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The Einstein-Klein-Gordon Lagrangian is supplemented by a non-minimal coupling of the scalar field 
to specific geometric invariants: the Gauss-Bonnet term and the Chern-Simons term. The non-minimal 
coupling is chosen as a general quadratic polynomial in the scalar field and allows – depending on the 
parameters – for large families of hairy black holes to exist. These solutions are characterized, namely, 
by the number of nodes of the scalar function. The fundamental family encompasses black holes whose 
scalar hairs appear spontaneously and solutions presenting shift-symmetric hairs. When supplemented by 
an appropriate potential, the model possesses both hairy black holes and non-topological solitons: boson 
stars. These latter exist in the standard Einstein-Klein-Gordon equations; it is shown that the coupling to 
the Gauss-Bonnet term modifies considerably their domain of classical stability.
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1. Introduction

Attempts to escape the rigidity of the minimal Einstein-Hilbert 
formulation of gravity and the limited number of parameters de-
scribing its fundamental solutions – the black holes –, lead natu-
rally physicists to emphasize enlarged models of gravity. Besides 
their purely Academic interests, these attempts are largely mo-
tivated nowadays by intriguing problems such as inflation, dark 
matter and dark energy.

One of the most popular class of extensions of Einstein grav-
ity consists in the inclusion of scalar fields and appeals for natural 
interactions between the scalar fields and the geometry through 
higher curvature terms, leaving a lot of freedom. The general con-
struction of scalar-tensor gravity leading to second order field 
equations was first obtained in [1]. Recently this theory was re-
vived in the context of Galileon theory [2] and different extensions 
of it, see e.g. [3].

Apart from their cosmological implications, the extended mod-
els of gravity (by scalar or other types of fields) offer possibilities 
to escape the limitations of the no-hair theorems [4,5] holding in 
standard gravity. In the last few years, black holes endowed by 
scalar hairs have attracted a lot of attention and have been stud-
ied in numerous theories. One particularly interesting result is the 
family of hairy black holes constructed in [6] within the Einstein 
gravity minimally coupled to a complex scalar field. In this case, 
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the no-hair theorems [4,5] are bypassed by the rotation of the 
black hole and the synchronization of the spin of the black hole 
with the angular frequency of the scalar field. Recent reviews on 
the topic of black holes with scalar hairs can be found e.g. in [7], 
[8], [9].

The general theory of scalar-tensor gravity [1], [3] contains a 
lot of arbitrariness and the study of compact objects such as black 
holes, neutron stars or boson stars needs to be realized in some 
particular cases. As an example, the truncation of the Galileon the-
ory to a lagrangian admitting a shift-symmetric scalar field was 
worked out by Sotiriou and Zhou (SZ in the following) [10] and 
still leads to a large family of models. Hairy black holes were con-
structed perturbatively and numerically in the particular case of a 
scalar field coupled linearly to the Gauss-Bonnet invariant [11].

Abandonning the hypothesis of shift-symmetry, several groups 
[12], [13], [14] considered during the past years, new types of 
coupling terms between a scalar field and specific geometric in-
variants (essentially the Gauss-Bonnet term). In these models the 
occurrence of hairy black holes results from an unstable mode of 
the scalar field equation in the background of a vacuum metric 
(the probe limit). The interacting term of the scalar field with the 
curvature invariant plays a role of potential and the coupling con-
stant the role of a spectral parameter. By continuity, the hairy black 
holes then exist as solutions of the full system. It is used to say 
that the hairy black holes appear through a spontaneous scalariza-
tion for a sufficiently large value of the coupling constant.

In the present paper we will consider a model of scalar-
tensor gravity encompassing the theories presenting a spontaneous 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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scalarization and the shift-symmetry property. Families of classi-
cal solutions whose pattern extrapolates smoothly between shift-
symmetric hairy black holes and spontaneous scalarized ones will 
be constructed. The type of structure found holds when coupling 
the scalar field to the Gauss-Bonnet invariant and to the Einstein-
Chern-Simons invariant as well. All black holes solutions found are 
supported by the non-minimal coupling between the scalar field 
and the curvature invariant; however the field equations admit 
other types of solutions: boson stars. These regular solutions ex-
ist with a minimal coupling of scalar field to gravity but it will be 
shown that the non minimal coupling has important consequences 
on their stability properties.

The paper is organized as follows: in Sect. 2 we present the 
model to be studied. Namely the Einstein-Klein-Gordon Lagrangian 
extended by a non-minimal coupling. We discuss the spherically 
symmetric ansatz and the general form of the field equations. 
Sect. 3 is devoted to the presentation of the hairy black holes oc-
curring in the model. The boson stars are presented in Sect. 4 with 
an emphasis on the influence of the non-minimal coupling of the 
spectrum of the solutions. Conclusions are drawn in Sect. 5. Similar 
results hold for Einstein-Chern-Simons gravity and are the object 
of the Appendix; the activation of the Chern-Simons term is real-
ized by means of a NUT charge [15].

