the BES degradation cost. The objective function (1) is written
in three rows, and each row comprises various terms. The first row
represents the revenue of the HPGS due to the participation of wind,
battery, and CAES units in the DA market. The first two terms of the
second row are related to purchasing bids of BES and CAES systems
from the DA market. The next four terms in the same row correspond
to the HPGS revenue from the intraday market arising from selling
energy. The third row refers to the costs for acquiring energy from the
intraday market and procurement of pool-based and bilateral-based DR
from the IDREX market. The first term in the last row models the CAES
operational costs, while the next two expressions denote the income
and costs related to balancing market deviations. Finally, the last term
of the fourth row represents the risk term in which higher values of 𝛽
reflect the increasing importance of the risk aversion. The constraints
of objective function (1) are described as follows:

2.2.1. CVaR constraints
Restrictions (2)–(4) are utilized to calculate the CVaR.

PF1,𝜃 =
𝑁𝑇
∑

𝑡=1

[

𝜑𝐷
𝑡,𝜃𝜒

𝐷,𝑊
𝑡,𝜃 + 𝜑𝐷

𝑡,𝜃𝜒
𝐷,𝐵𝑆
𝑡,𝜃 + 𝜑𝐷

𝑡,𝜃𝜒
𝐷,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃

+ 𝜑𝐷
𝑡,𝜃𝜒

𝐷,𝐶𝐴,𝑠
𝑡,𝜃 − 𝜑𝐷

𝑡,𝜃𝜎
𝐷,𝐵𝑆
𝑡,𝜃 − 𝜑𝐷

𝑡,𝜃𝜎
𝐷,𝐶𝐴
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝑊
𝑡,𝜃

+ 𝜑𝐼
𝑡,𝜃𝜒

𝐼,𝐵𝑆
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 + 𝜑𝐼

𝑡,𝜃𝜒
𝐼,𝐶𝐴,𝑠
𝑡,𝜃 − 𝜑𝐼

𝑡,𝜃𝜎
𝐼,𝑊

− 𝜑𝐼
𝑡,𝜃𝜎

𝐼,𝐵𝑆
𝑡,𝜃 − 𝜑𝐼

𝑡,𝜃𝜎
𝐼,𝐶𝐴
𝑡,𝜃 −

(𝑁𝐷
∑

𝑑=1
𝐶𝐷𝑅𝑑,𝑡,𝜃 + 𝜑𝐵

𝑑,𝑡𝜒
𝐵,𝐷𝑅
𝑑,𝑡,𝜃

)

− 𝐶𝐹𝐶𝐴
𝑡,𝜃 +

(

𝜑𝐷
𝑡,𝜃𝜌

+
𝑡,𝜃𝛿

+
𝑡,𝜃

)

−
(

𝜑𝐷
𝑡,𝜃𝜌

−
𝑡,𝜃𝛿

−
𝑡,𝜃

)

]

(2)

− PF1,𝜃 + 𝛾 − 𝜂𝜃 ≤ 0, ∀𝜃 (3)

𝜂𝜃 ≥ 0, ∀𝜃 (4)

In (2), PF1,𝜃 calculates the profit per scenario of the HPGS in each
scheduling period. Constraint (3) enforces that the difference between
value-at-risk (𝛾) and profit per scenario (PF1,𝜃) should be lower than
a positive subsidiary variable (𝜂𝜃). This positive subsidiary variable
(𝜂𝜃) assists decision-makers in calculating the CVaR under a predefined
confidence level (𝛼) [32,33].
4

Fig. 1. Graphical overview of the proposed architecture.

2.2.2. BES operating constraints
Constraints (5) and (6) calculate the whole scheduled discharging

and charging powers. Restrictions (7) and (8) enforce upper and lower
limits on the whole BES scheduled power in any of the running modes,
whereas constraint (9) ensures that the BES operates either in discharg-
ing or charging situations in any particular time interval. The energy
level of the BES at time interval 𝑡 is computed in (10), and subsequently,
constraint (11) expresses the stored energy limits of the BES [34].

𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠
𝑡,𝜃 = 𝜒𝐷,𝐵𝑆

𝑡,𝜃 + 𝜒𝐼,𝐵𝑆
𝑡,𝜃 , ∀𝑡,∀𝜃 (5)

𝜎𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑡,𝜃 = 𝜎𝐷,𝐵𝑆
𝑡,𝜃 + 𝜎𝐼,𝐵𝑆𝑡,𝜃 , ∀𝑡,∀𝜃 (6)

0 ≤ 𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠𝑣𝑑𝑖𝑠𝑡 , ∀𝑡,∀𝜃 (7)

0 ≤ 𝜎𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐵𝑆,𝑐ℎ𝑣𝑐ℎ𝑡 , ∀𝑡,∀𝜃 (8)

𝑣𝑑𝑖𝑠𝑡 + 𝑣𝑐ℎ𝑡 ≤ 1, ∀𝑡 (9)

𝐸𝐿𝐵𝑆
𝑡,𝜃 =𝐸𝐿𝐵𝑆

𝑡−1,𝜃 −
( 1
𝛶 𝐵𝑆,𝑑𝑖𝑠

)(

𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠
𝑡,𝜃

)

+

𝛶 𝐵𝑆,𝑐ℎ
(

𝜎𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑡,𝜃

)

, ∀𝑡,∀𝜃 (10)

