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Existence of mesons after deconfinement
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We investigate the possibility for a quark-antiquark pair to form a bound state at temperatures higher than
the critical one (T > Tc), thus after deconfinement. Our main goal is to find analytical criteria constraining the
existence of such mesons. Our formalism relies on a Schrödinger equation for which we study the physical
consequences of using both the free energy and the internal energy as potential term, assuming a widely accepted
temperature-dependent Yukawa form for the free energy and a recently proposed nonperturbative form for the
screening mass. We show that using the free energy only allows for the 1S bottomonium to be bound above Tc,
with a dissociation temperature around 1.5 × Tc. The situation is very different with the internal energy, where
we show that no bound states at all can exist in the deconfined phase. But, in this last case, quasibound states
could be present at higher temperatures because of a positive barrier appearing in the potential.
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I. INTRODUCTION

Since the mid-1980s, the anomalous suppression of heavy
meson production in heavy-ion collisions has been proposed
as a possible signature of deconfinement [1]. The basic idea
is that the heavy mesons produced before the formation of
a thermalized quark-gluon plasma would tend to dissociate
in the deconfined medium because of the screening of the
quark-antiquark (qq̄) interaction by the large number of color
charges in the medium. The mechanism is clearly analogous to
the Debye screening by electromagnetic charges in quantum
electrodynamics (QED). Since the pioneering work of Ref. [1],
the suppression of heavy quarkonium production at finite
temperature—that is T > 0, T = 0 corresponding to “usual"
quantum chromodynamics (QCD)—has been intensively stud-
ied in the literature (see Ref. [2] for a review). In particular,
the dissociation temperature of a particular meson, that is,
the temperature at which the quark and the antiquark become
unbound, is particularly relevant to understand the mechanism
of quarkonium dissociation in a quark-gluon plasma.

It is a well-known fact that potential models are able to
accurately reproduce the experimental meson mass spectra
at T = 0 [3]. Basically, a meson is then seen as a qq̄ pair
interacting via a so-called Cornell potential ar − 4αs/3r

(or any other QCD-inspired potential), r being the distance
between the quark and the antiquark. The Cornell potential,
validated by lattice QCD computations of the energy of a static
qq̄ pair [4], contains a confining linear part and a Coulomb-like
term that comes from one-gluon-exchange diagrams. In this
potential, a can be interpreted as the tension of a flux tube
of length r linking the quark and the antiquark, and αs

is the strong coupling constant. Because of the success of
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potential models at zero temperature and of the idea that color
screening implies modifications of the Cornell interaction,
several attempts to understand meson properties at finite
temperature within the framework of a Schrödinger equation
with a phenomenologically modified potential have been made
[5–8].

The most accurate way to find a relevant potential term at
T > 0 is again provided by lattice QCD simulations, from
which the free energy between a static qq̄ pair at finite
temperature can be computed [9–11]. A general result of lattice
QCD calculations is the observation of a critical temperature,
denoted as Tc, above which the confining part of the free
energy vanishes: that is the deconfinement (see, for example,
Ref. [12]). The free energy obtained in these calculations,
depending both on T and on r , can be used as a starting
point to build a potential model at T �= 0. However, in some
other works, it is argued that the internal energy should better
be used as potential term [14–16], because of the entropy
contribution present in the free energy. The situation of how
potential models should be applied to qq̄ states at T > 0 is
thus still not completely clarified [16].

We propose in the present work to investigate the exis-
tence of mesons above the critical temperature by using a
Schrödinger equation with an appropriate potential term. The
motivation to study such a temperature domain not only comes
from intrinsic theoretical interest but also because the current
temperatures reached by experiments are in the typical range
(1–2) × Tc [17]. Let us note that what we call a meson in the
following is a qq̄ bound state, that is, a state with a negative
binding energy and an infinite lifetime—at least formally. Our
model, which we present in Sec. II, is a rather simple one, but
it contains the main qualitative features of most of the potential
models that were previously developed. Moreover, the Yukawa
form that we use for the free energy is in agreement with recent
and accurate lattice QCD results [11]. In this work, we are
mainly interested in qualitative and mostly analytical results
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constraining the existence of mesons at finite temperature.
Actually we propose a simple method that can also be applied
to a more complete version of the model studied here. In
particular, we focus on the dissociation temperature, which is a
physically relevant observable, leading to a direct picture of the
evolution of the number of bound states with the temperature.
We show that the determination of the dissociation temperature
is eventually ruled by a single dimensionless parameter that
corresponds to the strength of the potential in a rescaled set
of coordinates. Constraints on the dissociation temperature
are thus obtained from constraints on the strength of the
potential such as it is attractive enough to admit bound states.
Because two choices are generally assumed in the literature
for the potential term, we study them both in Secs. III (free
energy) and IV (internal energy). As we will see in the latter,
both possibilities lead to rather different predictions; we then
summarize our results in Sec. V.