2. The model

2.1. The action

We are interested in solutions of the field equations associated 
with the action

S =
∫

d4x
√−g

[
1

16πG
R − ∇μφ∗∇μφ − V (φ) + f (φ)I(g)

]
,

(2.1)

which extends the minimal Einstein-Klein-Gordon lagrangian. Here 
R is the Ricci scalar and φ represents a complex scalar field 
which – in some circumstances – will be chosen real. The usual 
Klein-Gordon kinetic term is supplemented by a potential V (φ)

which will actually be chosen as a function of the combination 
|φ|2 ≡ φφ∗ in order to ensure a U (1) global symmetry for the 
scalar sector. In the following V will be set in the form

V (φ) = m2|φ|2 + λ4|φ|4 + λ6|φ|6 (2.2)

which is used generically for obtaining Q-balls in the absence of 
gravity and boson stars when gravity is set in (see e.g. [16], [17]
for reviews).

The gravity sector is supplemented by a non-minimal coupling 
between the scalar field and the geometrical invariant I(g). For 
this paper, we will be interested in the case where this invariant 
is the Gauss-Bonnet-scalar:

I(g) = LG B ≡ R2 − 4Rab Rab + Rabcd Rabcd.

It is well known that this invariant is a total derivative in four 
dimensions but it will contribute non trivially to the equations of 
motion through the non-minimal coupling to the scalar field via 
f (φ). For the seek of generality, we have also investigated the case 
of a coupling to the Chern-Simons invariant, see Appendix A.

In order to preserve the U (1) symmetry of the “usual” scalar 
sector, we will assume that, just like the potential, f (φ) is a func-
tion of |φ|. In this paper, we will emphasize the effects of a cou-
pling function of the form

f (φ) = γ1|φ| + γ2|φ|2 (2.3)
where γ1, γ2 are independant coupling constants. Several forms of 
the function f (φ) have been emphasized in the literature where 
the scalar field is usually choosen real. The EGB theory with γ2 =
0 and V = 0 corresponds to a shift-symmetric theory studied by 
SZ [10], the case γ1 = 0 is considered in [12], [13]. [14]. Several 
choices of the function f (φ) have been considered in [18] and very 
recently in [19], [20]. Solutions with the form of f (φ) above with 
two independant constants γ1, γ2 was, to our knowledge, not yet 
investigated.

2.2. Equations of motion

The equations of motion (EOM) for the general action (2.1) read

Gμν = 8πG
(

T (φ)
μν + T (I)

μν

)
(2.4)

for the metric function, and

−�φ = − ∂V

∂φ∗ + ∂ f

∂φ∗ I(g) (2.5)

for the scalar field. In these equations, Gμν is the Einstein tensor 
and � = ∇μ∇μ . The energy momentum T (φ)

μν arise from the varia-
tion of the standard Klein-Gordon lagrangian:

T (φ)
μν = ∇(μ φ∇ ν)φ

∗ − (∇αφ∗∇αφ + V (φ)
)

gμν . (2.6)

Finally, T (I)
μν is the energy momentum tensor associated to the 

non-minimal coupling term1 f (φ)I(g).
From Eq. (2.5), one can see that the invariant I(g) will act as a 

source term for the scalar field. Consequently, if one finds a space-
time solution of the EOM such that I(g) �= 0, this solution will 
automatically present a non-trivial scalar field. This mechanism is 
known as “curvature induced scalarization”.

2.3. The ansatz

2.3.1. Metric
We will be interested in spherically symmetric solutions. In this 

case, it is well known that (in the appropriate coordinate system) 
the metric can always be set in the form

ds2 = −N(r)σ 2(r)dt2 + 1

N(r)
dr2 + g(r)(dθ2 + sin2 θdϕ2) , (2.7)

where θ and ϕ are the standard angles parameterizing an S2 with 
the usual range and r and t are the radial and time coordinates 
respectively.

The usual coordinate choice g(r) = r2 will be used throughout 
this paper.

2.3.2. Scalar field
Within the same coordinate system, we choose a scalar field of 

the form

φ(xμ) = e−iωtφ(r), (2.8)

where ω, the frequency of the scalar field, is a real parameter and 
φ(r) a real function. The scalar field will be assumed to be real (i.e.
ω = 0) in the case of hairy black holes.

This choice above is motivated by the construction of boson 
stars. Indeed, it is well known [16] that boson stars exist as so-
lutions of the minimal Einstein-Klein-Gordon equations provided 

1 The expression of T (I)
μν is generically quite involved and depends on the explicit 

form of I(g). The expression of T (I)
μν for the case considered here can be found in 

[21] with the same notations.
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the scalar field is chosen complex (typically of the form (2.8)) and 
supplemented by a mass term (or a more general potential (2.2)) 
in the equations.