0 ≤ 𝐸𝐿𝐵𝑆
𝑡,𝜃 ≤ 𝐸𝐿𝐵𝑆,𝑀𝑎𝑥, ∀𝑡,∀𝜃 (11)

2.2.3. CAES operating constraints
One of the significant advantages of the CAES versus BES is the abil-

ity to generate energy in simple-cycle mode, similar to a gas turbine,
which increases its flexibility against price fluctuation. Eqs. (12)–(14)
are respectively concerned with the whole scheduled power of the
CAES in discharging, simple-cycle, and charging modes. CAES operat-
ing costs are modeled using (15). Constraint (16) imposes that the CAES
system should not be simultaneously in charging, discharging, and
simple-cycle modes at any specific time interval. Restrictions pertaining
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Fig. 2. Price–quantity offer of a DRR in the IDREX market.

o total scheduled power of the CAES system are enforced through (17)–
19). Finally, Eq. (20) calculates the energy level of the CAES, while
onstraint (21) keeps the energy level within the allowable range.

𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 = 𝜒𝐷,𝐶𝐴,𝑑𝑖𝑠

𝑡,𝜃 + 𝜒𝐼,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 , ∀𝑡,∀𝜃 (12)

𝑆𝑐ℎ,𝐶𝐴,𝑠
𝑡,𝜃 = 𝜒𝐷,𝐶𝐴,𝑠

𝑡,𝜃 + 𝜒𝐼,𝐶𝐴,𝑠
𝑡,𝜃 , ∀𝑡,∀𝜃 (13)

𝑆𝑐ℎ,𝐶𝐴,𝑐ℎ
𝑡,𝜃 = 𝜎𝐷,𝐶𝐴

𝑡,𝜃 + 𝜎𝐼,𝐶𝐴
𝑡,𝜃 , ∀𝑡,∀𝜃 (14)

𝐹𝐶𝐴
𝑡,𝜃 =𝜒𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠

𝑡,𝜃
(

𝐻𝑡𝑟𝑑𝑖𝑠𝑁𝑃𝐺 + 𝑂𝑀𝐸𝑥𝑝)

+ 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑠
𝑡,𝜃

(

𝐻𝑡𝑟𝑠𝑁𝑃𝐺 + 𝑂𝑀𝐸𝑥𝑝 + 𝑂𝑀𝐶𝑜𝑚)

+ 𝜎𝑆𝑐ℎ,𝐶𝐴,𝑐ℎ
𝑡,𝜃

(

𝑂𝑀𝐶𝑜𝑚) , ∀𝑡,∀𝜃 (15)

𝑑𝑖𝑠
𝑡 + 𝑢𝑠𝑡 + 𝑢𝑐ℎ𝑡 ≤ 1, ∀𝑡 (16)

≤ 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑑𝑖𝑠𝑡 , ∀𝑡,∀𝜃 (17)

≤ 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑠
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑠𝑡 , ∀𝑡,∀𝜃 (18)

≤ 𝜎𝑆𝑐ℎ,𝐶𝐴
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐶𝐴,𝑐𝑢𝑐ℎ𝑡 , ∀𝑡,∀𝜃 (19)

𝐿𝐶𝐴
𝑡,𝜃 = 𝐸𝐿𝐶𝐴

𝑡−1,𝜃 + 𝐸𝑅
(

𝜒𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 − 𝜎𝑆𝑐ℎ,𝐶𝐴

𝑡,𝜃

)

,∀𝑡,∀𝜃 (20)

≤ 𝐸𝐿𝐶𝐴
𝑡,𝜃 ≤ 𝐸𝐿𝐶𝐴,𝑀𝑎𝑥, ∀𝑡,∀𝜃 (21)

.2.4. DR constraints
The proposed DR model includes energy procurement by the HPGS

rom DRRs in the IDREX market. In this regard, the HPGS can procure
he intended energy either in the pool IDREX market or directly through
ilateral contracts with DRRs. DRRs submit their price–quantity offers
Fig. 2) in the IDREX market, which corresponds to load reduction
t each level (𝜈𝑑,𝑓 ,𝑡,𝜃) and the corresponding price (𝜑𝐼𝑋

𝑑,𝑓 ,𝑡). Eqs. (22)
nd (23) calculate the total procured energy from each DRR and its
orresponding cost, respectively. Constraint (24) restricts the procured
ool-based DR within its attainable capacity in every quantity seg-
ent. Ultimately, the total procured DR by the HPGS, i.e., the sum of
ool-based and bilateral-based DR, is limited by applying restriction
25).

𝑅𝑑,𝑡,𝜃 =
𝑁𝐹
∑

𝑓=1
𝜈𝑑,𝑓 ,𝑡,𝜃 , ∀𝑑,∀𝑡,∀𝜃 (22)

𝐷𝑅𝑑,𝑡,𝜃 =
𝑁𝐹
∑

𝑓=1
(𝜑𝐼𝑋

𝑑,𝑓 ,𝑡)(𝜈𝑑,𝑓 ,𝑡,𝜃), ∀𝑑,∀𝑡,∀𝜃 (23)

𝑑,𝑓 ,𝑡,𝜃 ≤ 𝜈𝑀𝑎𝑥
𝑑,𝑓 ,𝑡 , ∀𝑑,∀𝑓,∀𝑡,∀𝜃 (24)

𝑅𝑑,𝑡,𝜃 + 𝜒𝐵,𝐷𝑅
𝑑,𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐷𝑅

𝑑 , ∀𝑑,∀𝑡,∀𝜃 (25)
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.2.5. Imbalance constraints
Total balancing market deviations of the HPGS are calculated using

qs. (26) and (27). Positive and negative energy deviations of the HPGS
re limited via constraints (28) and (29), respectively. It is worth to
ote that the operating modes of storage facilities must be counted in
onstraint (29), as the maximum negative energy deviation of the HPGS
s equivalent to the maximum capacity of generating energy in each
pecific hour, while this rule has been ignored in [20].

