
MightyL: A Compositional Translation
from MITL to Timed Automata?

Thomas Brihaye1, Gilles Geeraerts2, Hsi-Ming Ho1, Benjamin Monmege3

1 Université de Mons, Belgium, thomas.brihaye,hsi-ming.ho@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae@ulb.ac.be

3 Aix Marseille Univ, CNRS, LIF, France, benjamin.monmege@lif.univ-mrs.fr

Abstract. Metric Interval Temporal Logic (MITL) was first proposed in
the early 1990s as a specification formalism for real-time systems. Apart
from its appealing intuitive syntax, there are also theoretical evidences
that make MITL a prime real-time counterpart of Linear Temporal Logic
(LTL). Unfortunately, the tool support for MITL verification is still lack-
ing to this day. In this paper, we propose a new construction from MITL
to timed automata via very-weak one-clock alternating timed automata.
Our construction subsumes the well-known construction from LTL to
Büchi automata by Gastin and Oddoux and yet has the additional ben-
efits of being compositional and integrating easily with existing tools.
We implement the construction in our new tool MightyL and report on
experiments using Uppaal and LTSmin as back-ends.

1 Introduction

The design of critical software that respect real-time specifications is a notori-
ously difficult problem. In this context, verification of programs against formal
specifications is crucial, in order to handle the thin timing behaviours. In the
untimed setting, a logic widely used both in academia and industry is Linear
Temporal Logic (LTL) [31]. A crucial ingredient of its success is the possibility
to translate LTL formulae into (Büchi) automata. In the real-time counterpart,
Metric Interval Temporal Logic (MITL) [3] has been introduced twenty years ago
where it was established that it can be translated into (Büchi) timed automata
(TA). Beyond verification of real-time software, there are numerous interests in
MITL from other domains, e.g. automated planning and scheduling [36], con-
trol engineering [18] and systems biology [6]. The translation from MITL to TAs
is complicated and has led to some simplified constructions, e.g. [17, 27]. How-
ever, despite these efforts, the tool support for MITL is still lacking to this day.
To the best of our knowledge, the only implementation of an automata-based
construction is described in [10, 11], but is not publicly available. Since existing
verification tools based on timed automata have been around for quite some time
? This work has been supported by the FRS/F.N.R.S. PDR grant SyVeRLo, and (par-
tially) funded by the DeLTA project (ANR-16-CE40-0007) and the SensAS project
(INS2I JCJC’17).

and have been successful (e.g., Uppaal [26] first appeared in 1995), it would be
preferable if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a
more practical construction from MITL to (Büchi) timed automata. Compared
to [10,11], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [29] as an
intermediate formalism, our construction exploits the ‘very-weakness’ of the
structure of OCATAs obtained from MITL formulae to reduce state space. In
particular, our construction subsumes LTL2BA [19] in the case of LTL.

2. The number of clocks in the resulting TA is reduced by a factor of up to two.
This is achieved via a more fine-grained analysis of the possible clock values
(see Section 5).

3. The construction is compositional : for each location of the OCATA A ob-
tained from the input MITL formula, we construct a ‘component’ TA and es-
tablish a connection between the runs of A and the runs of the synchronous
product of these components. Thanks to this connection, we can give the out-
put TA in terms of components; this greatly simplifies the implementation,
and speeds up its execution.

4. The construction is compatible with off-the-shelf model-checkers: our tool
MightyL generates output automata in the Uppaal xml format which,
besides Uppaal [26] itself, can also be analysed by LTSmin [23] with opaal
front-end, TiAMo [9], ITS-tools [33], DiVinE [5], etc.

Related work. There is already a number of MITL-to-TA constructions in the
literature [3,17,27]. However, most of them interpret MITL over signals (i.e. the
continuous semantics of MITL) and hence generate signal automata. This choice
unfortunately hinders the possibility to leverage existing tools based on classical
timed automata over timed words [2] and is probably one of the reasons why the
aforementioned constructions have never been implemented.4 We, following [4,
10, 11, 35] (among others), interpret MITL over timed words (i.e. the pointwise
semantics of MITL). Note that there have been some implementations that deal
with peculiar specification patterns over timed words (e.g. [1]). For MITL, apart
from [10, 11] that we mentioned earlier, we are only aware of implementations
for rather restricted cases, such as the safety fragment of MITL0,∞ [12] or MITL
over untimed words [36]. Our construction subsumes all of these approaches.

Using alternating automata as an intermediate formalism is a standard ap-
proach in LTL model-checking [34]. However, the translation from alternating
automata to Büchi automata may incur an exponential blow-up if the output
automaton is constructed explicitly [19]. For this reason, an on-the-fly approach
is proposed in [21], but it requires a specialised model-checking algorithm. Al-
ternatively, [8] gives a symbolic encoding of alternating automata which can
be used directly with NuSMV [13], but minimality of transitions (which may

4 Nonetheless, it has been argued that a continuous model of time is preferable from
a theoretical point of view; see e.g. [22].

2

potentially improve the performance of verification algorithms, cf. [21]) is diffi-
cult to enforce in this setting (see also [14, 32]). Our construction combines the
advantages of these approaches—it can be regarded as a symbolic encoding of
OCATAs in TAs, enforcing some minimality criteria on transitions for efficiency
(see Section 6)—and provides compatibility with existing tools that construct
state spaces on-the-fly. By contrast, [17,27], not based on OCATAs, also give the
resulting automaton in terms of smaller component automata, but they have to
use specialised product constructions to synchronise the components.

Apart from automata-theoretic approaches, [7] considers ‘bounded model-
checking’ which encodes the satisfiability problem for MITL (in the continuous
semantics) into an SMT problem (Satisfiability Modulo Theories) [15]. This ap-
proach is complete when very large bounds (numbers of regions of equivalent
TA) are used, but such bounds are clearly impractical for current SMT solvers.

Outline. Section 2 starts with preliminary definitions of timed logics and (alter-
nating) timed automata. Sections 3, 4 and 5 then give our new translation from
formulae to generalised Büchi (timed) automata for LTL, MITL0,∞ (a fragment
of MITL where only intervals of the form [0, a], [0, a), [a,+∞), or (a,+∞) are
allowed), and full MITL, respectively. We report on our OCaml implementation
MightyL and some promising experiments on several benchmarks in Section 6.

2 Timed logics vs (alternating) timed automata

Timed languages. Let AP be a finite set of atomic propositions, and Σ = 2AP.
A timed word over Σ is an infinite sequence ρ = (σ1, τ1)(σ2, τ2) . . . over Σ×R+

with (τi)i≥1 a non-decreasing sequence of non-negative real numbers. We denote
by TΣω the set of timed words over Σ. A timed language is a subset of TΣω.

Timed logics. We consider the satisfiability and model-checking problem of
Metric Interval Temporal Logic (MITL), an extension of Linear Temporal Logic
(LTL) in which temporal modalities can be labelled with non-singular timed
intervals (or [0, 0], which is the only singular interval we allow). Formally, MITL
formulae over AP are generated by the grammar

ϕ := p | ϕ ∧ ϕ | ¬ϕ | XIϕ | ϕUI ϕ

where p ∈ AP and I is either a non-singular interval over R+ with endpoints in
N ∪ {+∞} or [0, 0]. To simplify our explanations, we will only consider closed
non-singular intervals in the sequel, i.e. intervals of the form [a, b] or [a,+∞),
with 0 ≤ a < b < +∞. We let |I| be the length of the interval I: |[a, b]| = b− a
for 0 ≤ a < b < +∞ and |[a,+∞)| = +∞.

We consider the pointwise semantics and interpret MITL formulae over timed
words. The semantics of a formula ϕ in MITL is defined inductively: given ρ =
(σ1, τ1)(σ2, τ2) · · · ∈ TΣω, and a position i ≥ 1, we let

– (ρ, i) |= p if p ∈ σi;
– (ρ, i) |= ϕ1 ∧ ϕ2 if (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2;

3

– (ρ, i) |= ¬ϕ if (ρ, i) 6|= ϕ;
– (ρ, i) |= XIϕ if (ρ, i+ 1) |= ϕ and τi+1 − τi ∈ I;
– (ρ, i) |= ϕ1 UI ϕ2 if there exists j ≥ i, (ρ, j) |= ϕ2, τj − τi ∈ I, and, for all
i ≤ k < j, (ρ, k) |= ϕ1.

We derive other Boolean operators with the following macros: ϕ1 ∨ ϕ2 ≡
¬(¬ϕ1 ∧ ¬ϕ2), > ≡ p ∨ ¬p, ⊥ ≡ ¬>, and ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2. We also defineuse ‘≡’ over ‘:=’

here?
use ‘≡’ over ‘:=’
here? other temporal operators as usual: the ‘eventually’ operator FIϕ ≡ >UI ϕ, the

‘globally’ operator GIϕ ≡ ¬FI¬ϕ, the ‘release’ operator ϕ1RI ϕ2 ≡ ¬((¬ϕ1)UI

(¬ϕ2)), and the ‘dual-next’ operator XIϕ ≡ ¬XI¬ϕ (contrary to LTL, it is not
true that ¬XIϕ ≡ XI¬ϕ). With the release and dual-next operators, we can
transform every formula ϕ into negative normal form, i.e. formulae using only
predicates of AP, their negations, and the operators ∨, ∧, UI , RI , XI , and XI .
To help the understanding, let us detail the semantics of ϕ1 RI ϕ2:

– (ρ, i) |= ϕ1 RI ϕ2 if for all j ≥ i such that τj − τi ∈ I, either (ρ, j) |= ϕ2, or
there exists i ≤ k < j such that (ρ, k) |= ϕ1.

We say that ρ satisfies the formula ϕ, written ρ |= ϕ if (ρ, 1) |= ϕ, and we
denote by JϕK the set of all timed words satisfying ϕ. When writing formulae, we
omit the trivial interval [0,+∞). LTL is the fragment of MITL where all operators
are labelled by [0,∞); and MITL0,∞ is the fragment where, in all intervals, either
the left endpoint is 0 or the right endpoint is +∞.