2.3.3. Reduced equations
With the Ansatz (2.7)–(2.8), the equations (2.4)–(2.5) reduces to 

a system of three coupled differential equations (plus a constraint) 
for the radial functions N, σ and φ. Using suitable combinations of 
the equations, the system is amenable to the form

N ′ = F1(N,σ ,φ,φ′) , σ ′ = F2(N,σ ,φ,φ′) ,

φ′′ = F3(N,σ ,φ,φ′)
(2.9)

where Fa , with a = 1, 2, 3, are involved algebraic expressions 
whose explicit form is not illuminating enough to be given.

2.3.4. Rescaling and units
In the coming discussion we will set c = 1 and 8πG = 1. The 

equations are then invariant under the rescaling

r → λr , m2 → m2

λ2
, λ4,6 → λ4,6

λ2
γ1,2 → λ2γ1,2 , (2.10)

where λ has the dimension of length−1. These rescaled quantities 
will be used in the following. In the case of black holes we will use 
it to set the event horizon to unit (i.e. rh = 1). In the case of boson 
stars (which have no horizon) we will set the mass parameter m
to one (m = 1).

3. Hairy black holes

3.1. Boundary conditions

We now discuss the black holes solutions of the equations. As 
stated above these solutions exist for a real scalar field, so we set 
ω = 0 in the equations. Let us first consider the solutions occurring
in the absence of potential (i.e. setting m = λ4 = λ6 = 0 in (2.2)); 
the influence of a mass term will be emphasized separately, see 
Sect. 3.2.3.

For black holes, the metric is required to present a regular hori-
zon at r = rh , i.e. N(rh) = 0. The occurrence of this condition in the 
equations and the requirement of a regular function φ(r) at the 
horizon implies a non trivial relation for the scalar function and 
its derivative at r = rh . The two conditions at the horizon are sum-
marized as follows

N(rh) = 0 , φ′(rh) = −r2
h ± √




8rh(γ1 + 2γ2φ(rh))
,


 = r4
h − 96γ 2

1 − 384(γ 2
2 φ(rh)

2 + γ1γ2φ(rh))

(3.11)

Remark that 
 ≥ 0 constitutes a necessary condition for solutions 
to exist. We will see in the next section that it largely deter-
mines the domain of the coupling constants γ1, γ2 for which so-
lutions exist. The requirement for the solutions to be asymtotically 
Minkowski further implies

σ(r → ∞) = 1 , φ(r → ∞) = 0 . (3.12)

The four conditions (3.11)-(3.12) constitute the boundary values of 
the field equations. The black holes can be characterized by their 
mass M and the scalar charge Q s . These are related respectively to 
the asymptotic decay of the functions N(r) and φ(r):

N(r) = 1 − 2M + O (1/r2) , φ(r) = Q s + O (1/r2) . (3.13)

8πr r
The entropy S = πr2
h and temperature T H = σ(rh)N ′(rh)/(4π)

characterize the solutions at the horizon. Using the equations the 
temperature can further be specified:

N ′(rh) = 1

rh + 4φ′(rh)(γ1 + 2γ2φ(rh))
. (3.14)

Because the equations do not admit closed form solutions, we 
solved the system by using the numerical routine COLSYS [22]
which is well adapted for the problem at hand. It is based on a 
collocation method for boundary-value differential equations and 
on damped Newton-Raphson iterations. The equations are solved 
with a mesh of a few hundred points and relative errors of the or-
der of 10−6. The values M, Q S , S, T H can be extracted with such 
an accuracy from the numerical datas.

3.2. Numerical results

3.2.1. Fundamental branch
We now present the pattern of solutions in the γ1, γ2 param-

eter space. Practically, we start from the hairy black holes con-
structed in [10], i.e. the shift-symmetric theory, corresponding to 
γ2 = 0. A pair of solutions exist for γ1 ≤ √

1/96 ≈ 0.1021 (with our 
convention of the non minimal coupling); characterized by the sign 
± appearing in the condition (3.11). We will essentially focus on 
the family of solutions corresponding to the “+” sign which, in the 
limit γ1 → 0, smoothly approach the Schwarschild solution. Solu-
tions corresponding to the “–” sign can be constructed as well (see 
e.g. [23]), forming a second branch with higher mass. This branch, 
however is difficult to construct numerically. Moreover no regular 
solution can be associated to the γ1 → 0 limit for this branch since 
the value φ′(rh) in (3.11) clearly diverge in this case (γ2 = 0) for 
the “−” sign. The understanding of this branch is then not aimed 
in the present paper.

For a fixed value of the parameter γ1, the SZ solution can be 
deformed by increasing (or decreasing) gradually the coupling con-
stant γ2. The pattern of hairy black holes obtained in this way 
turns out to be quite different for the small values of γ1 (say for 
γ1 ≤ 0.005) and for 0.005 < γ1 <

√
1/96. For definiteness let us 

first discuss the family of black holes corresponding to γ1 > 0.005.