II. THE MODEL

The binding energy of a qq̄ pair in a medium at finite
temperature T > 0 can be obtained by solving the following
Schrödinger equation[ �p2

2 µ
+ V (r, T )

]
ψ(�r, T ) = εn�(T )ψ(�r, T ), (1)

where µ = mqmq̄/(mq + mq̄) is the reduced mass of the
system (we work in units where h̄ = c = 1). As it is gener-
ally done, we assumed a central form for the temperature-
dependent interaction potential V (r, T ). Consequently, the
binding energy εn�(T ) depends not only on the temperature
but also on the radial quantum number n and on the orbital
angular momentum �. An important question is the following:
should the free energy of the qq̄ pair be used as potential term
or should the internal energy be used? Up to our knowledge, the
answer is far from being unanimously accepted. Consequently,
we will consider both possibilities in this work and study
their consequences on the existence of bound states from the
analysis of Eq. (1).

It is known for a long time that lattice calculations can
directly compute the free energy, denoted as F1(r, T ), between
a quark and an antiquark placed in a thermal bath of gluons
and light quarks [9]. For T >∼ Tc, recent lattice computations
agree with a Yukawa form for the free energy of a qq̄ pair in
a color singlet, which can be parametrized by [11]

F1(r, T ) = −4

3
αs(T )

e−mD (T )r

r
, (2)

where αs(T ) is an effective strong coupling constant depending
on the temperature. Equation (2) shows that the free energy is
screened in the finite temperature medium, in analogy to what
happens in QED. The potential at T >∼ Tc is then no longer a
confining one. The screening parameter could be considered
as a QCD Debye mass, denoted as mD(T ). Because the free
energy naturally emerges from lattice QCD computations,
many works directly assumed that V (r, T ) = F1(r, T ) to study
the properties of mesons with the eigenequation (1) [8,13]. We
point our that, if these works use the free energy as potential

term, they do not necessarily take the same expression as ours
for F1(r, T ). Actually, the simple form (2) has the advantage
of being in agreement with the recent results of Ref. [11].

However, the free energy contains an entropy contribution,
and other approaches have suggested that the internal energy,
defined as usual in thermodynamics as

U1(r,T ) = F1(r,T ) + T S1(r,T ) = F1(r,T ) + T ∂T F1(r,T ),

(3)

should be preferentially used as potential term in the
Schrödinger equation (1) [2,14,15]. The reason for such a
choice could be related to the time scales involved in the
system [14]. The first time scale that should be considered
is τb, which is the typical time associated to a particular bound
state, i.e., 〈r/ṙ〉. The second one is τh, that is, the time needed to
transfer heat to matter by changing the entropy S1. If τb � τh,
then the heat transfer can be neglected, and the internal energy
is the relevant potential term. If not, the free energy should
be used. With the free energy defined as Eq. (2), the internal
energy reads

U1(r, T ) = −4

3
{[T αs(T )]′ − T αs(T )mD(T )′r}e−mD(T )r

r
, (4)

where the prime denotes a derivation with respect to T .
The evolution of F1(r, T ) and U1(r, T ) with the temperature

is completely fixed by the functions αs(T ) and mD(T ). For the
running of the strong coupling constant with the temperature
scale, we will assume the well-known one-loop expression [10]

αs(T ) = 2π(
11 − 2

3Nf

)
ln

(
T
�σ

) . (5)

From lattice computations, we choose the value

�σ = βTc, with β = 0.104 ± 0.009, (6)

which has been obtained in Ref. [10]. Actually, αs(T ) is also
known as two-loops [10], but the one-loop formula already
captures the essential physical features of the two-loops
running coupling constant. Because we are mainly interested
in a qualitative description of the existence of mesons versus
the temperature, Eq. (5) is thus sufficient for our purpose.
Lattice QCD also provides a critical temperature Tc appearing
in αs(T ). Following the number of light flavors Nf , different
values can be found that globally lie in the range 150–
300 MeV [18–20]. We will here take the recent estimation
of Ref. [19], where Nf = 3 with two light quarks of the same
mass (u and d) and one heavier (s). It is computed in this work
that [19]