Timed automata. Let X be a finite set of real valued variables, called clocks.
The set G(X) of clock constraints g over X is defined by g := > | g ∧ g | x ./ c,
where ./ ∈ {≤, <,≥, >}, x ∈ X and c ∈ N. A valuation over X is a mapping
v : X → R+. We denote by 0 the valuation that maps every clock to 0, and
we write the valuation simply as a value in R+ when X is a singleton. The
satisfaction of a constraint g by a valuation v is defined in the usual way and
noted v |= g, and we denote by JgK the set of valuations v satisfying g. For t ∈ R+,
we let v + t be the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For
R ⊆ X, we let v[R← 0] be the valuation defined by (v[R← 0])(x) = 0 if x ∈ R,
and (v[R← 0])(x) = v(x) otherwise.

We introduce the notion of generalised Büchi timed automaton (GBTA) as an
extension of classical timed automata [2] with a generalised accepting condition
(used by [20] in the untimed setting). A GBTA is a tuple A = (L,Σ, `0, ∆,F)
where L is a finite set of locations, Σ is a finite alphabet, `0 ∈ L is the initial
location, ∆ ⊆ L × Σ × G(X) × 2X × L is the transition relation, and F =
{F1, . . . , Fn}, with Fi ⊆ L for all 1 ≤ i ≤ n, is the set of sets of final locations.
A timed automaton (TA), as described in [2], is a special case of GBTA where
F = {F} is a singleton (F contains the accepting locations of the TA). A state
of A is a pair (`, v) of a location ` ∈ L and a valuation v of the clocks in X. A
run of A over the timed word (σ1, τ1)(σ2, τ2) · · · ∈ TΣω is a sequence of states
C0, C1, . . . where (i) C0 = (`0,0) and (ii) for each i ≥ 0 such that Ci = (`, v),
there is a transition (`, σi+1, g, R, `

′) such that Ci+1 = (`′, v′), v+(τi+1−τi) |= g
(assuming τ0 = 0) and v′ = (v + (τi+1 − τi))[R ← 0]. By the generalised Büchi

4

acceptance condition, a run is accepting iff the set of locations that it visits
infinitely often contains at least one location from each set Fi, for all 1 ≤ i ≤ n.
We let JAK be the set of timed words on which there exist accepting runs of A.

Synchronisation of timed automata. In the following, we will consider
GBTAs described by synchronous products of several components. More pre-
cisely, given two GBTAs A1 = (L1, Σ, `10, ∆

1,F1) and A2 = (L2, Σ, `20, ∆
2,F2)

over disjoint sets of clocks, we define the GBTA A1 × A2 = (L,Σ, `0, ∆,F) ob-
tained by synchronising A1 and A2. A1 ×A2’s set of locations is L = L1 × L2,
with `0 = (`10, `

2
0). The acceptance condition is obtained by mimicking a disjoint

union of the generalised Büchi conditions: assuming F1 = {F1, . . . , Fn} and
F2 = {G1, . . . , Gm}, we let F = {F1 ×L2, . . . , Fn ×L2, L1 ×G1, . . . , L

1 ×Gm}.
Finally, ((`11, `21), σ, g, R, (`12, `22)) ∈ ∆ if there exists (`11, σ, g

1, R1, `12) ∈ ∆1 and
(`21, σ, g

2, R2, `22) ∈ ∆2 such that g = g1 ∧ g2 and R = R1 ∪ R2. This definition
can be extended for the synchronisation of a set of GBTAs {Ai | i ∈ I}: the
product is then written as

∏
i∈I Ai.

One-clock alternating timed automata. One-clock alternating timed au-
tomata (OCATA) [29] extend (non-deterministic) one-clock timed automata by
adding conjunctive transitions. Intuitively, a conjunctive transition spawns sev-
eral copies of the automaton that run in parallel from the targets of the transi-
tion. A word is accepted if and only if all copies accept it. An example is shown
in Fig. 1, where the conjunctive transition is the hyperedge starting from `0.

Formally, we consider a single clock x and, for a set L of locations, let Γ (L)
be the set of formulae defined by

γ := > | ⊥ | γ ∨ γ | γ ∧ γ | ` | x ./ c | x.γ

where c ∈ N, ./ ∈ {≤, <,≥, >}, and ` ∈ L. Compared to the clock constraints
defined above for TAs, Γ (L) allows non-determinism (∨ operator), locations as
atoms, and expressions of the form x.γ (meaning that x is reset in γ). An OCATA
is a tuple A = (L,Σ, `0, δ, F) where L is a finite set of locations, Σ is a finite
alphabet, `0 ∈ L is the initial location, δ : L × Σ → Γ (L) is the transition
function, and F ⊆ L is the set of final locations. A state of A is a pair (`, v)
of a location in L and a valuation of the single clock x. Models of the formulae
in Γ (L), with respect to a clock valuation v ∈ R+, are sets of states M :

– M |=v >; M |=v ` if (`, v) ∈M ; M |=v x ./ c if v ./ c; M |=v x.γ if M |=0 γ;
– M |=v γ1 ∧ γ2 if M |=v γ1 and M |=v γ2;
– M |=v γ1 ∨ γ2 if M |=v γ1 or M |=v γ2.

A set M of states is said to be a minimal model of the formula γ ∈ Γ (S) with
respect to a clock valuation v ∈ R+ iff M |=v γ and there is no proper subset
M ′ ⊂M with M ′ |=v γ. A run of A over a timed word ρ = (σ1, τ1)(σ2, τ2) · · · ∈
TΣω is a rooted directed acyclic graph (DAG) G = (V,→) with vertices of the
form (`, v, i) ∈ L×R+×N, (`0, 0, 0) as root, and edges as follows: for every vertex
(`, v, i), we choose a minimal model M of the formula δ(`, σi+1) with respect to
v+ (τi+1 − τi) (again, τ0 = 0), and we have an edge (`, v, i)→ (`′, v′, i+1) in G

5

`0 ∧ `1

Σ \Σp

Σp \Σq

Σp ∩Σq

x := 0

Σ

x ≤ 1, Σq

Fig. 1. An OCATA accepting the language of G(p⇒ F[0,1]q).

(`0, 0, 0) (`0, 0.42, 1)

(`0, 0.42, 2)

(`1, 0, 2)

(`0, 0.7, 3) . . .

Fig. 2. A run of the OCATA of Fig. 1 over (∅, 0.42)({p}, 0.42)({q}, 0.7)

for every state (`′, v′) appearing in model M . Such a run is accepting iff there is
no infinite path in G that visit final locations only finitely often. We let JAK be
the set of timed words on which there exist accepting runs of A.

It is also useful to see a run as a linear sequence of configurations (i.e. finite
sets of states) which gather all states at a given DAG level. Formally, from a
DAG G = (V,→) we extract the sequence of configurations K0,K1, . . . where
Ki = {(`, v) | (`, v, i) ∈ V } for all i ≥ 0.5

Example 1. Consider the OCATA of Fig. 1 on the alphabet Σ = 2{p,q}. For
each proposition π ∈ {p, q}, we write Σπ = {σ ∈ Σ | π ∈ σ}. A run over the
timed word (∅, 0.42)({p}, 0.42)({q}, 0.7) . . . is depicted in Fig. ??. It starts with
the DAG rooted in (`0, 0, 0) (initially, there is only one copy in `0 with the clock
equal to 0). This root has a single successor (`0, 0.42, 1), which has two successors
(`0, 0.42, 2) and (`1, 0, 2) (after firing the conjunctive transition from `0). Then,
(`1, 0, 2) has no successor since the empty model is a minimal model of the next
transition (the transition from `1 points to no location). The associated sequence
of configurations starts by: {(`0, 0)}, {(`0, 0.42)}, {(`0, 0.42), (`1, 0)} . . .

Each formula ϕ of MITL can be translated into an OCATA Aϕ that accepts
the same language [11,29], and with a number of locations linear in the number
of subformulae of ϕ. We recall the definition of Aϕ for the sake of completeness.
The set of locations of Aϕ contains: (i) a copy ϕinit of ϕ; (ii) all the subformulae
of ϕ (that we suppose to be in negative normal form) whose outermost connective
is UI or RI ; and (iii) copies ψ and ψr of all subformulae ψ of ϕ whose outermost
connective is XI or XI . Its initial location is ϕinit, and the accepting locations of
F are all the subformulae of the form ϕ1RI ϕ2. Finally, δ is defined inductively:

– δ(ϕinit, σ) = x.δ(ϕ, σ), δ(>, σ) = >, and δ(⊥, σ) = ⊥;
– δ(p, σ) = > if p ∈ σ, δ(p, σ) = ⊥ otherwise;

5 In the current (infinite-word) setting, we cannot define acceptance conditions in
terms of configurations as in [29].

6

– δ(¬p, σ) = > if p /∈ σ, δ(¬p, σ) = ⊥ otherwise;
– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ), and δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ);
– δ(ϕ1 UI ϕ2, σ) = (x.δ(ϕ2, σ) ∧ x ∈ I) ∨ (x.δ(ϕ1, σ) ∧ ϕ1 UI ϕ2 ∧ x ≤ sup I);
– δ(ϕ1 RI ϕ2, σ) = (x.δ(ϕ2, σ) ∨ x /∈ I) ∧ (x.δ(ϕ1, σ) ∨ ϕ1 RI ϕ2 ∨ x > sup I);
– δ(XIϕ, σ) = x.(XIϕ)

r, and δ((XIϕ)
r, σ) = x ∈ I ∧ x.δ(ϕ, σ);

– δ(XIϕ, σ) = x.(XIϕ)
r, and δ((XIϕ)

r, σ) = x /∈ I ∨ x.δ(ϕ, σ).