𝑡,𝜃 = 𝛿+𝑡,𝜃 − 𝛿−𝑡,𝜃 , ∀𝑡,∀𝜃 (26)

𝑡,𝜃 =𝑅𝑃𝑊
𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠

𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑠

𝑡,𝜃

− 𝑃 𝑆𝑐ℎ,𝐻𝑃𝐺𝑆
𝑡,𝜃 , ∀𝑡,∀𝜃 (27)

+
𝑡,𝜃 ≤ 𝑅𝑃𝑊

𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠
𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠

𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐶𝐴,𝑠
𝑡,𝜃 ,

∀𝑡,∀𝜃 (28)

−
𝑡,𝜃 ≤𝐶𝑎𝑝𝑊 +

(

𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠𝑣𝑑𝑖𝑠𝑡
)

+
(

𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑑𝑖𝑠𝑡
)

+ (𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑠𝑡 ), ∀𝑡,∀𝜃 (29)

.2.6. Offering and bidding curve constraints
DA offering and bidding limitations are imposed through constraints

30) and (31), respectively. Constraints (32) and (33) enforce the
elling and buying quantities of the HPGS in the intraday market. It
s important to bear in mind that market players cannot sell/procure
heir full capacity in/from the intraday market [32], and accordingly,
hese selling and buying restrictions are defined in Eqs. (34) and (35).
he scheduled power of the HPGS in DA and intraday markets and

ts corresponding limits are specified in constraints (36) and (37),
espectively. Unlike [20], in Eq. (36), the charging power of storage
acilities should not be counted. In other words, the charging energy
s utilized for increasing the energy level of the storage systems, and
t must not be calculated in the scheduled energy of the HPGS for
oping with its balancing market deviations. Deriving optimal offering
nd bidding curves in the DA market is the most substantial part of
he problem. To this end, the offering curves must be non-decreasing
hile the bidding curves should be decreasing [8]. Constraints (38) and

39) ensure that the offering and bidding curves in the DA follow this
rend. Lastly, the non-anticipativity condition of offering and bidding
urves in the DA market, as well as non-anticipativity restrictions
f offering and bidding quantities in the intraday trading floor, are
nforced through constraints (40)–(43) [35].

≤ 𝜒𝐷,𝛤1
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝛤1 , ∀𝑡,∀𝜃

& 𝛤1 =
[

𝑊 , (𝐵𝑆, 𝑑𝑖𝑠), (𝐶𝐴, 𝑑𝑖𝑠), (𝐶𝐴, 𝑠)
]

(30)

≤ 𝜎𝐷,𝛤2
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝛤2 , ∀𝑡,∀𝜃 𝛤2 =

[

(𝐵𝑆, 𝑐ℎ), (𝐶𝐴, 𝑐ℎ)
]

(31)

0 ≤ 𝜒𝐼,𝑊
𝑡,𝜃 + 𝜒𝐼,𝐵𝑆,𝑑𝑖𝑠

𝑡,𝜃 + 𝜒𝐼,𝐶𝐴,𝑑𝑖𝑠
𝑡,𝜃 + 𝜒𝐼,𝐶𝐴,𝑠

𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑠𝑒𝑙𝑙 ,

∀𝑡,∀𝜃 (32)

0 ≤ 𝜎𝐼,𝑊𝑡,𝜃 + 𝜎𝐼,𝐵𝑆,𝑐ℎ𝑡,𝜃 + 𝜎𝐼,𝐶𝐴,𝑐ℎ
𝑡,𝜃 ≤ 𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑏𝑢𝑦,

∀𝑡,∀𝜃 (33)

𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑠𝑒𝑙𝑙 = 𝜆
(

𝐶𝑎𝑝𝑊 + 𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠 + 𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝) (34)

𝐶𝑎𝑝𝐼,𝐻𝑃𝐺𝑆,𝑏𝑢𝑦 = 𝜆
(

𝐶𝑎𝑝𝑊 + 𝐶𝑎𝑝𝐵𝑆,𝑐ℎ + 𝐶𝑎𝑝𝐶𝐴,𝑐) (35)

𝑃 𝑆𝑐ℎ,𝐻𝑃𝐺𝑆
𝑡,𝜃 =𝜒𝐷,𝑊

𝑡,𝜃 + 𝜒𝐼,𝑊
𝑡,𝜃 − 𝜎𝐼,𝑊𝑡,𝜃 + 𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠

𝑡,𝜃
𝑆𝑐ℎ,𝐶𝐴,𝑑𝑖𝑠 𝑆𝑐ℎ,𝐶𝐴,𝑠
+ 𝜒𝑡,𝜃 + 𝜒𝑡,𝜃
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𝜎

