Minimizing the eccentric connectivity index with fixed number of pending vertices

G. Devillez ${ }^{1} \quad$ P. Hauweele ${ }^{1} \quad$ A. Hertz ${ }^{2} \quad$ H. Mélot ${ }^{1}$
${ }^{1}$ Université de Mons, Service d'Algorithmique
${ }^{2}$ Polytechnique Montréal - GERAD

JGA 2019

Introduction

We consider simple undirected graphs. Let v be a vertex of a graph G, recall that:

- degree $d_{G}(v)=$ number of adjacent vertices of v;

Example

Introduction

We consider simple undirected graphs. Let v be a vertex of a graph G, recall that:

- degree $d_{G}(v)=$ number of adjacent vertices of v;

■ eccentricity $\epsilon_{G}(v)=$ maximal distance between v and any other vertex.

Example

Introduction

We consider simple undirected graphs. Let v be a vertex of a graph G, recall that:

- degree $d_{G}(v)=$ number of adjacent vertices of v;

■ eccentricity $\epsilon_{G}(v)=$ maximal distance between v and any other vertex.

We also define $w_{G}(v)=\epsilon_{G}(v) d_{G}(v)$.

Example

Introduction

For a graph $G=(V, E)$,

- its order $|V|$ is denoted by n;

■ its number of pending vertices $P=\left|\left\{v \in V \mid d_{G}(v)=1\right\}\right|$ is denoted by p.

Eccentric Connectivity Index

Definition

The Eccentric Connectivity Index (ECI) of a graph G, denoted by $\xi^{c}(G)$, is

$$
\xi^{c}(G)=\sum_{v \in V} d_{G}(v) \epsilon_{G}(v)=\sum_{v \in V} w_{G}(v)
$$

Example

Eccentric Connectivity Index

■ Introduced by Sharma et al. in 1997 as a novel topological descriptor for molecules.

- Used in studies about anti-inflammatory properties, soil sorption of pesticides, anti-HIV activity of molecules,
■ Not many extremal results about ξ^{c}.
■ The first extremal results appears in 2010.

The problem

We want to solve the following problem :

Problem

Among all connected graphs with n vertices and p pending vertices, what are the graphs with minimum value of ξ^{c} ?

Note : in this talk, we only consider graphs with $n>3$ and $p<n-2$.

The graphs $H_{n, p}$

Definition

We define $H_{n, p}$ as the graph with n vertices and p pending vertices obtained from a star on n vertices by adding a maximal matching between $n-p-1$ pending vertices. If $n-p-1$ is odd, we add an edge between one of the remaining pending vertices and a vertex covered by the matching.

Example

$H_{7,3}$

$H_{7,2}$

The graphs $H_{n, p}$

We can compute $\xi^{c}\left(H_{n, p}\right)$ using the following formulae:
■ If $n-p-1$ is even, $\xi^{c}\left(H_{n, p}\right)=5 n-2 p-5$

- If $n-p-1$ is odd, $\xi^{c}\left(H_{n, p}\right)=5 n-2 p-3$

Note : this doesn't work if $n=4$ and $p=0$ since $H_{4,0}$ has two dominant vertices. In this case, $\xi^{c}\left(H_{4,0}\right)>\xi^{c}\left(K_{4}\right)$.

$$
\xi^{c}\left(K_{4}\right)=12
$$

One dominant vertex

■ At least a star on n vertices.

One dominant vertex

■ At least a star on n vertices.
■ We keep degrees as small as possible.

One dominant vertex

- At least a star on n vertices.
- We keep degrees as small as possible.

■ We might need one additional edge.

One dominant vertex

- At least a star on n vertices.
- We keep degrees as small as possible.

■ We might need one additional edge.

- This is $H_{n, p}$.