(i) Increasing gradually the coupling constant γ2, it turns out 
that the value 
 approaches zero at some critical value, say 
γ2,c . Accordingly, no solution exist for γ2 > γ2,c . This is illus-
trated on Fig. 1 where the quantities 
 (solid lines) and φ(rh)

(dashed lines) are plotted as functions of γ2 for two values of 
γ1 (see the purple and red lines). The corresponding values of 
the mass and of φ′(rh) is presented on both sides of Fig. 2.

(ii) In the case γ2 < 0, a Schwarzschild metric can be approached 
arbitrarily close, although not exactly. This is due to the fact 
that the scalar field never reaches φ(r) = 0 due to the pres-
ence of the non-homogeneous term in the scalar field equa-
tion. Indeed for the Schwarzschild black hole of mass M we 
have LG B = 48M2/r6.

The deformation of the SZ solutions in the region γ1 ≤ 0.005 for 
γ2 �= 0 leads to a richer pattern. For a fixed value of γ1 ≤ 0.005:

(a) Starting from the shift-symmetric solution (γ2 = 0) and in-
creasing γ2 > 0, we find that the SZ black holes forms a “first 
branch” of solutions which exists up to a maximal value, say 
for γ2 ≤ γ2,max .

(b) Then, decreasing γ2 from γ2,max , a “second branch” of solu-
tions exists for γ2 ∈ [γ2,c, γ2,max ]. As before, the value γ2,c
coincide with 
 = 0 and the two branches coincide in the 
limit γ2 → γ2,max . Fig. 1 illustrates this phenomenon for γ1 =
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Fig. 1. The parameter 
 (solid lines) and the value φ(rh) (dashed lines) as functions of γ2 for several values of γ1.

Fig. 2. The mass as functions of γ2 of the solutions of Fig.1. Right: Idem for the value φ′(rh).
0.0005 (see the blue line; in this case we find γ2,c ≈ 0.172
and γ2,max ≈ 0.177). We note that, on the interval of γ2 where 
the two solutions coexist, the solution of the first branch has 
a lower mass than the corresponding solution on the second 
branch.

(c) For γ2 < 0, while decreasing γ2, the black holes approach a 
Schwarzschild metric in the same way as point (ii) above.

To summarize, fixing low enough values of γ1 and varying γ2 >

0, the SZ solution deforms into a family of hairy black holes form-
ing two branches which exist on specific intervals of γ2. We can 
now emphasize how this ensemble behaves when taking the limit 
γ1 → 0. It turns out that the solutions of the first branch approach 
uniformly the Schwarzschild black hole (irrespectively of γ2). By 
contrast, the solutions of the second branch have a non trivial limit 
and approach the set of so called “spontaneously scalarized black 
holes” for γ2 ∈ [γ2,c, γ2,max ]. These solutions were constructed di-
rectly in [12], [13], [14]. The critical values γ2,c ≈ 0.1734 and 
γ2,max ≈ 0.1814 found in these papers fit very well with our nu-
merical datas. The occurrence of these critical values have different 
explanations:

(I) In the limit γ2 → γ2,c , the parameter 
 (see (3.11)) ap-
proaches zero.

(II) In the limit γ2 → γ2,max , the scalar hairs tends uniformly to 
zero.

The value γ2,max in fact corresponds to an eigenvalue of the scalar 
field equation

1
2

d
[

r2N(r)
d

φ

]
= γ2

48M
6

φ , N(r) = 1 − 2M
(3.15)
r dr dr r r
considered in the background of Schwarzschild solution. This value 
reflects a tachyonic instability of the Schwarzschild solution in the 
theory (2.1), opening the way for the vacuum solution to evolve 
into a hairy black hole. Details about the spectrum of this equation 
can be found, namely in [13], [21].

The question about the stability of our solutions raises natu-
rally. In the case of the hairy black holes occurring by spontaneous 
scalarisation with a quadratic coupling to the Gauss-Bonnet term, 
it was shown in Refs. [19], [20] that the solutions present radial 
instabilities which can be removed when supplementing a quar-
tic term in the coupling function. The study of the stability is not 
aimed in this paper; however we would like to argue about the 
(in)stability in the case where two solutions coexist with different 
masses on the interval [γ2,c, γ2,max ] (see Fig. 2). It is likely that the 
branch with the lower mass which approaches the Schwarzschild 
metric in the limit γ1 → 0, is linearly stable while the branch with 
the higher mass, which approaches the spontaneously scalarized 
solutions, is unstable; this last statement being reinforced by a 
continuity argument applied to the results of [19], [20].