Tc = 169 ± 16 MeV ⇒ �σ = 17.6 ± 3.2 MeV. (7)

If the function giving αs(T ) is generally accepted, several
different forms can be found in the literature for the screening
mass mD(T ) [15,21–23], depending mainly on the temperature
range considered. In this article, we will assume a recently
proposed nonperturbative formula, obtained in Ref. [21] within
the framework of the background perturbation theory, which
states that

mD(T ) = 4πηcσ αs(T )T , (8)
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FIG. 1. Graph of mD(T )/T as a function of T/Tc for a qq̄

pair in a color singlet. The full circles are taken from the lattice
computations of Ref. [11]. Equation (9), computed with the mean
values of the parameters, is plotted with a solid line. The error bars
on the parameters appearing in mD(T ) actually span the shaded area.
The perturbative-like formula (10) is also plotted for comparison with
the fitted value Af = 1.65 and the mean values of the parameters
(dashed line).

with cσ = 0.566 ± 0.013 [10] and η = 2.06 [21]. Defining
γ = 4πηcσ , we have

mD(T ) = γαs(T )T , with γ = 14.652 ± 0.337. (9)

Contrarily to the well-known form mD(T ) = [4π (1 +
Nf /6)]1/2[αs(T )]1/2T [24], which is assumed to hold at
T 	 Tc only [23], Eq. (9) is expected to hold also at T >∼ Tc.
As we show in Fig. 1, Eq. (9) indeed fits rather well the lattice
QCD data, taken from Ref. [11], in the range (1 − 3) × Tc. We
also tried to fit the data with a perturbative-inspired ansatz of
the form [18]

mD(T ) = Af

√
4π (1 + Nf /6)

√
αs(T )T . (10)

Even with the ad hoc value Af = 1.65, which leads to the best
fit of the data, Eq. (10) clearly yields a poorer agreement with
lattice QCD (see Fig. 1). Consequently, it is better justified to
work with the screening mass defined by Eq. (9).

Thanks to Eqs. (5), (7), and (9), the free and internal
energies are completely known, and it is possible to compute
the binding energies εn�(T ) from the eigenequation (1). Then,
the dissociation temperature of a particular [(n0 + 1), �0] state
(in spectroscopic notation) can be computed, that is, the
temperature Tn0�0 for which

εn0�0

(
Tn0�0

) = 0. (11)

The physical meaning of such a temperature is the following:
Once T � Tn0�0 , no qq̄ bound state with quantum numbers
n � n0 or � � �0 can exist.

III. FREE ENERGY AS POTENTIAL TERM

Let us now investigate the existence of bound states when
the free energy (2) is used in the Schrödinger equation (1):

TABLE I. Critical strengths gn�

of the potential −ge−x/x for some
values of n and �.

n/� 0 1

0 1.680 9.082
1 6.447 17.745

V (r, T ) = F1(r, T ). For further computations, it is convenient
to work with the dimensionless variables �x, �q, defined as

�x = mD(T ) �r, �q = mD(T )−1 �p. (12)

Equation (1) can then be rewritten as

[�q2 − gP (x)]ψ(�x, g) = En�(g)ψ(�x, g), (13)

with

P (x) = e−x

x
, En�(g) =

[
2 µεn�(T )

mD(T )2

]
, (14)

and

g = 8 µ

3

αs(T )

mD(T )
> 0. (15)

Equations (13)–(15) show that the dimensionless parameter
g, ruling the depth of the Yukawa potential, −gP (x), is the
only physical parameter responsible for the existence of bound
states. In particular, the numbers gn� such that E(gn�) = 0 are
the critical strengths of the potential: when g < gn0�0 , no bound
states with quantum numbers n � n0 or � � �0 are present in the
spectrum. The numbers gn� actually depend only on the form of
the potential, which is −ge−x/x in this section. They are given
in Table I for some values of n and �. The lowest value, namely
g00 = 1.680, is such that when g < g00, no bound states can
form in the potential. We refer the reader to Refs. [25–29] for
detailed studies on the critical strengths of attractive central
potentials and for techniques to compute them.