As already noticed in [11], the OCATA Aϕ produced from an MITL formula ϕ
is very-weak [19, 25, 28], i.e. it comes with a partial order on its locations such
that all locations appearing in δ(`, σ) are bounded above by ` in this order.
For an OCATA Aϕ obtained from an MITL formula ϕ, the order is given by the
subformula order: ϕinit is the greatest element in the order, and a location ψ
is less than χ if ψ is a subformula of χ. We will also make use of the following
properties of δ: (i) if `′ appears in δ(`, σ) then it is preceded by a clock reset
if and only if `′ 6= `; and (ii) each `′ either has no ancestors or has a unique
ancestor, i.e. there is a unique ` such that `′ appears in δ(`, σ) for some σ.

Theorem 2 ([11]). For all formulae ϕ of MITL, JAϕK = JϕK.

Remark 3. To ease the presentation, we use Boolean formulae over atomic propo-
sitions as transition labels. For instance, Σ \Σp will be written as ¬p.

3 Compositional removal of alternation

The current and next two sections are devoted to explaining the core idea of
our construction: simulate the OCATA Aϕ obtained from an MITL formula ϕ
by the synchronous product of component Büchi timed automata, one for each
temporal subformula. The very-weakness of Aϕ is crucial for our construction some additional

text here!
some additional
text here!to work: a run of Aϕ is accepting iff Aϕ does not get stuck at a non-accepting

location in any branch. Therefore, we can keep track of each location with a
separate component and simply define a suitable Büchi acceptance condition on
each such component.6 The main advantage of our compositional construction
is that it preserves the structure of the formula, and thus we can hope that the
model-checking tool (which will in the end be responsible for the composition)
takes this into account.7 At the very least, the model-checking tool can use
an on-the-fly approach in composition (as is indeed the case for Uppaal and
LTSmin), which is often faster in practice: the explicit construction of the whole
product can be avoided when there is an accepting run. In what follows, we fix
a formula ϕ ∈ MITL over AP in negative normal form, and let Φ be the set
of subformulae ψ of ϕ whose outermost connective is UI or RI (for the sake
6 This is not possible for general (not very-weak) OCATAs since it might be the case
that a branch alternates between several non-accepting location without ever hitting
an accepting location.

7 The same idea underlies the antichain-based algorithms for LTL model-checking [?],
where the structure can be exploited to define a pre-order on the state space of the
resulting automaton.

7

of simplicity, we forget the operators XI and XI hereafter). Then, we add a
fresh atomic proposition pψ for each subformula ψ ∈ Φ (i.e. for each non-initial
location of the OCATA Aϕ). Let APϕ denote the set of fresh atomic propositions
hence introduced. For each subformula ψ of ϕ, we denote by Pψ the set of atomic
propositions pξ ∈ APϕ such that ξ is a top-level temporal subformula of ψ, i.e.
the outermost connective of ξ is UI or RI , yet ξ does not occur under the scope
of another UI or RI . For instance, PpUIq∨rUI(sRt) = {ppUIq, prUI(sRt)}.

Hintikka sequences and triggers. A Hintikka sequence of ϕ is a timed
word ρ′ over AP ∪ APϕ. Intuitively, Hintikka sequences can be regarded as an
instrumented version of timed words, where the extra atomic propositions from
APϕ are triggers that connect timed words to their runs in the OCATA Aϕ; this
is the central notion of our construction which, as we will prove, indeed sim-
ulates the runs of Aϕ. Pulling the trigger pψ (i.e. setting pψ to true) at some
point means that ψ is required to hold at this point. However, the absence of
a trigger pξ does not mean that subformula ξ must not be satisfied—its satis-
faction is simply not required at this point. We denote by projAP(ρ

′) the timed
word obtained by hiding all the atomic propositions in APϕ from ρ′. We also let
projAP(L) = {projAP(ρ

′) | ρ′ ∈ L} for a timed language L over AP ∪ APϕ.

Formulae over AP ∪ APϕ. We now introduce some syntactic operations on
Boolean combinations of atomic propositions in AP ∪ APϕ, that will be used to
construct the component Büchi automata later. Specifically, for a subformula ψ
of ϕ, we define formulae ψ, ∗ψ, ∼ψ, and ψ̂.

The formula ψ is obtained from ψ by replacing all top-level temporal sub-
formulae by their corresponding triggers. Formally, ψ is defined inductively as
follows (where p ∈ AP ∪ APϕ):

ψ1 ∧ ψ2 = ψ1 ∧ ψ2 ψ = ψ when ψ is > or ⊥ or p or ¬p
ψ1 ∨ ψ2 = ψ1 ∨ ψ2 ψ = pψ when ψ is ψ1 UI ψ2 or ψ1 RI ψ2 .

The formula ∗ψ, read as “do not pull the triggers of ψ”, will be used to ensure
that our component automata only follow the minimal models of the transition
function of Aϕ (we will see in Section 6 how crucial it is, for performance, to
generate only minimal models). It is the conjunction of negations of all the
atomic propositions in Pψ. As a concrete example, ∗((¬p∨ψ1 Uψ2)∧ (q ∨ψ3 R
(ψ4 U ψ5))) = ¬pψ1Uψ2 ∧ ¬pψ3R(ψ4Uψ5). The formula ∼ψ asserts that ψ is false
and none of its triggers is activated: ∼ψ = ¬ψ ∧ ∗ψ. Finally, the formula ψ̂ is
defined as mm(ψ) where mm(α) is defined inductively as follows:

mm(p) = p mm(¬p) = ¬p mm(>) = > mm(⊥) = ⊥
mm(α1 ∨ α2) =

(
mm(α1) ∧ ∼α2

)
∨
(
mm(α2) ∧ ∼α1

)
∨
(
(α1 ∨ α2) ∧ ∗α1 ∧ ∗α2

)
mm(α1 ∧ α2) = mm(α1) ∧mm(α2) .

Intuitively, mm(α) is satisfiable if and only if α is satisfiable, but mm(α) only
permits models of α that are minimal with respect to the triggers it contains:

8

1 0
ϕ̂ ∗ϕa)

0 1

pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2

pχ ∧ ∗ϕ1 ∧ ϕ̂2

∗ϕ1 ∧ ϕ̂2

ϕ̂1 ∧ ∼ϕ2

b) 0 1

pχ ∧ ∼ϕ1 ∧ ϕ̂2

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2

pχ ∧ ϕ̂1 ∧ ϕ̂2

ϕ̂1 ∧ ϕ̂2

∼ϕ1 ∧ ϕ̂2

c)

Fig. 3. The automata a) Cinit and Cχ for b) χ = ϕ1 U ϕ2, and c) χ = ϕ1 R ϕ2.

for mm(α1 ∨α2) to be true, either mm(α1) is true and α2 does not hold, or vice
versa, or α1∨α2 is indeed true, but not because of any of the triggers it contains.

Component Büchi automata for LTL. We are now ready to present the
component Büchi automata that we consider, for an LTL formula ϕ. Instead of
building a monolithic Büchi automaton Bϕ directly from the alternating automa-
ton, as in [19], we build small component Büchi automata, that are language-
equivalent to the automaton Bϕ, once synchronised. There is an initial compo-
nent Cinit, and a component Büchi automaton Cχ, for each χ ∈ Φ (see Fig. 2).
Consider the case where χ = ϕ1 U ϕ2 for instance. Component Cχ has two lo-
cations 0 and 1 with the following intended meaning: Cχ is in location 1 iff the
trigger pχ has been pulled in the past by Cinit, in which case pχ ∈ Pϕ, or by a
unique component Cψ1UIψ2 (or Cψ1RIψ2) such that pχ ∈ Pψ1 or pχ ∈ Pψ2 , and Corrected an er-

ror here.
Corrected an er-
ror here.χ has not been satisfied yet. When component Cχ is in location 1, we say that

we have an obligation for χ. To satisfy this obligation, we must see a letter in
the future where ϕ2 holds. Thus, there is a self-loop on location 1 whose label
ensures that ϕ2 does not hold (because of ∼ϕ2), while ϕ1 still holds (this is en-
sured by ϕ̂1, which also pulls a minimal set of triggers for ϕ1 to be fulfilled). Cχ
moves back from 1 to 0 when ϕ2 holds, while no trigger of ϕ1 should be pulled
at this instant (which is translated by ∗ϕ1). From location 0, if we do not read
trigger pχ, nothing has to be checked and we do not pull any trigger. However,
if pχ is pulled, then, either ϕ2 holds right away and the obligation is fulfilled
immediately, or we jump to location 1.

Example 4. Consider the LTL formula G(p ⇒ Fq) that can be rewritten into
negative normal form as ϕ = ⊥ R (¬p ∨ > U q). Then, the three component
Büchi automata Cinit, Cϕ and CFq, after the constraints on the transitions are
simplified, are depicted on the top of Fig. 3, The automaton C = Cinit×Cϕ×CFq
is depicted in the middle. Once atomic propositions in APϕ are projected away,
one obtains an automaton isomorphic to the one at the bottom of the figure that
accepts JϕK.

Proposition 5. For all LTL formulae ϕ, projAP(JCinit ×
∏
χ∈Φ CχK) = JϕK.

We will provide a sketch of proof in the case of MITL0,∞. A full proof can be
found in the full version of this paper.

9

a)

1 0
pϕ ¬pϕ

0 1
pϕ ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)¬pϕ ∧ ¬pFq ¬p ∧ ¬pFq ∨ p ∧ pFq

0 1

pFq ∧ ¬q
¬pFq

pFq ∧ q
q

¬q

⇓

b)
100 010 011

pϕ ∧ pFq ∧ p ∧ ¬q

pϕ ∧ ¬p ∧ ¬pFq
pϕ ∧ p ∧ pFq ∧ q

¬p ∧ ¬pFq
p ∧ pFq ∧ q

pFq ∧ p ∧ ¬q

¬q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)

q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)

⇓

c)

¬p ∨ p ∧ q

p ∧ ¬q

¬q

q

Fig. 4. a) Component Büchi automata for the formula ϕ = ⊥R (¬p∨>U q); b) Büchi
automaton obtained by the product of the components; c) Büchi automaton obtained
by projecting away APϕ (and merging two identical locations).