$x \geq 2$ dominant vertices

- With more than one dominant vertex, no pending vertex.
- Let G be such a graph :

$$
\xi^{c}(G) \geq(n-1) x+(n-x) 2 x=-2 x^{2}+x(3 n-1)
$$

- Minimized when $x=2$ or $x=n$.
- $x=2$:

■ $x=n:$

$$
\xi^{c}(G) \geq 6 n-10
$$

$$
\begin{gathered}
K_{n} \\
\xi^{c}(G) \geq n^{2}-n
\end{gathered}
$$

No dominant vertex

■ Let $G=(V, E)$ be a graph with no dominant vertex, can it be as good as a graph with at least one dominant vertex ?
■ We can show that $\exists u \in V$ such that $d_{G}(u)=\epsilon_{G}(u)=2$
\square Let v and w be the neighbors of u.
$■$ We first suppose that v is adjacent to w.

- Let

■ $A=N(v) \backslash N(w) \backslash\{u, w\}$,

- $C=N(w) \backslash N(v) \backslash\{u, v\}$,
- $B=N(w) \cap N(v) \backslash\{u\}$,
- $B^{\prime}=\left\{x \in B \mid d_{G}(x)=2\right\}$,
- $B^{\prime \prime}=B \backslash B^{\prime}$.

v and w are adjacent

We obtain G^{\prime} by applying the following transformation :

v and w are adjacent

■ We can show that

$$
\sum_{z \in A \cup B \cup C \cup\{u\}} w_{G}(z) \geq \sum_{z \in A \cup B \cup C \cup\{u\}} w_{G^{\prime}}(z)
$$

- Thus, to prove that G is not optimal, we have to show that

$$
w_{G}(v)+w_{G}(w)-w_{G^{\prime}}(v)-w_{G^{\prime}}(w)=\alpha-\beta>0
$$

v and w are adjacent

- $w_{G}(v)=2(|A|+|B|+2)$
- $w_{G}(w)=2(|B|+|C|+2)$
- $\alpha=2|A|+4|B|+2|C|+8$

■ $\alpha-\beta=|A|+3|B|-2\left|B^{\prime}\right|+|C|+2=|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|+2>0$

- Thus G is not optimal.

v and w are not adjacent

If $A \cup B^{\prime \prime}$ and $C \cup B^{\prime \prime}$ are not empty, we obtain G^{\prime} by applying the following transformation:

v and w are not adjacent

If $A \cup B^{\prime \prime}$ and $C \cup B^{\prime \prime}$ are not empty, we obtain G^{\prime} by applying the following transformation :

■ Just like before, we only need to show that $\alpha-\beta>0$.
■ But, $\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2 \geq 0$

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

- The set $B^{\prime \prime}$ must be empty.

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

- The set $B^{\prime \prime}$ must be empty.
- B^{\prime} must be empty too.

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

- The set $B^{\prime \prime}$ must be empty.
- B^{\prime} must be empty too.
- $|A|=|C|=1$

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

- The set $B^{\prime \prime}$ must be empty.
- B^{\prime} must be empty too.
- $|A|=|C|=1$
- Two possible non-improving situations :

$$
\xi^{c}\left(H_{5,2}\right)=16
$$

When could G be optimal ?

$$
\alpha-\beta \geq|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2
$$

- The set $B^{\prime \prime}$ must be empty.
- B^{\prime} must be empty too.
$\square|A|=|C|=1$
- Two possible non-improving situations :

u and v are not adjacent

 $A \cup B^{\prime \prime}\left(\right.$ or $\left.C \cup B^{\prime \prime}\right)$ is empty- If B^{\prime} is empty, C is not empty since $n>3$ and $\exists r \in C$ s.t. $d_{G}(r) \geq 2$ since $p \leq n-3$.
- We can then apply the following transformation to obtain G^{\prime} :

Changes in ξ^{c}

$\square w_{G}(r)-w_{G^{\prime}}(r)=3 d_{G}(r)-2\left(d_{G}(r)+1\right)=d_{G}(r)-2$

- $\forall z \in C \backslash\{r\}, w_{G}(z)>w_{G^{\prime}}(z)$
- There is at least one such vertex z such that $w_{G}(z)-w_{G^{\prime}}(z) \geq 2$.

