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The dynamics of a particle in a gravitational quantum well is studied in the context of nonrelativistic
quantum mechanics with a particular deformation of a two-dimensional Heisenberg algebra. This
deformation yields a new short-distance structure characterized by a finite minimal uncertainty in position
measurements, a feature it shares with noncommutative theories. We show that an analytical solution can
be found in perturbation and we compare our results to those published recently, where noncommutative
geometry at the quantum mechanical level was considered. We find that the perturbations of the
gravitational quantum well spectrum in these two approaches have different signatures. We also compare
our modified energy spectrum to the results obtained with the GRANIT experiment, where the effects of
the Earth’s gravitational field on quantum states of ultracold neutrons moving above a mirror are studied.
This comparison leads to an upper bound on the minimal length scale induced by the deformed algebra we
use. This upper bound is weaker than the one obtained in the context of the hydrogen atom but could still
be useful if the deformation parameter of the Heisenberg algebra is not a universal constant but a quantity
that depends on the energetic content of the system.
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I. INTRODUCTION

The study of theories characterized by a minimal ob-
servable length is an active area in theoretical physics, not
only because of their intrinsic interest, but also because
their existence is suggested by string theory and quantum
gravity [1–6]. These theories rely mainly on a modification
of the canonical commutation relations between the posi-
tion and momentum operators. We will consider in this
paper a particular case of such a modification, which has
been previously obtained in the context of perturbative
string theory (see, for example, Ref. [2]). As an illustration,
in one dimension, and in units such as @ � c � 1, it reads

 �X̂; P̂� � i�1� �P̂2�: (1)

� is a small parameter, assumed to be positive. If � � 0,
Eq. (1) clearly reduces to the ordinary Heisenberg algebra.
Such a commutation relation leads to the following uncer-
tainty relation:

 �X̂ �
1

2

�
1

�P̂
� ��P̂

�
; (2)

which implies the existence of a minimal length [7]

 �x0 �
����
�

p
: (3)

This particular modification of the Heisenberg algebra,
and its extension to higher dimensions, has been exten-
sively studied recently; see, for example, Refs. [8–20].

Let us remark that it has also been argued that such a
deformed Heisenberg algebra could also be used to de-
scribe, as an effective theory, nonpointlike particles: had-
rons, quasiparticles, collective excitations, . . . [21].

A recent experiment, called GRANIT, is devoted to the
study of quantum states of neutrons in the Earth’s gravita-
tional field. Roughly speaking, in this experiment, ultra-
cold neutrons are freely moving in the gravitational field
above a mirror. This particular setup gives rise to a so-
called gravitational quantum well. As a consequence, the
energy spectrum of the neutrons in the gravitational field’s
direction is quantized, and the probability of observing a
particle at a given height will be maximum at the classical
turning point hn � En=mg, for each energy En. That is
indeed what is observed. More details can be found in
Refs. [22–24]. This experiment gives an opportunity to
make a confrontation between observation and various
theoretical models concerning quantum effects in gravity,
including eventual signatures of the existence of an intrin-
sic minimal length.

A first study of the gravitational quantum well in a
noncommutative geometry has been performed in
Ref. [25]. It was based on the two-dimensional commuta-
tion relations

 �x1; x2� � i�; �p1; p2� � i�; �xj; pk� � i�jk; (4)

and upper bounds on the parameters �, � have been
obtained by comparison with the experimental results of
Ref. [24]. Let us note that Eqs. (4) lead to the following
uncertainty relations:
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 �x1�x2 �
j�j
2
; �p1�p2 �

j�j
2
; �xj�pj �

1

2
; (5)

also suggesting the existence of a minimal length acces-
sible by measurement. A discussion about the distinctions
and links between the minimal length uncertainty relation
(2) and space uncertainty relations of the form (5) can be
found in Ref. [26].

Our goal is to study the deviations from the usual
gravitational quantum well caused by a two-dimensional
analog of the modified Heisenberg algebra (1), instead of
the relations (4) already used in Ref. [25]. Our paper is
organized as follows. In Sec. II, we present the Schrödinger
equation with a deformed Heisenberg algebra following
Ref. [27]. We particularize it to the case of the gravitational
quantum well, and obtain an analytic form for the energy
spectrum in perturbation in Sec. III. Then, we discuss the
comparison between our results, those of Ref. [25], and
those of GRANIT in Sec. IV. Finally, our conclusions are
given in Sec. V.