4 The case of MITL0,∞

We now describe how to lift the translation we described earlier to the timed
operators of MITL0,∞. The new components for U[0,a], R[0,a], and R[a,∞) are
depicted in Fig. 4. They have the same shape as the components for untimed
U and R (see Fig. 2); only the guards are changed to reflect the more involved
semantics of the timed operators. Observe that these automata have only one
clock. To understand why this is sufficient, consider the formula G(p⇒ χ) with
χ = pU[0,2] q. After reading ({p}, 0)({p}, 0.4)({p}, 1), the OCATA Aϕ reaches the
configuration {(ϕ, 0), (χ, 0), (χ, 0.6), (χ, 1)}, meaning intuitively that, to satisfy
the formula, one must fulfil three obligations related to χ: to see q’s within 2,
1.4, and 1 time units, respectively. Hence, we can store the earliest obligation,
corresponding to (χ, 1), only (as already observed in [11]). Indeed, if the cor-
responding instance of χ is satisfied, it means that there will be a q occurring
within less that 1 time unit, which will also satisfy all the other obligations.
More generally, for operators U[0,a] and R[a,∞), it is always the case that only
the oldest obligation has to be stored, while for operators R[0,a] and U[a,∞), only
the earliest obligation has to be stored. This is translated in the components by
the absence/presence of resets on transitions that leave state 1 (which is reached
when an obligation is currently active) and read pχ.

10

a) 0 1

pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0
pχ ∧ ∗ϕ1 ∧ ϕ̂2, x := 0

∗ϕ1 ∧ ϕ̂2 ∧ x ≤ a, x := 0

ϕ̂1 ∧ ∼ϕ2 ∧ x ≤ a

b) 0 1

pχ ∧ ∼ϕ1 ∧ ϕ̂2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2 ∧ x > a, x := 0
¬pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≤ a, x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2, x := 0

¬pχ ∧ ∼ϕ1 ∧ ϕ̂2 ∧ x ≤ a
pχ ∧ ∼ϕ1 ∧ ϕ̂2, x := 0

c) 0 1

pχ ∧ ∼ϕ1 ∧ ∗ϕ2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2, x := 0

ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0
ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

∼ϕ1 ∧ ∗ϕ2 ∧ x < a
∼ϕ1 ∧ ϕ̂2 ∧ x ≥ a

Fig. 5. One-clock TA for the subformulae: a) χ = ϕ1U[0,a] ϕ2, b) χ = ϕ1R[0,a] ϕ2, and
c) χ = ϕ1 R[a,∞) ϕ2.

For χ = ϕ1 U[a,∞) ϕ2, the situation is slightly more complicated, although
one clock is again sufficient. The corresponding component is in Fig. 5 and has
four locations. To understand why, consider the case when there is an obligation
for χ associated with the current valuation v ≥ a of clock x (Cχ is in location
1), the current letter contains pχ and satisfies both ϕ̂1 and ϕ̂2. Since the trigger
has been pulled, Cχ should stay in the non-accepting location 1. On the other
hand, the pending obligation has also been fulfilled, and an accepting location
should be visited. So, instead of staying in 1, Cχ moves to 1′ in this case: 1′ is
a copy of 1 as far as transitions are concerned, but it is accepting. The location
1′′ is used to deal with the situation where pχ is launched infinitely often but no
two occurrences of pχ are separated by more than a time units; in this case, we
non-deterministically move to 1′′ and add a new obligation (by resetting x) after
the current obligation has been verified. Notice that this problem cannot occur
for ϕ1 U ϕ2, or ϕ1 U[0,a] ϕ2: in these cases, the new obligation is immediately
fulfilled, and the automaton moves to the initial, accepting, location.

We will now present the extension of Proposition 5 to the case of MITL0,∞.
The proof will rely on a decoration of the OCATA Aϕ with the triggers. Formally,
we replace Γ (L) (defined on page 5) by Γϕ(L), the set of formulae defined by

γ := > | ⊥ | γ ∨ γ | γ ∧ γ | ` | x ./ c | xQ.γ

where c ∈ N, ./ ∈ {≤, <,≥, >}, ` ∈ L, and Q ⊆ APϕ. Then, we redefine the
transition function of Aϕ as a function from L×Σ to Γϕ(L) and label the clock
x in x.γ by the triggers it pulls, i.e. we replace the rules for UI and RI by

δ(ϕ1UI ϕ2, σ) = (xPϕ2
.δ(ϕ2, σ)∧x ∈ I)∨ (xPϕ1

.δ(ϕ1, σ)∧ϕ1UI ϕ2∧x ≤ sup I)
δ(ϕ1RI ϕ2, σ) = (xPϕ2

.δ(ϕ2, σ)∨x /∈ I)∧ (xPϕ1
.δ(ϕ1, σ)∨ϕ1RI ϕ2∨x > sup I).

These decorations do not affect the evaluation of models of a transition. However
they allow us to define the set of triggers associated with a modelM . Consider a

11

0 1 1′

1′′

pχ ∧ ϕ̂1 ∧ ∗ϕ2, x := 0

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2,
x := 0

¬pχ ∧ ∗ϕ1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a
pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0

pχ ∧ ϕ̂1 ∧ ∼ϕ2

pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a

pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ∗ϕ1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a
pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0

ϕ̂1 ∧ ∼ϕ2

ϕ̂1 ∧ ∗ϕ2 ∧ x < a

ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a,
x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a,
x := 0

Fig. 6. One-clock TA for the subformula χ = ϕ1 U[a,∞) ϕ2.

formula γ ∈ Γϕ(L) and a minimal modelM of γ with respect to a clock valuation
v ∈ R+. We denote by trig(M,γ, v) the unique subset of APϕ inductively defined
by:

– trig(M,γ1 ∧ γ2, v) = trig(M,γ1, v) ∪ trig(M,γ2, v);

– trig(M,γ1 ∨ γ2, v) =

{
trig(M,γ1, v) if M |=v γ1
trig(M,γ2, v) otherwise;

– trig(M,xQ.γ, v) = Q∪ trig(M,γ, 0); and trig(M,γ, v) = ∅ otherwise.

Proposition 6. For all MITL0,∞ formulae ϕ, projAP(JCinit×
∏
χ∈Φ CχK) = JϕK.

Proof (Sketch of proof). We rely on Theorem 2 showing that JϕK = JAϕK. There-
fore, we must relate the synchronous product of all component one-clock Büchi
timed automata C = Cinit ×

∏
χ∈Φ Cχ, with the very-weak OCATA Aϕ. We con-

sider a timed word ρ ∈ JAϕK and an accepting run G = (V,→) of Aϕ over ρ. We
also let K0,K1, . . . be the sequence of configurations associated with the run G.

First, we construct a timed word ρ′ over 2AP∪APϕ from ρ and G, by adding the
triggers in APϕ according to the minimal models selected in the run G. Precisely,
let ρ = (σ1, τ1)(σ2, τ2) For all i ≥ 0, we associate every configuration (`, v)
of Ki with the pair (γ`,v,M`,v) of transition formula and minimal model chosen
in the run G when reading σi+1 after a delay τi+1 − τi. We then gather all
the triggers in a set Qi =

⋃
(`,v)∈Ki trig(M`,v, γ`,v, v + τi+1 − τi), and let ρ′ =

(σ1 ∪Q1, τ1)(σ2 ∪Q2, τ2) . . . be the Hintikka sequence we will read in C.
Second, we map the sequence (Ki)i≥0 of configurations in Aϕ to a run (Ci)i≥0

in C. For all i ≥ 0, we let Ci = (binit, (bχ, vχ)χ∈Φ) with binit being the config-
uration of Cinit (that is a TA without clocks), and (bχ, vχ) the configuration of
Cχ, for all χ ∈ Φ, defined by: binit = 1 if and only if i = 0 (remember that
K0 = {(ϕinit, 0, 0)}, and that location ϕinit of Aϕ is no longer reached after-
wards), bχ = 1 if and only if i > 0 and (χ, v) ∈ Ki, while vχ(x) = max(χ,v)∈Ki v

12

if χ = ϕ1U[0,a]ϕ2 or χ = ϕ1R[a,∞)ϕ2, and vχ(x) = min(χ,v)∈Ki v otherwise (ac-
cording to the previous remark regarding the fact that only the oldest/earliest
obligation should be stored).

Then, we can show that C0, C1, . . . is an accepting run of C, by proving
that the projection of the configurations on each component is an accepting run
of the component (the generalised Büchi acceptance condition on C is fulfilled
exactly when each Büchi acceptance condition of the components is fulfilled).
This is achieved by a close inspection of the constraints over transitions of the
components (see Appendix B.1 for more details).

The proof of the reciprocal consists in building a DAG G that is an accepting
run of Aϕ over projAP(ρ

′), from an accepting run of C over ρ′ ∈ JCK. This is
done level after level (initiating with a single root (ϕinit, 0, 0)). The detailed
construction and proof can be found in Appendix B.2. ut

5 Handling full MITL

We finally extend our translation to the full MITL logic, i.e. considering operators
U[a,b] and R[a,b] with 0 < a < b < +∞. For these two operators, we cannot
rely on a single clock in the components anymore. For instance, consider the
formula ϕ = G(p ⇒ χ) with χ = F[1,2]q. Imagine that Aϕ reads the prefix
({p}, 0)({p}, 0.5). At this point, its configuration is {(ϕ, 0), (χ, 0), (χ, 0.5)}. It
is not possible, as before, to drop one of the two states in location χ as the
following futures can happen: if we read ({q}, 1), obligation (χ, 0) is fulfilled but
not (χ, 0.5); while reading ({q}, 2.5) to fulfil obligation (χ, 0.5) fails to satisfy
obligation (χ, 0). Therefore, we must keep track of the two obligations separately.