𝜚

𝐸

−
𝑁𝐷
∑

𝑑=1

(

𝐷𝑅𝑑,𝑡,𝜃 + 𝜒𝐵,𝐷𝑅
𝑑,𝑡,𝜃

)

, ∀𝑡,∀𝜃 (36)

𝑃 𝑆𝑐ℎ,𝐻𝑃𝐺𝑆
𝑡,𝜃 ≤𝐶𝑎𝑝𝑊 +

(

𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠𝑣𝑑𝑖𝑠𝑡
)

+
(

𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑑𝑖𝑠𝑡
)

+ (𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝𝑢𝑠𝑡 ), ∀𝑡,∀𝜃 (37)

𝜒𝐷,𝛤3
𝑡,𝜃 ≤ 𝜒𝐷,𝛤3

𝑡,𝜃
, ∀𝜃, 𝜃 ∶ [𝜑𝐷

𝑡,𝜃 ≤ 𝜑𝐷
𝑡,𝜃
], ∀𝑡 &

𝛤3 =
[

𝑊 ,𝐵𝑆, (𝐶𝐴, 𝑑𝑖𝑠), (𝐶𝐴, 𝑠)
]

(38)

𝜎𝐷,𝛤4
𝑡,𝜃 ≤ 𝜎𝐷,𝛤4

𝑡,𝜃
, ∀𝜃, 𝜃 ∶ [𝜑𝐷

𝑡,𝜃 ≥ 𝜑𝐷
𝑡,𝜃
], ∀𝑡 & 𝛤4 = [𝐵𝑆,𝐶𝐴] (39)

𝜒𝐷,𝛤3
𝑡,𝜃 = 𝜒𝐷,𝛤3

𝑡,𝜃
, ∀𝜃, 𝜃 ∶ [𝜑𝐷

𝑡,𝜃 = 𝜑𝐷
𝑡,𝜃
], ∀𝑡 &

𝛤3 =
[

𝑊 ,𝐵𝑆, (𝐶𝐴, 𝑑𝑖𝑠), (𝐶𝐴, 𝑠)
]

(40)

𝜎𝐷,𝛤4
𝑡,𝜃 = 𝜎𝐷,𝛤4

𝑡,𝜃
, ∀𝜃, 𝜃 ∶ [𝜑𝐷

𝑡,𝜃 = 𝜑𝐷
𝑡,𝜃
], ∀𝑡 & 𝛤4 = [𝐵𝑆,𝐶𝐴] (41)

𝜒𝐼,𝛤5
𝑡,𝜃 = 𝜒𝐼,𝛤5

𝑡,𝜃
, ∀𝜃, 𝜃 ∶ [𝜑𝐷

𝑡,𝜃 = 𝜑𝐷
𝑡,𝜃
], ∀𝑡 &

𝛤5 =
[

𝑊 ,𝐵𝑆, (𝐶𝐴, 𝑑𝑖𝑠), (𝐶𝐴, 𝑠)
]

(42)

𝜎𝐼,𝛤6𝑡,𝜃 = 𝜎𝐼,𝛤6
𝑡,𝜃

, ∀𝜃, 𝜃 ∶ [𝜑𝐷
𝑡,𝜃 = 𝜑𝐷

𝑡,𝜃
], ∀𝑡 & 𝛤6 =

[

𝑊 ,𝐵𝑆,𝐶𝐴
]

(43)

2.3. Problem formulation in the presence of degradation cost

Multiple charging and discharging cycles of the BES system are
deemed as the most critical factors of reducing the BES lifespan, and as
a result, the BES replacement cost should be taken into account. This
is done by including the BES system degradation cost in its offering
and bidding pattern. BES degradation is contingent on a variety of
factors, whereas the cycle depth is identified as the most significant
one [36]. In this paper, to incorporate the BES degradation cost into
the preceding modeling, the model in [36] has been adopted. Accord-
ingly, the degradation cost is modeled as a nonlinear function of the
depth of discharge and a piecewise linearization method is employed
to overcome its nonlinearity. The latest depth of discharge at each
specific time can be tracked by devoting discharge and charge power
components along with energy level component to any particular depth
of discharge block concerning its present and former discharge and
charge powers. Comprehensive details of this model with the benefits
of its application have been thoroughly discussed in [36]. Eventually,
the objective function (1) by considering the BES degradation cost is
updated as:

Max PF2 = PF1 −
𝑁𝜃
∑

𝛩=1

𝑁𝐵
∑

𝑏=1

𝑁𝑇
∑

𝑡=1
𝜋𝜃 ×

[

𝑀𝐶𝑏 × 𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃

]

(44)

Subject to:

𝜒𝐷,𝐵𝑆
𝑡,𝜃 =

𝑁𝐵
∑

𝑏=1
𝜚𝐷,𝐵𝑆,𝑑𝑖𝑠
𝑏,𝑡,𝜃 (45)

𝜎𝐷,𝐵𝑆
𝑡,𝜃 =

𝑁𝐵
∑

𝑏=1
𝜚𝐷,𝐵𝑆,𝑐ℎ
𝑏,𝑡,𝜃 (46)

𝜒𝐼,𝐵𝑆
𝑡,𝜃 =

𝑁𝐵
∑

𝑏=1
𝜚𝐼,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃 (47)

𝜎𝐼,𝐵𝑆𝑡,𝜃 =
𝑁𝐵
∑

𝑏=1
𝜚𝐼,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃 (48)

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃 = 𝜚𝐷,𝐵𝑆,𝑑𝑖𝑠
𝑏,𝑡,𝜃 + 𝜚𝐼,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃 (49)

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃 = 𝜚𝐷,𝐵𝑆,𝑐ℎ
𝑏,𝑡,𝜃 + 𝜚𝐼,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃 (50)

𝜒𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠
𝑡,𝜃 =

𝑁𝐵
∑

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃 (51)
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𝑏=1
𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ
𝑡,𝜃 =

𝑁𝐵
∑

𝑏=1
𝜚𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃 (52)

𝐷,𝐵𝑆,𝑑𝑖𝑠
𝑏,𝑡,𝜃 , 𝜚𝐼,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃 , 𝜚𝐷,𝐵𝑆,𝑐ℎ

𝑏,𝑡,𝜃 , 𝜚𝐼,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃 ≥ 0 (53)

𝐿𝐿𝐵𝑆
𝑏,𝑡,𝜃 =𝐸𝐿𝐿𝐵𝑆

𝑏,𝑡−1,𝜃 −
( 1
𝛶 𝐵𝑆,𝑑𝑖𝑠

)(

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃

)

+

𝛶 𝐵𝑆,𝑐ℎ
(

𝜚𝑆𝑐ℎ,𝐵𝑆,𝑐ℎ𝑏,𝑡,𝜃

)

, ∀𝑡,∀𝜃 (54)

0 ≤ 𝐸𝐿𝐿𝐵𝑆
𝑏,𝑡,𝜃 ≤ 𝐸𝐿𝐿𝐵𝑆,𝑀𝑎𝑥

𝑏 (55)

𝐸𝐿𝐵𝑆
𝑡,𝜃 =

𝑁𝐵
∑

𝑏=1
𝐸𝐿𝐿𝐵𝑆

𝑏,𝑡,𝜃 (56)

− PF1,𝜃 +

(𝑁𝐵
∑

𝑏=1

𝑁𝑇
∑

𝑡=1
𝑀𝐶𝑏 × 𝜚𝑆𝑐ℎ,𝐵𝑆,𝑑𝑖𝑠𝑏,𝑡,𝜃

)

+ 𝛾 − 𝜂𝜃 ≤ 0, ∀𝜃 (57)

Constraints (2), (4)–(9), (11)–(43) (58)

where PF2 is the objective function of the HPGS including the BES
degradation cost. Eqs. (45) and (46) compute the selling (offering)
and buying (bidding) quantities of the BES system in the DA market
according to their discharging and charging powers in each block of
the depth of discharge. Similar to (45) and (46), Eqs. (47) and (48)
are adopted for intraday offering and bidding variables. The total
offering and bidding values in each block of the depth of discharge are
calculated via (49) and (50), whereas the total scheduled offering and
bidding values of the BES system are computed through (51) and (52).
The BES energy level in each block is obtained by (54), while constraint
(55) restricts the lower and upper boundaries of this variable. The final
energy level of the BES system is stated in (56), and restriction (57)
is related to CVaR modeling. Some other constraints of the proposed
methodology are unchanged, as stated in (58).

3. Simulation results

The performance of the suggested offering and bidding strategy is
analyzed for an HPGS comprising a 50-MW wind farm, a BES facility
of 50 MW (charging and discharging capacity), and a CAES unit of
charging and discharging capacities equal to 100 MW and 150 MW,
respectively. The technical information on CAES and BES facilities
are reported in Table 1. The BES replacement cost is set to 300,000
e/MWh [36], while other relevant data for modeling degradation cost
of the BES system are adopted from [36]. Six months of historical data
(January 1st, 2018 to June 30th, 2018) of the electricity market in the
Iberian Peninsula [37] and the wind speeds [38] for the same period are
used for scenario generation. Following the procedures described in 2.1,
5000 scenarios are generated for each uncertain parameter and, using
the scenario reduction technique, the number of scenarios for the DA,
intraday, balancing markets, and wind power are reduced to 10, 6, 6,
and 10 representative scenarios, respectively. Accordingly, the overall
number of scenarios is 3600.

Three distinct DRRs have been considered for participation in the
IDREX market. The maximum participation level for each DRR is
assumed to be 4 MW. The parameters appertaining to price–quantity
offers of DRRs in the IDREX market are based on three characteristic
periods, namely, peak, off-peak, and valley, as given in Table 2. Note
that the uncertainty of IDREX market prices is neglected (mean prices
are considered here). Furthermore, the HPGS is capable of procuring
energy through bilateral contracts from DRRs where 𝜑𝐵

1,𝑡, 𝜑
𝐵
1,𝑡, and 𝜑𝐵

3,𝑡
are equal to 45, 50, and 55 e/MWh. Finally, other essential parameters
in the proposed problem, such as 𝛼, 𝜆, and 𝑁𝑃𝐺 are respectively set to
0.95, 0.3, 4.6 e/MBtu. The derived problem is solved by GAMS under
CPLEX solver.

In this paper, three case studies corresponding to three different

offering and bidding schemes have been considered:
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Table 1
Specification of CAES and BES facilities.