3.2.2. Excited solutions
In the shift-symmetric case, i.e. with γ2 = 0, the condition 

(3.11) drastically reduces the spectrum of hairy black holes. For 
each value of γ1 < 1/

√
96 a single solution is allowed with “+” 

sign (since φ′(rh) does not depend on φ(rh) but only on the fixed 
parameters γ1 and rh) and the scalar field is a monotonic function. 
Consequently, excited solutions (i.e. with φ(r) presenting nodes) 
do not occur. By contrast, for the spontaneously scalarized black 
holes (i.e. with γ1 = 0), the linear equation (3.15) possesses – in 
principle – a series of critical values of γ2 corresponding to nor-
malizable eigenfunctions φ(r) presenting one or more nodes. Any 
of these solutions leads to a branch of excited hairy black holes of 



Y. Brihaye, L. Ducobu / Physics Letters B 795 (2019) 135–143 139
Fig. 3. The value φ(rh) and the quantity 
 as function of γ2 for several values of γ1.

Fig. 4. The value φ′(rh) and the quantity 
 as function of γ2 for several values of γ1 for the solutions with rh = 1.
the coupled system (γ1 �= 0, γ2 �= 0). We constructed numerically 
the branch corresponding to the first excited (or one-node) solu-
tion. Values 
 and φ(xh) are reported on Fig. 3 as functions of 
γ2 for a few values of γ1 (the red lines correspond to γ1 = 0). As 
for the fundamental (or no-node) solution discussed above, we see 
that the first excited hairy black holes exists for γ2 ∈ [γ2,c, γ2,M ]
where the lower (resp. upper) bound of this interval corresponds 
to 
 = 0 (resp. to the second eigenvalue of (3.15)).

Switching on the parameter γ1 leads to a deformation of these 
excited hairy black holes. The results of Fig. 3 suggest that the 
excited black holes exist only for γ2 ≥ γ2,c . This contrasts drasti-
cally with the spectrum of fundamental solutions (see Fig. 1). It is 
tempting to say that the fundamental solutions are “attracted” by 
the SZ solutions occurring in the γ2 = 0 limit. Having no equiva-
lent, the excited solutions exist only for large values of γ2.

3.2.3. Influence of a mass term
In the previous section, the scalar field φ was supposed to be 

massless. In this section, we discuss the effect of a massive scalar 
field on the spectrum of hairy black holes. For simplicity we re-
strict the presentation to the spontaneously scalarized solutions – 
i.e. setting γ1 = 0 – and to the mass term only in the potential 
(2.2) – i.e. λ4 = λ6 = 0.

In the case of a massive scalar field, the regularity condition 
(3.11) is more involved:

φ′(rh) = −B ± √



2A
(3.16)

with
A = −φ0(12γ2 − m2r2
h(r2

h + 8γ2φ
2
0) + 4γ2r4

hφ4
0) ,

B = 8γ2φ0(r
2
h − φ2

0(r4
h + 8γ2r2

h − 64φ2
0γ

2
2 )) ,

(3.17)


 = (1 − m2φ2
0r2

h)2
(

r2
h(r4

h − 384γ 2
2 φ2

0)

+ 256m2γ 2
2 φ4

0(r4
h + 12γ2r2

h − 96γ 2
2 φ2

0)

+ 4096m4γ 4
2 φ8

0r2
h

) (3.18)

and we posed φ(rh) = φ0. The temperature of the black hole can 
be evaluated by using:

N ′(rh) = 1 − m2r2
hφ(rh)

2

rh + 4φ′(rh)(γ1 + 2γ2φ(rh))
(3.19)

instead of (3.14). This suggests that hairy black holes occurring
from a massive scalar field can eventually be extremal. However 
for all values of m that we addressed (see Fig. 4), the parameter 
φ(rh) remains too small for extremal black holes to form.

The numerical results reveal that the inclusion of a massive 
scalar field results in shifting the interval of existence in γ2 to 
larger values, as demonstrated by Fig. 4. The critical phenomena 
limiting the interval of existence is of the same as discussed above. 
The shift to larger values of the interval of γ2 while increasing m
can be understood by examining the field equation of the scalar 
field. With the assumptions made in this section (for instance: a 
real scalar field, a mass term only and γ1 = 0), (2.5) reads

−�φ = 2
(
γ2I(g) − m2

)
φ.
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Fig. 5. The mass of the boson star as a function ω for no-selfinteraction and for different values of γ2.
One can see that the mass act as a “negative shift constant” on 
the term γ2I(g). For m = 0 the scalarised solutions appears only 
when the Gauss-Bonnet term becomes sufficiently important (i.e.
when γ2 is large enough to ensure the term I(g) to trigger the 
scalar field). It is then intuitive to assert that, since the mass just 
shift down the trigger term of the scalar field, higher values of γ2
are needed to allow for spontaneous scalarisation.

4. Boson stars

As we mentioned in Sect. 2, it is well known (see e.g. [16]) that 
regular solutions – boson stars – exist within a large subclass of 
the lagrangian (2.1). Let us first specify the conditions:

• The scalar field is complex, of the form (2.8) with ω �= 0. Ac-
cordingly, the Lagrangian possesses a U (1)-global symmetry.

• The linear coupling to the Gauss-Bonnet term will be set to 
zero so γ1 = 0 in (2.3). This is because we want to limit our-
selves to a polynomial lagrangian in φ.