It is not even clear a priori how to find a bound on the number of clocks. This
is the role of the interval semantics of very-weak OCATA that has been intro-
duced in [11] over infinite words. In this interpretation of OCATA, valuations of
the clocks are no longer points but intervals meant to approximate sets of (punc-
tual) valuations: (`, [α, β]) means that there are clock copies with valuations α
and β in `, and that there could be more copies in ` with valuations in (α, β). In
this semantics, we can merge non-deterministically two copies (`, [α1, β1]) and
(`, [α2, β2]) into a single copy (`, [α1, β2]) (assuming α1 ≤ β2), in order to keep the
number of clock copies below a fixed threshold, and thus obtain an equivalent TA.
It has been shown in [11] that, for the OCATA Aϕ, with ϕ ∈ MITL, the interval
semantics is sufficient to retain the language of the formula, with TAs having at
mostM(ϕ) = |ϕ|×maxI∈Iϕ(max(4×dinf(I)/|I|e+2, 2×dsup(I)/|I|e+2)) clocks,
where Iϕ is the set of intervals that appear in ϕ: more precisely, each subformula
with topmost operator UI (respectively, RI) contributes to 4× dinf(I)/|I|e+ 2
(respectively, 2× dsup(I)/|I|e+ 2) more clocks.

Our solution is twofold in this context: (i) we propose a better approximation
by intervals that allows us to cut, up to a factor of two, the number of clock
copies we must keep in memory; (ii) instead of a single TA, as in [11], we provide
a GBTA, with one component per temporal subformula of ϕ. The component TA

13

×pχ
x1 := 0

τ1
×

x1 = a

τ1 + a
×

x1 = b

τ1 + b

×pχ
x2 := 0

τ2
×

x2 = a

τ2 + a
×

x2 = b

τ2 + b

×pχ
x3 := 0

τ3
×

x3 = a

τ3 + a
×

x3 = b

τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Fig. 7. How to split cases to fulfil formula χ = ϕ1 U[a,b] ϕ2

are much more involved than for MITL0,∞, thus we do not give them explicitly,
but rather explain the main ideas.

We start by developing our new merging strategy on an example, to explain
how it is different from [11]. Consider χ = ϕ1 U[a,b] ϕ2 with 0 < a < b <
+∞; and a situation, as in Fig. 6, where new triggers pχ are pulled at three
positions, of time stamps τ1, τ2, and τ3. We suppose that ϕ1 holds at those three
positions. The picture presents four different cases corresponding to the four
possible situations where the occurrence of ϕ2 fulfil the three pending obligations.
Case 1 is when a position in [τ3+a, τ1+b] satisfies ϕ2, hence all three obligations
are resolved at once. This case can be checked using only clocks x3 and x2. In the
other cases, at least two positions satisfying ϕ2 are needed. In case 2, the first
obligation is resolved by an occurrence of ϕ2 with time stamp in [τ1 + a, τ2 + a),
while the two others are resolved by an occurrence in (τ1+b, τ2+b]. Thus, case 2
can be checked using only clocks x1 and x2. Now consider the remaining cases:
if no occurrences of ϕ2 appear in [τ1 + a, τ2 + a)∪ [τ3 + a, τ1 + b], one occurrence
of ϕ2 must necessarily happen in [τ2 + a, τ3 + a), while the other should be in
(τ1+ b, τ3+ b], which would require the three clocks x1, x2 and x3 to be checked.
We avoid this need for 3 clocks by splitting this situation into two further cases
(3 and 4) that can be checked with only two clocks. Indeed, case 3 can be checked
using x2 and x3 only; and case 4 using x2 and x1 only.

Notice that two main situations appear: one where formula ϕ2 should be
fulfilled in a single interval whose endpoints use two distinct clocks, another
where ϕ2 should be fulfilled in two (semi-open) intervals whose both endpoints
use the same two distinct clocks. In each of these cases, it must be understood
how a new trigger pχ modifies the situation. With only one interval, if a new
obligation for ϕ2 appear as a new interval [τ +a, τ +b], either the new obligation
is implied by the current ones, in which case we are done, or two intervals
intersect and we split (non-deterministically) in two cases (the intersection, and
the symmetric difference), or they are disjoint and we keep both intervals in
memory. Notice that the latter situation cannot happen too often, since intervals
are non-singular; precisely this will happen at most d(inf(I)+1)/|I|e times. With

14

two intervals, either the new obligation is already implied by current obligations
or [τ + a, τ + b] is not implied by the current obligations and we add this new
interval in memory as before (again, this cannot happen more than d(inf(I) +
1)/|I|e times).

In the end, following the same lines as [11] to obtain a TA from a bound on
the number of copies in Aϕ, this allows us to build a TA Cχ for each subformula
χ = ϕ1 U[a,b] ϕ2 with a number of clocks N(χ) = 2× d(inf(I) + 1)/|I|e+ 2 (the
two additional clocks are to deal easily with some special cases), up to half the
previous bound in [11]. In the locations, we can handle the clocks in pairs and use
a queue of size N(χ)/2 to keep track of which non-deterministic case (regarding
the intervals) we fall into and which clocks are used to represent the endpoints
of intervals. It follows that the number of locations is exponential in N(χ). A
similar construction, using 2 × d(inf(I) + 1)/|I|e clocks, holds for subformulae
ϕ1 R[a,b] ϕ2: here we have to consider unions of intervals, which are easier.

Theorem 7. For all MITL formulae ϕ, projAP(JCinit ×
∏
χ∈Φ CχK) = JϕK.

Proof (Sketch of proof). We follow the same scheme of proof as for Proposition 6,
relating accepting runs of Aϕ with accepting runs of C = Cinit ×

∏
χ∈Φ Cχ. To

show JAϕK ⊆ projAP(JCK), e.g., we use the same construction of the Hintikka
sequence over 2AP∪APϕ . The definition of the run C0, C1, . . . in C with respect
to the run G in Aϕ is more complex though, in particular because C is now non-
deterministic (with respect to AP∪APϕ). However, notice that we have the full
run G so that we know in advance what the reason is for the obligation associated
to a given trigger to be fulfilled in the future. We use this knowledge to choose
the good case in the previous disjunction of cases in a component Cϕ1U[a,b]ϕ2

.
The proof then follows exactly the same lines. ut

6 Implementation

We have implemented our translation from MITL formulae to generalised Büchi
timed automata in a tool called MightyL, written in OCaml. From a formula ϕ,
it produces the GBTA C, described in previous sections, output in the xml for-
mat developed by Uppaal, as well as the generalised Büchi condition written
as a very simple LTL formula. We can then use Uppaal [26] to check the satis-
fiability of ϕ over finite timed words, or LTSmin [23] with opaal front-end to
check satisfiability over infinite timed words. To maximise compatibility, we use
a Boolean variable for each atomic proposition and a loc variable in each com-
ponent for the current location. The synchronisation is done in a round-robin
fashion with a counter variable N: initially, N is set to 0, allowing the model (to
be model-checked) to take a transition and set the truth values of the atomic
propositions. Then, N loops from 1 to the number of components of C, allowing
each component to read the atomic propositions and take a corresponding tran-
sition. Finally, N is set back to 0 and we start over again. For the finite-word case,
this also enables to check that all components have been synchronised properly
(N = 0) while in the final location. Our tool is publicly available, and can even be

15

Table 1. Execution times for the satisfiability check of benchmarks of [11, 19]. For
LTSmin, the three times reported correspond to the translation to C++, the compile
time and the actual check, respectively.

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

run directly on the website http://www.ulb.ac.be/di/verif/mightyl. Com-
pared to the simplified version we studied in this article, MightyL also allows
for (semi-)open intervals. Since it can also deal with next and dual-next oper-
ators, we can verify formulae like ¬X[1,2)p. All the following tests have been
performed on a MacBook Pro 2.7GHz with 8Go RAM.

We check the satisfiability of MITL formulae on examples, inspired by bench-
marks of [11,19]. For k ∈ N and an interval I, we consider the satisfiable formulae:
F (k, I) =

∧k
i=1FIpi, G(k, I) =

∧k
i=1GIpi, U(k, I) = (. . . (p1UI p2)UI . . .)UI pk,

R(k, I) = (. . . (p1 RI p2)RI . . .)RI pk, and θ(k, I) = ¬((
∧k
i=1GFpi)⇒ G(q ⇒

FIr)). We also consider an example inspired from motion planning problems via
MITL specifications as in [24,30]. In our benchmark, a robot must visit some tar-
get points t1, t2, t3, . . . , tk within given time frames (in our case, ti must be seen in
time frame [3(i−1), 3i]), while enforcing a safety condition G¬p. This specifica-
tion is modelled by the satisfiable MITL formula µ(k) =

∧k
i=1F[3(i−1),3i]ti∧G¬p.

In Table 1, we report on the time taken by the execution of MightyL; LTSmin
(split into the time taken by the Python translation of the model in C++, the
C++ compile time, and the time for the actual check); and Uppaal, on all
these examples (for the motion planning, only finite words are relevant, hence
we report only on the Uppaal running time).