Parameter Value Unit Parameter Value Unit

𝐶𝑎𝑝𝐶𝐴,𝑒𝑥𝑝 150 MW 𝐻𝑡𝑟𝑠 10.83 MBtu/MWh
𝐶𝑎𝑝𝐶𝐴,𝑐 100 MW 𝐸𝑅 0.95 Scalar
𝐸𝐿𝐶𝐴,𝑀𝑎𝑥 20 × 150 MWh 𝑂𝑀𝐸𝑥𝑝 3 e/MWh
𝐻𝑡𝑟𝑑𝑖𝑠 4.07 MBtu/MWh 𝑂𝑀𝐶𝑜𝑚 3 e/MWh
𝛶 𝐵𝑆,𝑐ℎ 80 % 𝐶𝑎𝑝𝐵𝑆,𝑑𝑖𝑠(𝑐ℎ) 50 MW
𝛶 𝐵𝑆,𝑑𝑖𝑠 95 % 𝐸𝐿𝐵𝑆,𝑀𝑎𝑥 5 × 50 MWh

Table 2
Characteristic of DRRs’ offer in the IDREX market.

Period f 1 2 3

𝜈𝑀𝑎𝑥
𝑑,𝑓 ,𝑡 0.25 × 𝐶𝑎𝑝𝐷𝑅

𝑑 0.75 × 𝐶𝑎𝑝𝐷𝑅
𝑑 1 × 𝐶𝑎𝑝𝐷𝑅

𝑑

Percentage of mean intraday market price

Valley (1–9 a.m.)
𝜑𝐼𝑋
1,𝑓 ,𝑡 45% 60% 75%

𝜑𝐼𝑋
2,𝑓 ,𝑡 50% 65% 80%

𝜑𝐼𝑋
3,𝑓 ,𝑡 55% 70% 85%

Off-peak (10 a.m.–19 p.m.)
𝜑𝐼𝑋
1,𝑓 ,𝑡 55% 85% 115%

𝜑𝐼𝑋
2,𝑓 ,𝑡 65% 95% 125%

𝜑𝐼𝑋
3,𝑓 ,𝑡 75% 105% 135%

Peak (20–24 p.m.)
𝜑𝐼𝑋
1,𝑓 ,𝑡 60% 90% 120%

𝜑𝐼𝑋
2,𝑓 ,𝑡 70% 100% 130%

𝜑𝐼𝑋
3,𝑓 ,𝑡 80% 110% 140%

• Case 1: disjoint operation of all available energy resources.
• Case 2: coordinated operation of wind, BES and CAES facilities.
• Case 3: coordinated operation of wind, BES and CAES facilities

in the attendance of DRRs.

In order to thoroughly investigate different features of the suggested
ethodology, the numerical results are presented in two parts. In

he first part, the profitability of the aforementioned offering and
idding schemes and the HPGS behavior in electricity markets are fully
xamined. In the second part, the impact of incorporating the BES
egradation cost on the BES decisions in DA and intraday markets, as
ell as economic losses, are studied.

.1. Results: Part I

In the following, the effects of different bidding schemes are exam-
ned. It is necessary to remark that the BES degradation cost has been
verlooked in all results of the first part.

.1.1. Impact of various offering and bidding cases on the expected profit
nd CVaR

Results of CVaR and expected profit for various values of 𝛽 and
ifferent offering and bidding schemes have been reported in Tables 3
nd 4. According to Tables 3 and 4, the HPGS’s expected profit in the
isk-neutral analysis of disjoint operation is e33,381.966, while the
oordinated offering and bidding strategy in the second case leads to
7

13.02% increase of expected profit. In the same way, in the second
Table 4
Expected profit and CVaR gain in 𝛽 = 0.

Case studies Gain (%)

Expected profit CVaR

Case 2 13.02 8.39
Case 3 22.11 23.00

Table 5
Impact of coordinated and disjoint operation of the CAES on the expected profit and
CVaR of the HPGS.

Case study Expected profit (e) CVaR (e)

𝛽 = 0 𝛽 = 2 𝛽 = 0 𝛽 = 2

Coordinated [Wind-BES]
+ disjoint CAES

35,132.189 34,720.782 22,802.951 26,463.441

HPGS 37,728.841 37,394.281 23,347.454 29,173.620

scheme, the system experiences an 8.39% gain in the CVaR, which il-
lustrates that the system’s risk is reduced by the coordinated operation.
Using DRRs to cope with intermittent wind power generation via the
IDREX market, improves both substantially, CVaR and expected profit.
In this regard, for 𝛽 = 0, the coordinated scheduling of existing units
in the presence of the IDREX market results in a 22.11% and a 23%
increase in expected profit and CVaR, respectively. Adopting a more
conservative scheduling, i.e., increasing parameter 𝛽 [39], reduces the
alue of expected profit and increases the value of CVaR. Accordingly,
n the third operational case, by altering 𝛽 = 0 to 𝛽 = 1, this case
roduces only a 0.28% reduction in system’s profit, while it increases
he CVaR value by 20.75%. This demonstrates the efficiency of the
roposed offering and bidding mechanism. In other words, a slight loss
n the expected profit can be used by the decision-maker to remarkably
educe the associated risk.

To further analyze the benefits of the CAES on the operation of the
PGS (Case 2), Table 5 reports the impact of integrating CAES on the
xpected profit and CVaR of the HPGS. This analysis is performed for
wo different values of 𝛽 (𝛽 = 0 and 𝛽 = 2). As can be seen, the CAES
lays a significant role in boosting the expected profit and CVaR of
he HPGS, showing the benefits of entering the CAES into the proposed
PGS. According to this table, the presence of the CAES in the HPGS

esults in a 7.38% and a 2.38% in expected profit and CVaR of the
isk-neutral analysis (𝛽 = 0), respectively. Similarly, these values for
= 2 are increased to 7.69% (expected profit) and 10.24% (CVaR),

implying the more substantial role of the CAES in the conservative
scheduling. Overall, the CAES increases profitability and reduces the
associated risk.