• The potential should contain at least a mass term, so m > 0 in 
(2.2).

Asymptotically, the functions N(r), φ(r) behave according to

N(r) = 1− 2M

8πr
+ O (1/r2) , φ(r) ∝ exp(−r

√
m2 − ω2) , (4.20)

contrasting with (3.13). The exponential decay of the scalar field 
demonstrates the crucial role of frequency parameter ω and of the 
mass m; in particular boson stars exist for ω < m. Beside the mass 
M , the solutions are further characterized by the Noether charge 
associated to the U(1)-symmetry of the Lagrangian. The Noether 
current and the calculation of the charge Q can be found in nu-
merous papers (see e.g. [24]), for brevity we give the final form of 
the integral to be computed to evaluate the charge:

Q = 8πω

∫
r2φ2

Nσ
dr. (4.21)

This quantity is interpreted as the number of elementary bosons 
of mass m constituting the star.2

The construction of boson stars is achieved by solving the field 
equations of Sect. 2.2 for r ∈ [0, ∞]. The regularity at the origin, 
the asymptotic flatness and the localization of the scalar field im-
ply the following set of boundary conditions:

2 One formal analogy can be made with the total charge Q E M of a system of N
particles of electric charge q. In such a case the number of components is obtained 
via the relation N = Q E M/q.
N(0) = 1 , φ(0) = F0 , φ′(0) = 0 ,

A(r → ∞) = 1 , φ(r → ∞) = 0
(4.22)

which determine the boundary value problem. Practically, the 
value F0 at the center is used as control parameter in the numeri-
cal resolution; the frequency ω has to be fine-tuned as a function 
of F0 for all boundary conditions to be obeyed. The frequency ω, 
the mass M and the Noether charge Q can then be evaluated as 
functions of F0.

4.1. Solutions without self-interaction

Let us first discuss the solutions for a pure mass potential (i.e.
for λ4 = λ6 = 0 in (2.2)). The minimally coupled boson stars (i.e.
corresponding to γ2 = 0) exist on a finite interval of the frequency 
ω/m, that is to say for ω/m ∈ [ωmin/m, 1.0] with ωmin/m ≈ 0.76. 
The plot of the mass M versus ω presents the form of a spiral 
as shown by the red line on Fig. 5. From this pattern, it results 
that two or more solutions can exist with the same frequency on 
specific sub-intervals of ω. The vacuum (i.e. Minkowski space-time) 
is approached for F0 → 0 which coincides with the limit ω/m →
1. The phenomenon limiting the boson stars in the center of the 
spiral is the following: while increasing F0 the effects of gravity 
get stronger at the center of the lump, in particular the value σ(0)

decreases, finally approaching zero. Correspondingly the value R(0)

of the Ricci scalar gets arbitrarily large and a configuration with a 
singularity at the center is approached.

We now discuss the influence of the non-minimal coupling 
(i.e. with γ2 > 0) on this pattern. A look at Fig. 5 reveals that 
the M versus ω curve has the tendency to unwind for γ2 > 0
and that the boson stars exist on a larger interval of ω. The 
nature of the phenomenon limiting the curves corresponding to 
γ2 > 0 on Fig. 5 is different from the case γ2 = 0 mentioned
above. Denoting D(r) the denominator of the function F3 in (2.9), 
it turns out that the values σ(0), D(0) both decrease when F0
increases. However the numerical results strongly indicate that 
D(0) tends to zero much quicker than σ(0) once γ2 > 0. This 
statement is hard to demonstrate because the numerical integra-
tion of the equations becomes particularly tricky in this limit. 
Within the coordinate system used both the numerator and de-
nominator entering in F3 become quite large in a region of the 
interval of integration and the accuracy of the numerical solu-
tion get lost. The situation is illustrated on Fig. 6 where the 
pattern of the solutions is shown in the ω − σ(0) plane (left-
figure) and in the ω − D(0)

D(∞)
109 plane (right-figure). In this plot, 

the quantity D(r) has been normalized with respect to D(∞) in 
order to compare the curves for the different values of γ2 con-
sidered. The logarithmic scale used on the vertical axis of the 
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Fig. 6. The value σ(0) as function of ω for boson stars and three values of γ2. Right: Idem for the discriminant of the system of equations.

Fig. 7. The mass of the boson star as a function ω for a self-interacting potential.
right plot illustrates the huge variation of D(r) while approach-
ing the critical configuration. The two plots confirm that for, 
γ2 �= 0, the limit of existence of the boson stars is related to 
the behavior of D(0), rather than to σ(0) whose values remain 
finite.

Note that the unwinding phenomenon of the ω − M relation 
seems to be closely related to the Gauss-Bonnet term. It was first 
observed in the construction of boson stars in Einstein-Gauss-
Bonnet gravity in five dimensions [25]. In this case, the Gauss-
Bonnet term is fully dynamic and does not need coupling to extra 
field.