When the free energy is taken as potential term, the
dissociation temperature of the [(n + 1), �] state, denoted as
Tn�, is thus given by the solution of equation

mD(Tn�) = 8 µ

3gn�

αs(Tn�), (16)

which is simply a rewriting of the definition (15). It is worth
mentioning that this result is independent of the explicit form
of the strong coupling constant and of the screening mass. The
only input, through the values of gn�, is the Yukawa form (2).
Consequently, for another form of the radial potential like
V (r, T ) = −aαs(T )mD(T )v[mD(T )r], with v(x) arbitrary,
this relation would still be correct [a = 4/3 in Eq. (16)]; only
the value of gn� would change.

If we inject the definition (9) into Eq. (16), we obtain

Tn� = 8 µ

3γgn�

. (17)

Because the model we developed here is physically relevant
only above Tc, and because g decreases with increasing T [see
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Eq. (15)], bound states can form only if

8 µαs(T )

3mD(T )

∣∣∣∣
T =Tc

= 8 µ

3γ Tc

> g00. (18)

It implies a lower bound on µ, which reads

µ > 3
8g00γ Tc = 1.560 ± 0.036 GeV. (19)

Following the values of the Particle Data Book concerning
the current quark masses [30], this lower bound only allows
for bb̄ bound states—for completeness, we recall indeed
that the most recent experimental values are mc = 1.25 ±
0.09 GeV and mb = 4.45 ± 0.32 GeV [30]. Let us note that, in
a Schrödinger-based formalism, constituent quark masses are
more commonly used. The intuitive idea is that a confined
quark acquires an additional mass in a hadron because of
the particle-antiparticle pairs that are created around it. The
difference is particularly important for light quarks: Although
the current mass of the u or d quarks is nearly zero, their
constituent mass is often taken to be around 0.3 GeV [31]. The
use of the constituent mass then allows to deal with a well-
defined kinetic operator �p2/2m. For heavy quarks, the current
and constituent masses are essentially the same, because
the current mass is much greater than the additional mass
coming from any particle-antiparticle cloud. Nevertheless, the
constraint (19) forbids the existence of mesons made of at least
one light quark above Tc; either the current or the constituent
quark mass is used.

Following Eq. (17), the highest dissociation temperature
is T00 for a bb̄ pair, thus the dissociation temperature of
the 1S bottomonium. It is readily computed that, in this
case, T00 = (1.426 ± 0.070) × Tc. The other values for Tn�

are always smaller than Tc even for the bb̄ states, thus outside
the validity range of our model. Interestingly, the prediction
that even the heaviest mesons should be dissociated around
1.5 × Tc is in qualitative agreement with a recent work based
on the study of quarkonium correlators and spectral functions
at nonzero temperature [32]. Let us note that, because our
model does not take the spin interactions into account, we
have only a single dissociation temperature for the both the
ηb(1S) and ϒ(1S) mesons. But, as it can be checked in
Refs. [8,14], spin-dependent interactions are expected to affect
the dissociation temperatures by less than 10%.

IV. INTERNAL ENERGY AS POTENTIAL TERM

We turn now our attention to the case where the internal
energy is taken as potential term in the eigenvalue problem
to solve. Because, following Eq. (9), the screening mass
is proportional to T αs(T ), the internal energy (4) can be
rewritten as

V (r, T ) = U1(r, T ) = −4

3
[T αs(T )]′[1 − mD(T )r]

e−mD(T )r

r
.

(20)

The sign of the internal energy crucially depends on the one
of [T αs(T )]′. It is easily checked from definition (5) that, for
T > Tc, [T αs(T )]′ > 0. As an illustration, we plotted U1(r, T )
for T = 1.5 × Tc in Fig. 2.

FIG. 2. Plot of U1(r, T ) computed for T = 1.5 × Tc and with the
optimal values of the parameters.

Let us begin by a study of the possible bound states.
The main equation (1) can again be rewritten in the form of
Eq. (13), but with

P (x) = (1 − x)
e−x

x
(21)

and g > 0 defined as

g = 8 µ

3

[T αs(T )]′

mD(T )
= 8 µ

3γ

[
1

T
+ αs(T )′

αs(T )

]
. (22)

The critical strength g00 is equal to 4.937 for the potential
(21). We still refer the reader to Refs. [25–29] for methods to
compute g00. Consequently, bound states will exist if

8 µ

3γ

[
1

T
+ αs(T )′

αs(T )

]
= 8 µ

3γ T

[
1 − 1

ln(T/�σ )

]
> g00. (23)

Because the function of T in this last relation is ever decreasing
for T � Tc, a lower bound on µ is obtained when Eq. (23) is
computed for T = Tc. One finds

µ >
3γ Tc

8
g00

(
ln β

ln β + 1

)
= 8.213 ± 1.215 GeV. (24)

Apart from hypothetical bound states involving top quarks,
this condition states that no bound state can survive after
deconfinement provided the internal energy is used as a
potential term. The minimal reduced mass is indeed higher
than any physically allowed reduced mass.