We also report on benchmarks found in [16], where the debugging of formal
specifications of cyber-physical systems is reduced to MITL non-satisfiability.
More precisely formulae should be checked for validity and redundancy. A for-
mula ϕ is valid (or a tautology) if ¬ϕ is not satisfiable. Conjunct ϕ1 of formula
ϕ =

∧k
i=1 ϕi is redundant iff

∧k
i=2 ϕi implies ϕ1. This is true iff ψ =

∧k
i=2 ϕi ⇒

ϕ1 is valid, i.e. iff ¬ψ is not satisfiable. For instance, F[0,30]p is redundant in
F[0,30]p ∧ F[0,20]p, and G[0,20]F[0,20]p is redundant in G[0,20]F[0,20]p ∧G[0,40]p ∧
F[20,40]>. We check the validity and redundancy of several formulae considered
in [16], and we summarise some of our results in Table 2: we also copy the ex-

16

Table 2. Validity and redundancy checking of MITL formulae

Formula MightyL LTSmin Uppaal [16]
F[0,30](p⇒ G[0,20]p) valid 7ms 0.98s 0.32s 7s
G[0,30]¬p ∨ F[0,20]p valid 7ms 0.95s 0.14s not considered

F[0,30]p ∧ F[0,20]p redundant 13ms 1.99s 0.44s 14s
G[0,20]F[0,20]p ∧G[0,40]p ∧ F[20,40]> redundant 22ms 1m26s 2.63s not considered

ecution time reported in [16] for these checks.8 We also consider new formulae
specific to our pointwise semantics.

Remember that one of the difficulties of the constructions of the compo-
nent Büchi timed automata corresponds to the minimal model simplification
mm(ϕ). However, our components are still correct if we replace everywhere
mm(ϕ) by ϕ (in particular, ϕ̂ simply becomes ϕ). On some examples of the
previous benchmarks, the influence on the execution time of the satisfiability
checks is tremendous (differences on the execution time of MightyL are small,
and not that important since the tool always answers in less than a second).
For instance, over F (5, [0,∞)), LTSmin shows a 17% overhead. For F (5, [0, 2]),
LTSmin experiences a 5% overhead, while Uppaal has a 12% overhead. For
formulae F (5, [2,∞)), F (3, [1, 2]), F (5, [1, 2]), the situation is even worse since
Uppaal does not even respond before the timeout of fifteen minutes. LTSmin
does not answer anymore on F (3, [1, 2]) before the timeout. On the motion plan-
ning example, the overhead is also important for Uppaal, e.g. 80% for µ2, and,
for µ3 and µ4, Uppaal does not answer anymore before the timeout. Finally, on
the two unsatisfiable examples of the redundancy check, LTSmin and Uppaal
present an overhead of 70%/3% and 630%/230%, respectively.

7 Conclusion and perspectives

In this work, we proposed a new compositional construction from MITL to timed
automata which we implemented the tool MightyL, enabling easy automata-
based model-checking of full MITL. For future work, since the structure of the
formula is preserved in our construction, we want to investigate antichain-based
heuristics to allow more performance boost. For MightyL, we plan to add native
support for ECL operators which eases the writing of specifications, as well as
past modalities/counting modalities.

Acknowledgements. We thank the reviewers of this article that help us clarify
its overall presentation. The third author would like to thank Andreas Engel-
bredt Dalsgaard, Alfons Laarman and Jeroen Meijer for their technical help with
opaal and LTSmin.

8 These numbers are only for reference and should not be taken as a direct comparison
since, contrary to us, [16] considered a bounded continuous semantics of MITL.

17

References

1. Abid, N., Dal-Zilio, S., Botlan, D.L.: A formal framework to specify and verify real-
time properties on critical systems. International Journal of Critical Computer-
Based Systems 5(1/2), 4–30 (2014)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Infor-
mation and Computation 104(1), 35–77 (1993)

5. Barnat, J., Brim, L., Havel, V., Havlícek, J., Kriho, J., Lenco, M., Rockai, P., Still,
V., Weiser, J.: DivinE 3.0 - an explicit-state model checker for multithreaded C &
C++ programs. In: CAV’13. LNCS, vol. 8044, pp. 863–868. Springer (2013)

6. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular de-
sign of synthetic biological circuits. In: CMSB’13. LNCS, vol. 8130, pp. 164–177.
Springer (2013)

7. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

8. Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating
automata. International Journal of Foundations of Computer Science 18(4), 727–
743 (2007)

9. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: CAV’16. LNCS, vol. 9779, pp. 513–530. Springer (2016)

10. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata. In: FORMATS’13. LNCS, vol. 8053, pp. 47–61. Springer (2013)

11. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata of infinite words. In: FORMATS’14. LNCS, vol. 8711. Springer (2014)

12. Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a
fragment of MTL0,∞. Acta Informatica 51(3-4), 165–192 (2014)

13. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV2: An opensource tool for symbolic model
checking. In: CAV’02. LNCS, vol. 2404, pp. 359–364. Springer (2002)

14. Claessen, K., Een, N., Sterin, B.: A circuit approach to LTL model checking. In:
FMCAD’13. IEEE (2013)

15. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Communications of the ACM 54(9), 69–77 (Sep 2011)

16. Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for test-
ing and verification of cyber-physical systems. Research Report 1607.02549, arXiv
(2016)

17. D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton
construction for mitl. Research Report 2013-1, IIS (2013), http://www.csa.iisc.
ernet.in/TR/2013/1/lics2013-tr.pdf

18. Fu, J., Topcu, U.: Computational methods for stochastic control with metric in-
terval temporal logic specifications. In: CDC’15. pp. 7440–7447. IEEE (2015)

19. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: CAV’01.
LNCS, vol. 2102, pp. 53–65. Springer (2001)

20. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV’95. pp. 3–18. Chapman & Hall (1995)

18

21. Hammer, M., Knapp, A., Merz, S.: Truly on-the-fly LTL model checking. In:
TACAS’05. LNCS, vol. 3440, pp. 191–205. Springer (2005)

22. Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity.
Fundamenta Informaticae 62(1), 1–28 (2004)

23. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
High-performance language-independent model checking. In: TACAS’15. LNCS,
vol. 9035, pp. 692–707. Springer (2015)

24. Karaman, S.: Optimal Planning with Temporal Logic Specifications. Master’s the-
sis, Massachussetts Institute of Technology (2009)

25. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In:
ISTCS’97. pp. 147–158. IEEE (1997)

26. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

27. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: FOR-
MATS’06. LNCS, vol. 4202, pp. 274–289. Springer (2006)

28. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic
theory of the tree, and its complexity. In: ICALP’86. LNCS, vol. 226, pp. 275–283.
Springer (1986)

29. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science 3(1) (2007)

30. Plaku, E., Karaman, S.: Motion planning with temporal-logic specifications:
Progress and challenges. AI Communications 29, 151–162 (2016)

31. Pnueli, A.: The temporal logic of programs. In: FOCS’77. pp. 46–57. IEEE (1977)
32. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-

bility checking. In: FM’11. LNCS, vol. 6664, pp. 417–431. Springer (2011)
33. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: TACAS’15. LNCS,

vol. 9035, pp. 231–237. Springer (2015)
34. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics

for Concurrency, LNCS, vol. 1043, pp. 238–266. Springer (1996)
35. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed

automata. In: FTRTFT’94. LNCS, vol. 863, pp. 694–715. Springer (1994)
36. Zhou, Y., Maity, D., Baras, J.S.: Timed automata approach for motion planning

using metric interval temporal logic. Research Report 1603.08246, arXiv (2016)

19

We start this appendix with a lemma that we will need afterwards, and
that helps understanding better the intricate definition of ψ̂. Indeed, consider
subformula ψ = ψ1 UI ψ2 of ϕ. Then, xPψi .δ(ψi, σ) appears in constraints of
transitions of the OCATA Aϕ. Then, we would like to characterise the minimal
models of xPψi .δ(ψi, σ) with respect to any valuation v (the valuation does not
really matter since δ(ψi, σ) is prefixed by the reset xPψi). This is exactly what
permits to do ψ̂ and trig(., δ(ψ, σ), v).

Lemma 8. Let ψ = ψ1 UI ψ2 be a subformula of ϕ, σ ∈ Σ, and i ∈ {1, 2}.

1. If M is a minimal model of xPψi .δ(ψi, σ) with respect to valuation v ∈ R+,
then σ ∪ trig(M, δ(ψ, σ), v) |= ψ̂i.

2. Reciprocally, for all σ′ ⊆ Pψi , if σ ∪ σ′ |= ψ̂i, then σ′ = trig(M, δ(ψ, σ), v) ∩
Pψi for a minimal modelM of xPψi .δ(ψi, σ) with respect to any valuation v ∈
R+.

A The case of LTL formulae: proof of Proposition 5

To prove Proposition 5, we rely on Theorem 2 showing that JϕK = JAϕK. There-
fore, we must relate the synchronous product of all component Büchi automata
C = Cinit×

∏
χ∈Φ Cχ, with the very weak alternating automaton Aϕ. To simplify

our notations, we forget about the time and clock valuations all along this proof.
We use the new definition of Aϕ given in 11 that labels clock resets with the set
of triggers it pulls.

Consider first a word ρ ∈ JAϕK and an accepting run G = (V,→) of Aϕ
over ρ. We also let K0,K1, . . . be the sequence of configurations associated with
the run G.

First, we construct a new word ρ′ over 2AP∪APϕ from ρ and G, by adding the
triggers in APϕ according to the minimal models selected in the run G. More
precisely, let ρ = σ1σ2 For all i ≥ 0, we associate every state ` (once again,
we forget about time, so that states are simply locations) of Ki with the pair
(γ`,M`) of transition formula and minimal model chosen in the run G when
reading σi+1. We then gather all the triggers in a set Qi =

⋃
`∈Ki trig(M`, γ`),

and let ρ′ = (σ1 ∪Q1)(σ2 ∪Q2) . . . be the Hintikka sequence we will read in C.
Second, let us map the sequence K0,K1, . . . of configurations in the OCATA,

to a sequence C0, C1, . . . of configurations in C. For all i ≥ 0, we let Ci =
(binit, (bχ)χ∈Φ) with binit ∈ {0, 1} being the location of component Cinit, and
bχ ∈ {0, 1} the location of component Cχ, for all χ ∈ Φ, defined by: binit = 1 if
and only if i = 0 (remember that K0 = {(ϕinit, 0)}, and that location ϕinit of
Aϕ is no longer reached afterwards), and bχ = 1 if and only if i > 0 and χ is a
location appearing in Ki.