3.1.2. Impact of various offering and bidding cases on the DA decisions
In order to illustrate how various decision-making schemes affect

DA variables, the expected offering and bidding quantities in the DA
market for the wind farm, CAES, and BES facilities pertaining to
risk-neutral analysis are depicted in Fig. 3. Applying a coordinated
operation of all resources (second and third cases), shows that the
DA decisions of the wind farm are mostly altered. In this regard, the
wind farm offers in the second and the third cases during the whole
Table 3
Expected profit and CVaR in different case studies.

Case study Expected profit (e) CVaR (e)

𝛽 = 0 𝛽 = 0.5 𝛽 = 1 𝛽 = 2 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 𝛽 = 2

Case 1

Wind farm 26,285.126 26,181.438 26,098.283 25,991.201 18,490.960 20,470.339 20,592.013 20,671.606
CAES 5162.011 5157.579 5104.937 5068.048 2622.630 2816.622 2870.622 2906.622
BES 1934.829 1928.811 1927.122 1926.981 424.952 745.640 748.352 748.476
Sum 33,381.966 33,267.828 33,130.342 32,986.23 21,538.542 24,032.601 24,210.987 24,326.704

Case 2 HPGS 37,728.841 37,621.710 37,551.382 37,394.281 23,347.454 29,022.289 29,121.190 29,173.620

Case 3 HPGS+DRRs 40,763.112 40,647.770 40,567.847 40,531.028 26,492.865 31,992.368 32,108.421 32,127.062
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Fig. 3. Expected offering and bidding quantities of the HPGS in the DA market.

scheduling horizon are the same, except for hours 5 and 21. This fact
illustrates how considering DRRs in the IDREX market can alter the sys-
tem’s decisions in the DA market. Another important point of attention
is that the participation of two energy storage systems, i.e., BES and
CAES, in the DA market is quite different from each other. The BES
8

system relies on purchasing energy at hours with low energy prices and
selling energy during high price hours, while the CAES facility mainly
operates in the simple-cycle mode since its charging power is extremely
low during the 24-hour horizon. The highest charging and discharging
powers of the BES facility happens at hours 5 and 21 with the lowest
and highest energy prices, respectively.

The DA offering and bidding curves are the key outputs of the
proposed method. These curves for two specific hours and two different
risk levels are shown in Fig. 4. As can be seen, different scheduling
cases and risk levels lead to diverse offering and bidding curves.
In the risk-neutral analysis (𝛽 = 0), the bidding quantities of the
second and the third scheduling cases are lower than or equal the
corresponding quantities in the first case, while the system’s offering
values in the second and the third cases for price realizations higher
than e57.2/MWh are higher than in case 1. Also in the risk-aversion
case (𝛽 = 2), the generation offers of the HPGS at hour 22 increase for
two price realizations, i.e., e54.88/MWh and e57.2/MWh, while its
offering curve in the first case does not change in comparison with the
risk-neutral analysis.

3.1.3. Impact of various offering and bidding cases on the intraday deci-
sions

The total traded energy in the intraday market for all scheduling
cases and various values of 𝛽 are presented in Fig. 5. The total traded
energy in the first case has a positive value for all risk aversion levels,
indicating that the total amount of power sold is higher than the
amount of power purchased in this market. In the second case, the total
amount of energy sold in this market is decreased, and, subsequently,
by increasing the value of 𝛽, the system concentrates on purchasing
electricity rather than selling it in the intraday market. Finally, in the
last case, the total traded energy for both risk-neutral and risk aversion
cases is negative due to the availability of the IDREX market. Fig. 6
shows the optimal procured pool-based and bilateral-based energy from
DRRs in the third case. It can be seen that the power provided during
the valley period is at its highest limit due to the low price offers
of DRRs in this period. Despite changing parameter 𝛽, the bilateral-
based energy does not change, while the pool-based energy merely
experiences slight variations during off-peak and peak periods.
Fig. 4. Offering and bidding curves of the HPGS in the DA market for hours 3 and 22.
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Fig. 5. Total traded energy in the intraday market for different values of 𝛽.

Fig. 6. Optimal traded energy between the HPGS and DRRs in the third case.

3.1.4. Impact of various offering and bidding cases on the imbalances
The effects of the different scheduling cases and diverse

risk-aversion levels on the last-stage decisions of the developed offering
and bidding structure, namely, imbalance cost and total energy devia-
tions are shown in Fig. 7. By comparing the imbalance cost for different
values of 𝛽, we can conclude that the more conservative the policy is,
the more eager the system becomes to reduce the imbalance cost, and,
thus, increase its profitability in the balancing market. From this figure,
it is observed that the imbalance cost of the HPGS in the second offering
and bidding case increases in comparison with the first one. This is due
to the fact that the coordinated scheduling of existing units lets the sys-
tem take action more freely in the target markets which, accordingly,
despite the rising imbalance cost, increases the system’s expected profit.
However, as can be seen from Fig. 7, the third operational case can be
used to considerably reduce the imbalance cost of the second case by
providing energy from DRRs in the IDREX market. It should be noted
that the results of total deviations in the balancing market are inversely
related to the imbalance cost in the aforementioned market. It is also
worth mentioning that positive values of energy deviations reflect the
excess of generated energy in the balancing market which should be
sold in this market, while negative values represent the shortage of
delivered energy in the balancing market with respect to the scheduled
energy that needs to be purchased from this market. For instance, as
the total energy deviations increase (increasing 𝛽), the imbalance cost
reduces. Similarly, the highest negative energy deviation concerns the
second operational case with the highest imbalance cost.