■ Thus, $\xi^{c}(G)-\xi^{c}\left(G^{\prime}\right) \geq 2-1+\underbrace{n-3}_{>0}+\underbrace{d_{G}(r)-2}_{\geq 0}+2>0$

- And G is not optimal.
u and v are not adjacent
$A \cup B^{\prime \prime}\left(\right.$ or $\left.C \cup B^{\prime \prime}\right)$ is empty
■ If B^{\prime} is not empty, we transform G as follows :

Conditions for optimality

- Again, we need to show that $\alpha-\beta>0$ and again,

$$
\alpha-\beta \geq 3\left|B^{\prime}\right|+|C|-4 \geq 0
$$

- For G to be optimal, we need $\left|B^{\prime}\right|=1$ and $|C| \leq 1$.

■ In these situations, the bound is actually too low and G^{\prime} is still better :
$\square|C|=0$:

16

14

Conditions for optimality

- Again, we need to show that $\alpha-\beta>0$ and again,

$$
\alpha-\beta \geq 3\left|B^{\prime}\right|+|C|-4 \geq 0
$$

\square For G to be optimal, we need $\left|B^{\prime}\right|=1$ and $|C| \leq 1$.
■ In these situations, the bound is actually too low and G^{\prime} is still better :
$\square|C|=1$:

23

20

Conditions for optimality

■ Again, we need to show that $\alpha-\beta>0$ and again,

$$
\alpha-\beta \geq 3\left|B^{\prime}\right|+|C|-4 \geq 0
$$

- For G to be optimal, we need $\left|B^{\prime}\right|=1$ and $|C| \leq 1$.

■ In these situations, the bound is actually too low and G^{\prime} is still better :
$\square|C|=1$:

23

20

- In this case, G is again not optimal.

Comparison of results

- When $p>0$, we saw that only $H_{n, p}$ is optimal.
- When $p=0$, we can compare the different candidates we found numerically via the formulae :

Bibliography I

圊 J. Zhang, Z. Liu, and B. Zhou.
On the maximal eccentric connectivity indices of graphs.
Appl. Math. J. Chinese Univ., 29:374-378, 2014.

- Vikas Sharma, Reena Goswami, and AK Madan.

Eccentric connectivity index: a novel highly discriminating topological descriptor for structure- property and structure- activity studies.
Journal of chemical information and computer sciences, 37(2):273-282, 1997.
围 S Gupta, M Singh, and AK Madan.
Application of graph theory: Relationship of eccentric connectivity index and wiener's index with anti-inflammatory activity. Journal of Mathematical Analysis and Applications, 266(2):259-268, 2002.

Bibliography II

庫 P Gramatica, M Corradi, and V Consonni.
Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.
Chemosphere, 41(5):763-777, 2000.
屠 Vipin Kumar, Satish Sardana, and Anil Kumar Madan.
Predicting anti-hiv activity of 2, 3-diaryl-1, 3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index. Journal of molecular modeling, 10(5-6):399-407, 2004.

The graphs $S_{n, 2}$

Definition

We define $S_{n, 2}$ as the graph with n vertices obtained from two adjacent vertices u and v by adding $n-2$ new vertices only adjacent to u and v.

Example

big values of p

- If $p=n-1$, the graph can only be a star on n vertices.

Example

big values of p

- If $p=n-2$, the only possible graphs are obtained by adding $n-2$ pending vertices randomly between the extremities of an edge with at least one pending vertex on each side.

Example

big values of p

In the rest of this talk, we suppose $p \leq n-3$.
Note that if $n=3$, we can only have $p=0$ which is K_{3}.

We thus also suppose that $n \geq 4$.

No dominant vertex

■ Let G be an extremal graph with no dominant vertex.
■ Let $Q \subseteq V$ be the set of vertices of degree 2 and eccentricity 2 .