4.2. Effect of a self-interacting term

Because the self-interacting potential depends on two indepen-
dant parameters (namely λ4, λ6), we limited the investigation to 
the potential of the form: V = φ2(1 − φ2)2. Presenting three de-
generate vacua (φ = 0, ±1), this potential offers rich possibilities 
for topological solitons [26]. Recently it was used in [27] for the 
study of kink-anti-kink collisions in 1 + 1 dimensions and in [28]
to study boson stars in 3 + 1 dimensions.

The general effect of the self-interacting potential on the so-
lutions is that the interval of frequencies of the boson stars is 
significantly larger than for the mass potential. Especially the 
minimal value ωmin is systematically lower (e.g. ωmin ≈ 0.72 for 
γ2 = 0). These features are illustrated by Fig. 7, to be compared 
with Fig. 5. The unwinding feature of the mass-frequency graphic 
occurring for the mass potential also takes place when the self-
interaction is present. The minimal value ωmin is again systemati-
cally lower although remaining strictly positive. The combination 
of self-interacting scalar field and non-minimal coupling to the 
Gauss-Bonnet term is therefore not suitable to allow for purely real 
soliton solutions.

One can also note that, in the presence of the self-interaction, 
an increase of γ2 can lead to solutions with drastically higher mass 
compared to solutions with γ2 = 0 (compare, for example, the 
difference between the curves corresponding to γ2 = 0 (red) and 
γ2 = 0.2 (orange) on Fig. 5 and Fig. 7).

4.3. Classical stability

We now address the stability of the boson stars by invoking 
a “classical argument”. With the interpretation of Q as the num-
ber of bosons of mass m in the lump, it is natural to compare 
the quantity mQ to the total mass of the solution M . If M < mQ , 
the total mass of the boson star is lower than the sum of its 
components, i.e. the total energy of the system is lower than the 
energy corresponding to Q “free” bosons. In such a case, as for 
the mass defect in atoms, we will say that the system is stable, 
in the sense that the Q bosons can’t exist in a “free” form but 
have to be bounded within the star. Following the same lines, the 
case M > mQ will correspond to unstable configurations (remem-
ber m = 1 as fixing our scale, see section 2.3.4).

The quantity M/Q is reported as a function of ω on Fig. 8 for 
several values of γ2. The left part of Fig. 8 characterizes solutions 
with the mass term only. We see that the solutions emerging from 
the vacuum limit (i.e. ω/m = 1) are classically stable and remain so 
for sufficiently high values of ω, say for ω ≥ ωs where ωs is such 
that M/Q = 1. For values of ω such that several solutions coexist, 
the most massive is the most stable.

The most interesting result concern the influence of γ2 on this 
pattern. As one can see on the plot, ωs decreases when γ2 in-
creases while, for fixed ω, M/Q decreases when γ2 increases. 
Consequently, the presence of the interaction between the scalar 
field and the geometry enhance the stability of the solutions.

This feature remains qualitatively the same for self-interacting 
solutions as illustrated on the right part of the figure. The pres-
ence of the self-interaction reinforces the effects of the cur-
vature and the boson stars are even more stable compared 
to non-self-interacting ones. For sufficiently high values of γ2
(say for γ2 > 0.075), the whole set of solutions is classically 
stable.
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Fig. 8. Left: The quantity M/Q as function of ω for several values of γ2 for solutions without self-interaction. Right: Idem for self-interacting solutions.
5. Conclusion

The investigation for hairy black holes in gravity extended by a 
Gauss-Bonnet term coupled to a scalar field was a source of huge 
activity over the past years. In particular the stability of such ob-
jects was examined in details in [19], [20]; the construction of 
such black holes in the presence of a cosmological constant was 
reported in [31]. The coupling function of the scalar field to the 
Gauss-Bonnet term is, up to now, left as an arbitrary freedom but 
its form lead to different patterns for the solutions and turns out 
to be important for the stability of the hairy black holes.

In this paper we considered as coupling a superposition of 
the linear and quadratic powers of the scalar field. While spon-
taneously scalarized black holes – with purely quadratic coupling 
constant γ2 – appear on a very limited interval of the coupling 
constant γ2, we showed that, when adding a linear part (even with 
small coupling γ1), two branches of hairy black holes exist. One of 
these branches is very close to the spontaneously scalarized black 
holes while the second extend backward to a solution with shift-
symmetric scalar field. This feature is specific for the fundamental 
solutions and is not repeated for excited solution (i.e. with scalar 
field presenting nodes).