If bound states cannot form at high temperatures, it should
be, however, possible to find quasibound states in the potential
U1(r, T ), i.e., resonance states with a positive eigenenergy and
a finite lifetime. This is due to the presence of a positive barrier
in U1(r, T ), as it can be observed in Fig. 2. The function P (x)
given by relation (21) has a minimum in x = M , with M =
(1 + √

5)/2. The maximum value of the potential −gP (x) is
thus reached in x = M , and quasibound states are expected to
appear for

E < −gP (M). (25)
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FIG. 3. Plot of the maximal energy εmax(T ) for the existence of
quasibound states states as a function of the temperature in units
of Tc.

These states will have a lifetime that becomes smaller as E gets
closer to −gP (M). We stress that the results we discuss here
concerning quasibound states are valid only in the s-channel.
A rewriting of inequality (25) leads to an upper bound on the
physical binding energy, that is

ε < εmax(T ) = 4

3
(M − 1)

e−M

M
mD(T )[αs(T )T ]′. (26)

Figure 3 shows the evolution of the upper bound εmax(T ) with
the temperature. Because it is always increasing, the formation
of quasibound states seems favored at high temperatures.
However, one can expect that, for increasing T , the average
energy ε of a qq̄ pair in the deconfined medium will increase.
Consequently, even if the particular shape of the internal
energy gives more chance for the existence of quasibound
states at high temperature, an ever-decreasing number of qq̄

pairs will have the appropriate energy ε. A detailed study
of these quasibound states thus requires a careful analysis
involving statistical mechanical arguments, which is beyond
the scope of this article. Finally, we can notice that the radius
of these states should necessarily be smaller than x = M . It
implies that their physical radius is such that r < M/mD(T ).
This upper bound tends to zero as T becomes larger.

V. SUMMARY OF THE RESULTS

In this work, we have investigated the possible existence
of mesons beyond the critical temperature. We have built
a potential model from a commonly accepted Yukawa form

for the free energy, that is Eq. (2). We used the well-known
one-loop expression for the running coupling constant that is
simpler than the two-loops expression and contains mainly the
same physical information. For the screening mass, however,
we took the nonperturbative result of Ref. [21], which predicts
that mD(T ) ∝ αs(T )T instead of the usual dependence in√

αs(T )T . We have checked that the expression (9) that
we used for mD(T ) is indeed in better agreement with
recent lattice QCD simulations [11] than the perturbative-like
form (10) in the temperature range (1 − 3) × Tc.

We provide in this article a simple method that allows us
to get mainly analytical results and can be applied to different
versions of the model discussed here. In particular, we have
shown that the determination of the dissociation temperature
is ruled by a single dimensionless parameter that corresponds
to the strength of the potential in a rescaled set of coordinates.
Constraints on the dissociation temperature are thus obtained
from constraints on the strength of the potential such as it
is attractive enough to admit bound states. We observed very
different behaviors following that the free energy or the internal
energy is chosen as potential term in the Schrödinger equation
we study.

When the free energy is used, we have shown that
the dissociation temperature of a given meson, that is, the
temperature at which it becomes unbound, can be analytically
obtained. Logically, the dissociation temperature decreases
not only for increasing n and � but also for decreasing µ.
We deduced from Eq. (17) that the only state that could be
present above Tc is the 1S bottomonium, with a dissociation
temperature of (1.426 ± 0.070) × Tc, in qualitative agreement
with another recent work [32].

Using the internal energy as potential term leads to a rather
different picture. The existence of bound states is still only
ruled by a dimensionless parameter [see Eq. (22)], but we
have shown that “true mesons,” i.e. qq̄ bound states, cannot
no longer exist above Tc in this case. However, it is important
to notice that the potential now exhibits a positive barrier even
at zero angular momentum. This allows for the existence of
quasibound states (metastable states) in the continuum, i.e.,
for positive eigenenergy. In this picture, a few heavy qq̄ pairs
could thus subsist in the medium above Tc as compact (small
radius) quasibound states.
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[32] Á. Mocsy and P. Petreczky, arXiv:0705.2559.

065212-6