- If $Q=\emptyset, G$ is not extremal:
- Every non-pending vertex v has $d_{G}(v) \geq 2$ and $\epsilon_{G}(v) \geq 2$. And $d_{G}(v) \geq 3$ or $\epsilon_{G}(v) \geq 3$.
- Every pending vertex v has $\epsilon_{G}(v) \geq 3$.

■ Thus,

$$
\xi^{c}(G) \geq 6(n-p)+3 p \geq 5 n-2 p+3>\xi^{c}\left(H_{n, p}\right)
$$

- And G is not extremal.
- Also true when $n=4$ and $p=0$.

$A \cup B^{\prime \prime}$ and $C \cup B^{\prime \prime}$ are not empty

- $w_{G}(v) \geq 2(|A|+|B|+1)$
- $w_{G}(w) \geq 2(|B|+|C|+1)$
- $w_{G^{\prime}}(v)=2\left(\left|B^{\prime}\right|+2\right)$
- $w_{G^{\prime}}(w)=|A|+|B|+|C|+2$
- $\alpha \geq 2|A|+4|B|+2|C|+4$
- $\beta=|A|+|B|+|C|+2\left|B^{\prime}\right|+6$

■ $\alpha-\beta \geq|A|+3|B|-2\left|B^{\prime}\right|+|C|+2=|A|+\left|B^{\prime}\right|+3\left|B^{\prime \prime}\right|+|C|-2$

Changes in ξ^{c}
$\square \forall z \in B^{\prime} \cup C \cup\{u\}, w_{G}(z) \leq w_{G^{\prime}}(z)$

- $w_{G}(v) \geq 2\left(\left|B^{\prime}\right|+1\right)$
- $w_{G}(w)=2\left(\left|B^{\prime}\right|+|C|+1\right)$
- $\alpha \geq 4\left|B^{\prime}\right|+2|C|+4$
- $w_{G^{\prime}}(v) \leq 6$
- $w_{G^{\prime}}(w)=\left|B^{\prime}\right|+|C|+2$
$-\beta \leq\left|B^{\prime}\right|+|C|+8$
- $\alpha-\beta \geq 3\left|B^{\prime}\right|+|C|-4$

Comparison of results

We have the following results:

- If $p>0, H_{n, p}$ is the extremal graph.

■ If $n=4$ and $p=0$, the extremal graph is K_{4}.
■ If $n=5$ and $p=0$, there are four extremal graphs: $K_{5}, H_{5,0}, C_{5}$ and $S_{5,2}$.
■ If $n=6$ and $p=0$, the extremal graph is $S_{n, 2}$.

Bounds for connected graphs

Invariant(s)	Lower bound	Upper bound
-	\checkmark	X
m (size)	\checkmark	\checkmark
p (diameter)	\checkmark	\checkmark
p (number of pending vertices)	\checkmark	X
δ (minimum degree)	X	\checkmark
D (diameter) and m (size)	\checkmark (with conditions on m and $D)$	
D^{\prime} (degree distance)	\checkmark	X
M_{1} (Zagreb index) and m	X	\checkmark
W (Wiener index)	X	\checkmark

Bounds for trees

Invariant(s)	Lower bound	Upper bound
-	\checkmark	\checkmark
D (diameter)	\checkmark	\checkmark
r (radius)	X	\checkmark
p (number of pending vertices)	\checkmark	\checkmark
Δ (maximum degree)	\checkmark	\checkmark
β (matching number)	\checkmark	\checkmark
α (stability number)	\checkmark	\checkmark
W (Wiener index)	X	\checkmark

Bounds for other graph classes

Unicyclic graphs

Invariant(s)	Lower bound	Upper bound
-	\checkmark	\checkmark
g (girth)	\checkmark	\checkmark

Bicyclic graphs

Invariant(s)	Lower bound	Upper bound
-	\checkmark	X

k-regular graphs

Invariant(s)	Lower bound	Upper bound
$k \geq 3$ fixed	\checkmark	\checkmark