II. THE MAIN EQUATION FOR A GENERAL
POTENTIAL

The method we use is essentially the same as the one
developed in Ref. [27]. Nevertheless we recall in this
section the main lines to make the paper self-contained.
The modified Heisenberg algebra studied here is defined in
d dimensions by the following commutation relations
[9,21]:
 

�X̂i; P̂j� � i��ij � ��ijP̂
2 � �0P̂iP̂j�; (6a)

�P̂i; P̂j� � 0; (6b)

�X̂i; X̂j� � i
�2�� �0� � �2�� �0��P̂2

�1� �P̂2�
P̂�iX̂j�; (6c)

where P̂2 �
Pd
i�1 P̂iP̂i and where �, �0 > 0 are consid-

ered as small quantities of the first order. Let us note that
P̂�iX̂j� � P̂iX̂j � P̂jX̂i. In this paper, we only study the
case �0 � 2�, which leaves the commutation relations
between the operators X̂i unchanged at the first order in
�, i.e.
 

�X̂i; P̂j� � i��ij � ��ijP̂
2 � 2�P̂iP̂j�; (7a)

�P̂i; P̂j� � 0 	 �X̂i; X̂j�: (7b)

The commutation relations (7) constitute the minimal
extension of the Heisenberg algebra and are thus of special
interest. In this case, the minimal length is given by [21]

 �x0 �
�������������������
�d� 2��

q
: (8)

To calculate a spectrum for a given potential, we must
find a representation of the operators X̂i and P̂i, involving
position variables xi and partial derivatives with respect to

these position variables, which satisfies Eqs. (7), and then
solve the corresponding Schrödinger equation:

 

�
P̂2

2m
� V� ~̂X�

�
�� ~x� � E�� ~x�: (9)

It is straightforward to verify that the following represen-
tation fulfills the relations (7), at the first order in �,

 X̂ i�� ~x� � xi�� ~x�; P̂i�� ~x� � pi�1� � ~p2��� ~x�;

(10)

with pi � �i@=@xi. Neglecting terms of order �2, the
Schrödinger equation (9) takes the form

 

�
~p2

2m
�
�
m
~p4 � V� ~x�

�
�� ~x� � E�� ~x�: (11)

This is the main equation from which the influence of a
nonvanishing � can be studied. It also allows one to
compute upper bounds on this deformation parameter by
comparison with experimental results. This equation is just
the ordinary Schrödinger equation with an additional term
proportional to ~p4. As this correction is assumed to be
small, we will compute its effects on the energy spectrum
at the first order in perturbation.

III. THE MAIN EQUATION FOR A
GRAVITATIONAL QUANTUM WELL

Let us now consider the case of a particle of mass m,
moving in a zy plane, and subject to the Earth’s gravita-
tional field: ~g � �g~ez, where g � 9:806 65 m s�2. In or-
der to form a gravitational quantum well, a mirror is placed
at z � 0 and acts as a hardcore interaction. This corre-
sponds to the experimental setup described in Refs. [22–
24]. It is reasonable to keep a constant value for g because
of the small size of the experiment. Taking into account the
variation of the gravitational field would only introduce
higher order corrections that can be neglected in this first
order calculation. For the same reason, corrections coming
from the fact that the mirror is not a perfect hardcore will
not be included here. The potential which enters in Eq. (11)
is then V� ~x� � V�z� with
 

V�z� � �1 for z 
 0

� mgz for z > 0: (12)

An infinite potential in z � 0 is a very good description of
the mirror, at least for the lowest eigenstates.

A. The case � � 0

The solution of the Schrödinger equation in this context
for � � 0 is well known ([28], page 101)]. We write

 �� ~x� �  n�z� �y�: (13)

The wave function along the z axis then reads
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  n�z� � AnAi��z�; with �z � �z� �n and

� � �2m2g�1=3;
(14)

where the function Ai� �z� is the normalizable Airy function
and where �n are the zeros of this function. Their values
can be found, for example, in Ref. [29], page 478. The
normalization factor An is given by

 An �
�

1

�

Z �1
�n

d �zAi2��z�
�
�1=2

�
�1=2

jAi0��n�j
; (15)

where Ai0�x� is the derivative of the Airy function. The
eigenvalues are related to the zeros of the Airy function as
follows:

 E0
n � �

mg
�
�n; (16)

and, consequently, the most probable heights where a
particle can be detected are given by

 h0
n � �

�n
�
: (17)

Along the y axis, the particle is free and the wave function
takes the form

  �y� �
Z �1
�1

dkg�k�eiky; (18)

where g�k� determines the shape of the wave packet in
momentum space.