Then, we show that C0, C1, . . . is an accepting run of C, by showing that the
projection of the configurations on each component is an accepting run of the
component Büchi timed automaton (the generalised Büchi acceptance condition
on C is fulfilled exactly when each Büchi acceptance condition of the compo-
nents is fulfilled). The proof for the component Cinit is easy. Let Cχ be another

20

component with χ = ϕ1 U ϕ2 (the case χ = ϕ1 R ϕ2 is very similar, thus not
presented here). For i ≥ 0, let bχ (respectively, b′χ) be the location of Cχ in Ci
(respectively, Ci+1). Let us prove that there is a transition linking bχ and b′χ
reading letter σ′i+1. There are two cases:

– If bχ = 1, then χ is a location of Ki (associated with clock valuation v).
Therefore, there exists a minimal model M of δ(χ, σi+1). Then (looking at
the shape of δ(χ, σi+1)): either (i)M is a minimal model of xPϕ2

.δ(ϕ2, σi+1),
Pϕ1
∩ Qi = ∅, and χ /∈ Ki+1 or (ii) M is not a model of xPϕ2

.δ(ϕ2, σi+1),
Pϕ2
∩ Qi = ∅, M is a minimal model of xPϕ1

.δ(ϕ1, σi+1), and χ ∈ Ki+1.
In case (i), formula ϕ̂2 holds over σ′i+1 (by Lemma 8), as well as ∗ϕ1, and
transition from 1 to 0 labelled with ∗ϕ1 ∧ ϕ̂2 can be fired, while χ is not in
Ki+1. In case (ii), formula ϕ̂1 holds over σ′i+1 (again by Lemma 8), as well
as ¬ϕ2 and ∗ϕ2, so that transition from 1 to 1 labelled with ϕ̂1 ∧ ∼ϕ2 can
be fired, while χ is in Ki+1.

– If bχ = 0, then χ is not a location of Ki. If pχ /∈ Qi, no obligations of ϕ1 or
ϕ2 can be triggered as well, so that the transition from 0 to 0 labelled with
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2 can be fired (whatever χ is an U or a R formula). In the
contrary, if χ ∈ Qi, it has been triggered in the minimal model of another
state of Ki, so that the model M must fulfil δ(χ, σi+1). Then the same cases
(i) and (ii) hold, as before. In case (i), transition from 0 to 0 labelled with
pχ ∧ ∗ϕ1 ∧ ϕ̂2 can be fired, while χ is not in Ki+1. In case (ii), transition
from 0 to 1 labelled with pχ ∧ ϕ̂1 ∧ ∼ϕ2 can be fired, while χ is in Ki+1.

Hence, we know that C0, C1, . . . is a run of C over ρ′. Suppose that it is not
accepting. Then, there exists one subformula of the form χ = ϕ1 Uϕ2 (the only
component with a non-accepting location) that stays in location 1 forever, after
some point. Consider the step when component Cχ jumps in location 1 for the
last time. Then, trigger pχ holds, and ϕ2 never holds anymore in the following.
In the OCATA, this means that χ is a location in the according level in the DAG,
and in all its successor levels (since ϕ2 never holds): this exactly means that this
branch is not accepting, which contradicts the fact that G is an accepting run.

Reciprocally, consider a word ρ′ ∈ JCK. Let us prove that ρ = projAP(ρ
′) ∈

JAϕK. For that, we take an accepting run of C over ρ′, that is a sequence of
configurations C0, C1, . . . , and show how to build a DAG G = (V,→) that is
an accepting run of Aϕ over ρ. Moreover, it will have the property that the
sequence of configurations K0,K1, . . . associated with G is such that for all
i ≥ 0, the configuration Ci of C satisfies: for all χ ∈ Φ, Ci is in state 1 of Cχ if
and only if location χ appears in Ki. The DAG is built level after level. First,
the root of G is the state (ϕinit, 0), as expected. Then, supposing that level i of
G has been constructed, with Ki verifying the previous property, we construct
level i+ 1. For each vertex (χ, i) in the DAG, we know that component Cχ is in
state 1. Consider the case where χ = ϕ1 U ϕ2 (the case χ = ϕ1 R ϕ2 is solved
similarly).

– Suppose that component Cχ fires the transition from 1 to 1, labelled by
ϕ̂1 ∧ ∼ϕ2. Since σ′i+1 |= ϕ̂1, by Lemma 8, there exists a minimal model

21

M of xPϕ1
.δ(ϕ1, σi+1) such that σ′i+1 ∩ APϕ1

= trig(M, δ(ϕ1, σi+1)) ∩ APϕ1
.

Therefore, M ∪ {χ} is a minimal model of xPϕ1
.δ(ϕ1, σi+1) ∧ χ. Moreover,

σ′i+1 satisfies ∼ϕ2 = ¬ϕ2 ∧ ∗ϕ2, so that σ′i+1 ∩ Pϕ2 = ∅, and, thus, σi+1 |=
¬ϕ2: this implies that δ(ϕ2, σi+1) admits no models. Therefore, M ∪ {χ} is
also a minimal model of δ(χ, σi+1). For each ξ ∈ M ∪ {χ}, we add a state
(ξ, i+1) in the DAG, with (χ, i) as a parent. Notice that χ ∈ Ci+1, since we
fired transition from 1 to 1 in Cχ. Moreover, consider ξ ∈ M : xPξ .δ(ξ, σi+1)
is thus a subformula of δ(ϕ1, σi+1) that must be fulfilled by M , so that
pξ ∈ trig(M, δ(ϕ1, σi+1)). Moreover, letting ξ = ξ1 U ξ2 (a similar reasoning
holds if ξ = ξ1 R ξ2), M is not a model of ξ2 (otherwise, M would not be
minimal). Therefore, in component Cξ, a transition labelled by a formula
consistent with pξ ∧ ∼ξ2 has to be fired: this is either the transition from 0
to 1, or from 1 to 1. Thus, component Cξ is in state 1 in configuration Ci+1,
which is consistent with (ξ, i+ 1) being in Ki+1.

– Suppose then that component Cχ fires the transition from 1 to 0, labelled
by ∗ϕ1 ∧ ϕ̂2. Since σ′i+1 |= ϕ̂2, by Lemma 8, there exists a minimal model
M of xPϕ2

.δ(ϕ2, σi+1) such that σ′i+1 ∩ APϕ2
= trig(M, δ(ϕ2, σi+1)) ∩ APϕ2

.
Moreover, σ′i+1 |= ∗ϕ1, so that σ′i+1∩Pϕ1 = ∅. Therefore,M is also a minimal
model of δ(χ, σi+1). As before, for each ξ ∈ M , we add a node (ξ, i + 1) in
the DAG, with (χ, i) as a parent. First, χ is not in Ci+1, and χ not in Ki+1.
Then, the same reasoning as before allows us to prove that, for each ξ ∈M ,
component Cξ is in state 1 in configuration Ci+1, which is consistent with ξ
being in Ki+1.

Finally, let us show that Ki+1 is exactly the set of locations χ such that com-
ponent Cχ is in location 1 in configuration Ci+1. By contradiction, suppose that
component Cχ is in 1, and χ /∈ Ki+1: by the previous case, this means that Cχ has
followed the transition from 0 to 1. Let us consider the case χ = ϕ1 Uϕ2. Then,
σ′i+1 |= pχ ∧ ϕ̂1 ∧ ∼ϕ2. This means that χ has been triggered by the smallest
subformula of ϕ in which it appears: by the previous case, we have seen that
χ would then appear in Ki+1. Consider then the symmetrical case where Cχ is
in state 0 in configuration Ci+1, but χ ∈ Ki+1. We can suppose that χ /∈ Ki,
since the previous construction takes care of this case. Thus, component Cχ has
followed transition from 0 to 0 while reading σ′i+1. However, by the previous
construction of level i+ 1 of the DAG, χ appears in a minimal model of a tran-
sition δ(ψ, σi+1): this implies that pχ ∈ σ′i+1, but this contradicts the fact that
component Cχ followed transition from 0 to 0 (we have seen that this component
arrives necessarily in state 1).

Hence, we have built a run G over ρ. Suppose that it is not accepting. Then
we know that there is a branch where, after some level i, no more accepting
location is visited, i.e. only non-accepting locations are visited. Notice from the
construction that it implies that some subformula ϕ1 U ϕ2 appears in every
location of this branch below level i. This implies that the run of component Cχ is
not accepting, which contradicts the generalised Büchi condition of C. Therefore,
G is accepting, so that projAP(ρ

′) ∈ JAϕK.

22

B The case of MITL0,∞

B.1 Proof of correctness of the construction of a run of Cχ from a
run of Aϕ

We show that C0, C1, . . . is a run of C, by showing that the projection of the
configurations on each component is a run of the component Büchi timed au-
tomaton (the generalised Büchi acceptance condition on C is fulfilled exactly
when each Büchi acceptance condition of the components is fulfilled). The proof
for the component Cinit is the same as before. Let Cχ be another component with
χ = ϕ1 UI ϕ2 (the case χ = ϕ1 RI ϕ2 is very similar, thus not presented here).
We focus first on the case I = [0, a]. For i ≥ 0, let (bχ, vχ) (respectively, (b′χ, v′χ))
be the configuration of Cχ in Ci (respectively, Ci+1). Let us prove that there is
a transition linking them while reading letter σ′i+1 after a delay τi+1− τi. There
are two cases:

– If bχ = 1, then χ is a location ofKi, associated with a certain clock valuation:
vχ is the greatest one associated with location χ. Therefore, there exists a
minimal modelM of δ(χ, σi+1) with respect to vχ+τi+1−τi. Then (looking at
the shape of δ(χ, σi+1)): either (i) M is a minimal model of xPϕ2

.δ(ϕ2, σi+1)
with respect to vχ + τi+1 − τi, vχ + τi+1 − τi ≤ a, Pϕ1 ∩ Qi = ∅, and χ
is no longer a location of Ki+1 (indeed, as already explained before, the
witness of satisfaction of this occurrence of χ is also a witness for all other
occurrences) or (ii) M is not a model of xPϕ2

.δ(ϕ2, σi+1) with respect to
vχ+ τi+1− τi, Pϕ2

∩Qi = ∅, M is a minimal model of xPϕ1
.δ(ϕ1, σi+1) with

respect to vχ + τi+1 − τi, vχ + τi+1 − τi ≤ a, and (χ, vχ + τi+1 − τi) ∈ Ki+1

(moreover, vχ+τi+1−τi is the greatest valuation associated with χ in Ki+1).
In case (i), formula ϕ̂2 holds over σ′i+1 (by Lemma 8), as well as ∗ϕ1, and
transition from 1 to 0 labelled with ∗ϕ1 ∧ ϕ̂2 ∧ x ≤ a can be fired, while χ
does not appear anymore in Ki+1 (we reset the clock x on this transition,
which is purely optional). In case (ii), formula ϕ̂1 holds over σ′i+1 (again by
Lemma 8), as well as ¬ϕ2 and ∗ϕ2, so that transition from 1 to 1 labelled
with ϕ̂1 ∧∼ϕ2 ∧ x ≤ a can be fired (here the clock x cannot be reset), while
χ still appears in Ki+1.