3.2. Results: Part II

In this part, the influence of adding the BES degradation cost on
the proposed methodology is investigated. As previously stated in 2.3,
to keep the model linear, the degradation cost curve is linearized
by means of 20 blocks. Table 6 reports the results of considering or
ignoring the BES degradation cost for two specific case studies, namely,
9

Fig. 7. Expected imbalance cost and total energy deviations in the balancing market
for different values of 𝛽.

Table 6
Economic impacts of the BES degradation cost on two specific case studies.

Case studies Expected Expected CVaR
profit (e) degradation cost (e) (e)

Case 1: BES 1934.829 0 424.952
without degradation cost

Case 1: BES 1869.419 62.531 382.926
with degradation cost

Case 3 40,763.112 0 26,492.865
without degradation cost

Case 3 40,693.201 67.206 26,436.749
with degradation cost

uncoordinated (Case 1) and coordinated (Case 3) operations. According
to these results, considering the BES degradation imposes economic
losses of e62.531 and e67.206 on uncoordinated and coordinated
operations, respectively. Not surprisingly, the CVaR also decreases
by taking into account the BES degradation. Moreover, the greater
degradation cost of Case 3 reveals that this strategy has deeper depth
of discharges compared to Case 1. The expected profit values and
corresponding CVaR values for Case 3 with degradation cost under
various values of 𝛽 are depicted in Fig. 8. As seen, by increasing the
value of 𝛽, CVaR values are increased, while expected profit values are
decreased.

Figs. 9 and 10 illustrate the BES offering and bidding quantities in
DA and intraday markets, respectively. As reported by these figures,
all in all, Case 3 experiences greater depth of discharges in comparison
with Case 1. Furthermore, by comparing the offering and bidding
quantities of the BES system with and without degradation in Case
1, it is observed that offering and bidding values in both DA and
intraday markets decrease if we take into account the degradation cost.
Following this, smaller bidding quantities in both DA and intraday
markets are noted when counting the degradation cost in Case 3. Also, a
comparison between the offering values in the DA and intraday markets
with and without taking into account BES degradation lets us conclude
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Fig. 8. Expected profit and CVaR for various values of 𝛽 in Case 3 with degradation
ost.

Fig. 9. Expected offering and bidding quantities of the BES in the DA market by
onsidering and ignoring the BES degradation.

Fig. 10. Expected offering and bidding quantities of the BES in the intraday market
by considering and ignoring the BES degradation.

that degradation considerations lead to higher intraday and lower DA
offering values. Lastly, the model statistics in Case 3 with degradation
cost are given in Table 7. Note that all simulations have been performed
in an ASUS laptop with 8 GB of RAM and a Core i5 CPU. As seen, the
computation time is acceptable, and the model has been scaled well.

4. Conclusions and future work

In this paper, a comprehensive joint offering and bidding mecha-
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nism was presented for an HPGS comprising of BES and CAES facilities
Table 7
Model statistics in Case 3 with degradation cost.

Number of continuous variables 56,385
Number of binary variables 120
Number of equations variables 73,034
Computation time 5.9 s

together with wind units and energy transactions with DRRs. The pro-
posed model was formulated as a three-stage stochastic MILP problem
and a practical risk management index, i.e., CVaR, was included in the
suggested structure. Diverse case studies based on various offering and
bidding schemes were designed, and different aspects of solutions were
studied. The main observations are:

• The impact of coordinated operation of wind, BES and CAES
resources on profit gain is more significant than the CVaR gain,
while using energy transactions between the HPGS and DRRs in
the proposed scheduling framework leads to a similar increase of
expected profit and CVaR, i.e., 22.11% and 23%, respectively.

• The coordinated participation of all resources in the electricity
markets has the most considerable influence on DA decisions
of the wind farm. In this regard, various risk-aversion levels
and different operational schemes give rise to variations in the
offering and bidding curves.

• The share of intraday energy market sales in the disjoint strategy
is higher than in the coordinated one. Furthermore, adopting a
more conservative approach increases the system’s tendency to
purchase energy from this market.

• The coordinated offering and bidding model allows a more flexi-
ble involvement of the HPGS in the DA and intraday markets by
increasing downward imbalances in the balancing market aiming
for a higher profit. In this regard, the IDREX market proves to be
a useful tool to dramatically lower the imbalance cost imposed on
the system.

• The BES system experiences a deeper depth of discharge in the
coordinated operation compared to the uncoordinated one, which
results in a greater degradation cost.

For future work, we plan to incorporate power-to-gas facilities into
the proposed HPGS and establish an appropriate offering and bidding
mechanism to enlarge the system’s flexibility and profitability. Further,
providing balancing reserves in addition to balancing energy could be
another perspective for future research directions.
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