B. The case � > 0

As E0
n denotes the eigenvalues for � � 0, the energy

spectrum to the first order in the deformation parameter �
is given by

 En � E0
n � �En: (19)

It can be seen from Eq. (11) that the correction to the
energy �En at the first order in � reads

 �En �
�
m
h�� ~x�j ~p4j�� ~x�i

�
�
m
�h n�z�jp4

z j n�z�i � 2h n�z�jp2
z j n�z�i

� h �y�jp2
yj �y�i�; (20)

where a term proportional to h �y�jp4
yj �y�i has been

omitted since it only leads to a global shift of the energy
spectrum and has thus no interest. This last relation can be
written as
 

�En �
�
m
�4m2h�E0

n � V�z��2i � 8m2EchE0
n � V�z�i�

� 4�m�E0
n�E

0
n � 2Ec� � 2�E0

n � Ec�hV�z�i

� hV�z�2i�; (21)

where Ec � mh �y�jv2
yj �y�i=2 is the kinetic energy of the

particle along the y axis. The averages appearing in
Eq. (21) are obviously computed with  n�z�. Since we
consider here a power-law potential, V�z� � z, the virial
theorem gives

 hV�z�i � 2
3E

0
n; (22)

and the relation (21) reduces to

 �En � 4�m
�
�
E0
n

3
�E0

n � 2Ec� � hV�z�
2i

�

� 4�m
�
�
E0
n

3
�E0

n � 2Ec�

� �mg�2A2
n

Z �1
0

dz z2Ai2��z� �n�
�
: (23)

The last integral in (23) can be computed explicitly. We
obtain

 �mg�2A2
n

Z �1
0

dz z2Ai2��z� �n� �
8

15
�E0

n�
2: (24)

The final result is then

 �En �
4

5
�m�E0

n�
2

�
1�

10Ec
3E0

n

�
: (25)

IV. DISCUSSION OF THE RESULTS

A. Comparison with noncommutative geometry

Formula (25) involves the kinetic energy of the neutrons
along the y axis. The last term in the parenthesis of this
formula is much larger than 1 (about 6 order of magnitude
larger): E0

n has a value around few peV on Earth [see
Eqs. (16) and (31)], and even for the nonrelativistic neu-
trons of Ref. [24], the kinetic energy is around 100 neV.
More precisely, the neutrons mean horizontal velocity was
measured to be around 6:5 m s�1 [24]. So, the kinetic
energy is roughly equal to Ec ’ mhvyi2=2 ’ 0:221 �eV
(taking for the neutron mass the experimental value m �
939:57 MeV [30]). Clearly, we can thus use in a very good
approximation

 �En 

8
3m�EcE

0
n: (26)

This result can be compared to the energy shifts obtained
with the noncommutative geometry (4). To the first order in
the small parameters �,�, it is shown in Ref. [25] that these
shifts, denoted � ~En, are given by

 � ~En �
�hvyi

2

�
��2A2

n

Z �1
�n

ds sAi2�s� �
�n
�

�
: (27)

The integral appearing in Eq. (27) can be analytically
computed and we obtain

 � ~En �
�hvyi

3mg
E0
n: (28)
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A nonzero parameter � leads, independently of its actual
value, to a larger value for the heights since hn � h0

n �
�hn, with �hn � �En=mg and �En given by Eq. (26). We
recall indeed that � was assumed to be positive. The
signature of the modified Heisenberg algebra (7) would
then be �hn > 0 and

 �hn / hvyi
2

�
3�
2
�n� 1=4�

�
2=3
; (29)

the second factor being a WKB approximation of the zeros
of the Airy function ([29], page 450). This effect is differ-
ent from the one predicted by the relation (28), since in this
case we should observe

 �~hn / �hvyi
�

3�
2
�n� 1=4�

�
2=3
: (30)

The� factor in Eq. (30) arises from the fact that the sign of
� is a priori unspecified. So, if �< 0, noncommutative
geometry could cause a decrease of the heights instead of
the increase predicted by our deformed algebra. Even if we
suppose that �> 0, the height shifts (29) and (30) can be
distinguished in principle since their dependence on hvyi is
different. Another important difference between �hn and
�~hn concerns their dependence on the mass of the particle:
�hn / m

4=3 whereas �~hn / m
�5=3.