– If bχ = 0, then χ is not a location of Ki. If pχ /∈ Qi, no obligations of ϕ1

or ϕ2 can be triggered as well, so that the transition from 0 to 0 labelled
with ¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2 can be fired (whatever χ is an U or a R formula).
In the contrary, if χ ∈ Qi, it has been triggered in the minimal model of
another state of Ki, so that the model M must fulfil δ(χ, σi+1) with respect
to vχ + τi+1 − τi. Then the same cases (i) and (ii) hold, as before. In case
(i), transition from 0 to 0 labelled with pχ∧∗ϕ1∧ ϕ̂2 can be fired, while χ is
not in Ki+1. In case (ii), transition from 0 to 1 labelled with pχ ∧ ϕ̂1 ∧∼ϕ2

can be fired, while (χ, 0) is in Ki+1 (this explains why clock x must be reset
on this transition).

If the interval is I = [a,+∞), exactly the same reasoning allows us to check
the validity of the guards and resets of transitions in the component: the main

23

difference is that, when in location 1 with formula ϕ2 being fulfilled, we jump in
locations 1′ or 0, depending on whether a new trigger pχ is launched or not.

We then prove that the run C0, C1, . . . is accepting. Suppose that it is not
accepting. Then, there exists a subformula of the form χ = ϕ1 UI ϕ2 (the only
components with a non-accepting location) that stays in location 1 forever, after
some point. Suppose first that I = [0, a]. Consider the step when component Cχ
jumps in location 1 for the last time. Then, trigger pχ holds, and ϕ2 never holds
anymore in the following. In the OCATA, this means that χ is a location of the
according level in the DAG G, and all its successor levels (since ϕ2 never holds):
this exactly means that this branch is not accepting, which contradicts the fact
that G is an accepting run. If I = [a,+∞), consider also the last time component
Cχ jumps in location 1. At that time, either pχ holds or, we were already in
location 1′, and the previous obligation for χ has not been fulfilled during this
transition. We are then stuck in location 1 which means that, at every step,
either ϕ2 does not hold, or ϕ2 holds but before entering in the interval [a,+∞),
or a new trigger for χ is launched: as before, this allows us to create an infinite
branch of the DAG G that is in location χ for ever, after some time. Once again,
this contradicts the fact that G is an accepting run.

B.2 Construction of an accepting run of Aϕ from an accepting run
of C

Consider a timed word ρ′ ∈ JCK. Let us prove that ρ = projAP(ρ
′) ∈ JAϕK. For

that, we take an accepting run of C over ρ′, that is a sequence of configurations
C0, C1, . . . , and show how to build a DAG G = (V,→) that is an accepting run of
Aϕ over ρ. Moreover, it will have the property that the sequence of configurations
K0,K1, . . . associated with G is such that for all i ≥ 0, the configuration Ci of
C satisfies: for all χ ∈ Φ, Ci is in state (1, v) (or (1′, v) in case of U[a,+∞)) of Cχ
if and only if location χ appears in Ki, in which case v is the greatest/smallest
(depending on the operator, as before) value associated with χ in Ki. The DAG
is built level after level. First, the root of G is the state (ϕinit, 0, 0) as expected.
Then, supposing that level i of G has been constructed, with Ki verifying the
previous property, we construct level i+1. For each vertex (χ, v, i) in the DAG, we
know that component Cχ is in state 1 or 1′. Consider the case where χ = ϕ1UIϕ2

(the case χ = ϕ1 RI ϕ2 is solved similarly). First, suppose that I = [0, a].

– Suppose that component Cχ fires the transition from 1 to 1, labelled by
ϕ̂1∧∼ϕ2∧x ≤ a. Since σ′i+1 |= ϕ̂1, by Lemma 8, there exists a minimal model
M of xPϕ1

.δ(ϕ1, σi+1) with respect to v+ τi+1− τi such that σ′i+1 ∩APϕ1
=

trig(M, δ(ϕ1, σi+1), v + τi+1 − τi) ∩ APϕ1 . Therefore, M ∪ {χ} is a minimal
model of xPϕ1

.δ(ϕ1, σi+1) ∧ χ with respect to v + τi+1 − τi. Moreover, σ′i+1

satisfies ∼ϕ2 = ¬ϕ2 ∧ ∗ϕ2, so that σ′i+1 ∩ Pϕ2 = ∅, and, thus, σi+1 |= ¬ϕ2:
this implies that δ(ϕ2, σi+1) admits no models with respect to 0. Therefore,
M ∪ {χ} is also a minimal model of δ(χ, σi+1) with respect to v + τi+1 − τi.
First, we add a state (χ, v′+τi+1−τi, i+1) inG For each (χ, v′, i) inG, child of
every state (χ, v′+ τi+1− τi, i+1) of G. Notice that (χ, v+ τi+1− τi) ∈ Ci+1

24

(with v ≥ v′), since we fired transition from 1 to 1 in Cχ. Then, for each
ξ ∈ M , we add a state (ξ, 0, i + 1) in the G, with all (χ, v′, i) of G as
parents. Since ξ ∈ M , xPξ .δ(ξ, σi+1) is a subformula of δ(ϕ1, σi+1) that
must be fulfilled byM , so that pξ ∈ trig(M, δ(ϕ1, σi+1), 0). Moreover, letting
ξ = ξ1 UI ξ2 (a similar reasoning holds if ξ = ξ1 RI ξ2), M is not a model
of ξ2 (otherwise, M would not be minimal). Therefore, in component Cξ, a
transition labelled by a formula consistent with pξ ∧∼ξ2 has to be fired: this
is either the transition from 0 to 1, or from 1 to 1. Thus, component Cξ is
in state (1, 0) in configuration Ci+1, which is consistent with (ξ, 0) being a
state in Ki+1.

– Suppose then that component Cχ fires the transition from 1 to 0, labelled by
∗ϕ1∧ϕ̂2∧x ≤ a. Since σ′i+1 |= ϕ̂2, by Lemma 8, there exists a minimal model
M of xPϕ2

.δ(ϕ2, σi+1) with respect to v+ τi+1− τi such that σ′i+1 ∩APϕ2
=

trig(M, δ(ϕ2, σi+1), v + τi+1 − τi) ∩ APϕ2 . Moreover, σ′i+1 |= ∗ϕ1, so that
σ′i+1 ∩ Pϕ1 = ∅. Therefore, M is also a minimal model of δ(χ, σi+1) with
respect to v + τi+1 − τi. As before, for each ξ ∈ M and (χ, v′, i) in G, we
add a state (ξ, 0, i+ 1) in the DAG, with (χ, v′, i) as parent. First, χ is not
in Ci+1, and χ not in Ki+1. Then, the same reasoning as before allows us to
prove that, for each ξ ∈ M , component Cξ is in state (1, 0) in configuration
Ci+1, which is consistent with (ξ, 0) being in Ki+1.

In the case I = [a,+∞), we apply a similar reasoning, without considering
locations 1 and 1′ differently here. True?True?

Finally, let us show that Ki+1 contains exactly the locations χ such that
component Cχ is in location 1 in configuration Ci+1. By contradiction, suppose
first that component Cχ is in location 1, and χ does not appear in Ki+1: by the
previous case, this means that Cχ has followed the transition from 0 to 1. Let
us consider the case χ = ϕ1 U ϕ2. Then, σ′i+1 |= pχ ∧ ϕ̂1 ∧ ∼ϕ2. This means
that χ has been triggered by the smallest subformula of ϕ in which it appears:
by the previous case, we have seen that (χ, 0, i+ 1) would then appear in Ki+1.
Consider then the symmetrical case where Cχ is in location 0 in configuration
Ci+1, but χ is in Ki+1. We can suppose that χ is not in Ki, since the previous
construction takes care of this case. Thus, component Cχ has followed transition
from 0 to 0 while reading σ′i+1. However, by the previous construction of level
i+ 1 of the DAG, χ appears in a minimal model of a transition δ(ψ, σi+1): this
implies that pχ ∈ σ′i+1, but this contradicts the fact that component Cχ followed
transition from 0 to 0 (we have seen that this component arrives necessarily in
state 1).

Hence, we have built a run G over ρ. Suppose that it is not accepting. Then
we know that there is a branch where, after some level i, no more accepting
location is visited, i.e. only non-accepting locations are visited. Notice from the
construction that it implies that some subformula ϕ1 UI ϕ2 appears in every
location of this branch below level i. This implies that the run of component
Cχ is not accepting, which contradicts the generalised Büchi condition of C.
Therefore, G is accepting, so that projAP(ρ

′) ∈ JAϕK.

25