B. Comparison with GRANIT experiment

We turn our attention now to the comparison between
formula (26) and GRANIT results. Following Eqs. (16) and
(17), the theoretical energies and heights for the two first
eigenstates are

 E0
1 � 1:407 peV; E0

2 � 2:461 peV;

h0
1 � 13:7 �m; h0

2 � 24:0 �m:
(31)

The experimental results concerning these states are [24]

 hexp
1 � 12:2 �m� 1:8syst � 0:7stat;

hexp
2 � 21:6 �m� 2:2syst � 0:7stat:

(32)

The theoretical values are contained in the error bars. The
energy shifts due to eventual new physical mechanisms are
thus bounded. They cannot exceed

 �Eexp
1 � 0:102 peV; �Eexp

2 � 0:051 peV; (33)

since �En has been shown to be positive, see Eq. (26).
Consequently, we have to satisfy the constraint

 �En <�Eexp
n ; (34)

with �En given by Eq. (26). Let us discuss the possible
values of �. There are two possibilities, following the
status of this parameter.

The first possibility is that � could be a new universal
constant, or a function of the already known constants.
Then, its value could be equally measured by independent

experiments and a unique value, within error bars, would
be found. It was shown in Ref. [27] how the spectrum of the
hydrogen atom would be affected by the deformed
Heisenberg algebra we use, and an upper bound �x0 <
10�2 fm was derived, or equivalently�< 2� 10�5 fm2 ’
5� 10�22 eV�2. This estimation was based on a very
precise (up to 1 kHz) measurement of the radiation emitted
during the transition 1S-2S of the hydrogen atom [31].
With this upper bound, it is readily computed that

 �E1 ’ �E2 & 10�19 peV: (35)

If � is a universal constant, the upper bounds (35) tell us
that the effects of the existence of a minimal observable
length are largely unobservable in the GRANIT experi-
ment, since the maximal precision is 10�2 peV [24].

The second possibility is that � could vary from one
system to another depending, for example, on the energetic
content of the system (mass of the particles, strength of the
interactions, . . .). If� is such a quantity, the upper bound of
Ref. [27] is no longer relevant for our study of neutrons in a
gravitational quantum well (the mass of the particle and the
interaction are different), and a new upper bound has to be
determined from the experimental results. Equation (26),
together with the relation (8) for d � 2 leads to

 �x0 < 2

������������������
3�Eexp

n

8mE0
nEc

s
: (36)

For n � 2 we find �x0 < 0:012 eV�1 � 2:41 nm, or �<
1:46 nm2. The case n � 1 does not lead to a better upper
bound. This new upper bound for � could be used to
restrict the possible choices for an explicit expression of
this parameter, in a similar way as the upper bound found
in Ref. [27] was used in Ref. [32] to show that � could not
be identified to the Compton length of the particle as
proposed in Ref. [33]: The effects of a minimal length
�x0 on the energy spectrum would then be too large in
the case of the hydrogen atom.

At last, we remark that if �x0 is related to the size of the
particle, as suggested in Ref. [21], and discussed in the case
of an electron in Ref. [27], then �E1 ’ �E2 & 10�15 peV,
since the size of the neutron is around 1 fm.

V. SUMMARY OF THE RESULTS

We have found in perturbation the energy spectrum of a
gravitational quantum well with a one-parameter deformed
Heisenberg algebra. This deformation implies, in particu-
lar, the existence of a minimal observable length, which is
a feature it shares with usual noncommutative theories. We
found that the energy shifts caused by this deformed alge-
bra are positive with a linear dependence on the kinetic
energy of the particles. This signature is different from the
one coming from a previously studied noncommutative
geometry [25]. In this case indeed, the energy shifts can
be either positive or negative, following the sign of the
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noncommutativity parameter, and they depend on the
square root of the kinetic energy. The gravitational quan-
tum well thus appears as an interesting physical system
which allows, at least in principle, to distinguish between
several approaches predicting different modifications of
the Heisenberg algebra.

By particularizing our results to the case of a neutron in
the Earth’s gravitational field, we are able to compare them
to those of the GRANIT experiment. Our conclusion is
twofold, following the status of the deformation parameter
�. If � is a universal constant, we can use an upper bound
obtained previously by analysis of the hydrogen atom

spectrum [27], and we find that the energy shifts due to a
nonzero value of � are around 10�19 peV. This is far
beyond the experimental precision. However, if � is a
quantity that depends on the energetic content of the
system (like the mass of the particle), we can derive a
new upper bound from the GRANIT results. We conclude
in that case that the minimal length scale associated to
neutrons moving in a gravitational quantum well is smaller
than a few nanometers. This new upper bound could be
used to constrain possible choices for an explicit expres-
sion of �.
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