Extending the scalar sector of scalar-tensor gravity to a massive, 
complex field, we were also able to construct boson star solutions 
in the full theory. The qualitative and quantitative effects of the 
Gauss-Bonnet term have been reported in details in Sect. 4 re-
vealing, for instance, that the presence of the quadratic coupling 
constant γ2 can drastically increase the maximal mass of these 
objects and the range of ω (the frequency of the complex scalar 
field) for which these solutions exist. In this context, we also show 
that the critical phenomenon limiting the existence of solutions is 
different in the minimally and non-minimally coupled case. Inter-
estingly, our results demonstrate that the coupling to the Gauss-
Bonnet invariant and/or the inclusion of a self-interacting potential 
of the scalar field enhances the domain of classical stability of the 
boson stars.

Finally, in the Appendix we studied the solutions for scalar-
tensor gravity extended by the same kind of coupling of the scalar 
field to the Chern-Simons invariant. Here the space-time is en-
dowed with a NUT charge. The pattern of Nutty-Hairy black holes 
is qualitatively similar to the Gauss-Bonnet case.

Appendix A. Coupling to the Chern-Simons invariant

In this appendix, we provide an analysis of hairy black holes 
in the model (2.1) where the curvature invariant is chosen as the 
Chern-Simons-scalar:

I(g) = LC S ≡ R R̃ = ∗Ra
b

cd Rb
acd , ∗Ra

b
cd ≡ 1

ηcdef Ra
bef
2
where ∗Ra
b

cd is the Hodge dual of the Riemann-tensor, ηcdef =
εcdef /

√−g the 4-dimensional Levi-Civita tensor and εcdef the 
Levi-Civita tensor density.

The construction of classical solutions with a non-trivial Chern-
Simons term can be performed by enforcing rotations in the met-
ric or by endowing Space-Time with a NUT charge. Nutty-Hairy 
black holes in Einstein-Chern-Simons gravity were constructed in 
[29] and [21] for γ2 = 0 and γ1 = 0 respectively. Similar solutions 
within Einstein-Gauss-Bonnet (rather than Chern-Simons) gravity 
were obtained in [23]. The field equations are given by (2.4) and 
(2.5) with a different expression of T (I)

μν which can be found in 
[21] with the same notations as in Sect. 2.1.

A.1. The ansatz

To construct the solutions we use a metric of the form

ds2 = −N(r)σ 2(r)(dt + 2n cos θdϕ)2

+ dr2

N(r)
+ g(r)(dθ2 + sin2 θdϕ2) ,

generalizing the Schwarzschild-NUT solution. Here θ and ϕ are the 
standard angles on S2 with the usual range while r and t are the 
“radial” and “time” coordinates respectively. The NUT parameter 
n appears as a coefficient in the differential form dt + 2n cos θdϕ
(note that n � 0, without any loss of generality). When evaluated 
with this metric, the Chern-Simons density LC S is actually propor-
tional to the NUT charge; so it vanishes identically for spherically 
symmetric solutions (n = 0) but becomes non trivial for n �= 0, en-
suring a non-trivial behavior of the scalar field via the curvature 
induced scalarization only for n �= 0.

In the decoupling limit γ1 = γ2 = 0 (implying φ = 0), the func-
tions N(r), σ(r) and g(r) are known explicitly:

N(r) = 1 − 2(Mr + n2)

r2 + n2
, σ (r) = 1 , g(r) = r2 + n2 . (A.1)

This metric therefore possesses an horizon at

rh = M +
√

M2 + n2 > 0.

As in the Schwarzschild limit, N(rh) = 0 is only a coordinate singu-
larity where all curvature invariants are finite. In fact, a nonsingu-
lar extension across this null surface can be found [30]. Completing 
the metric (A.1), the ansatz for the scalar field is the same as 
Eq. (2.8).

A.2. Numerical results

In the same spirit as in the main part, we have constructed 
the black hole solutions in the Einstein-Chern-Simons (ECS) model 
with the mixed coupling (2.1) and using a Nutty space-time in or-
der to make the Chern-Simons term non trivial.
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Fig. 9. The value φ′(rh) as function of γ2 for several values of γ1 for the solutions with rh = 1 and n = 0.1.
For generic values of γ1, γ2, no explicit solution can be found 
and, again, we relied on a numerical technique. For the construc-
tion, we used the gauge σ(r) = 1. Then the Einstein-Chern-Simons 
equations can be transformed into a system of three coupled dif-
ferential equations of the second order for the functions N(r), g(r)
and φ(r). The desired asymptotic form of the solutions require

N(r → ∞) = 1 , σ (r → ∞) = 1 , φ(r → ∞) = Q s

r

where Q s is the scalar charge. Imposing an horizon r = rh , i.e.
N(rh) = 0, the conditions of regularity of the solution at the hori-
zon can be determined on the first few coefficients of the Taylor 
expansion:

N(r) = N1(r − rh) + O ((r − rh)
2) ,

g(r) = g0 + g1(r − rh) + O ((r − rh)
2) ,

φ(rh) = φ0 + φ1(r − rh) + O ((r − rh)
2)

Two conditions are finally necessary:

g′(rh) = 1

N1
(2 − g0φ0m2 − 2nN1φ1(γ1 + 2γ2φ0)) ,

24γ2φ
2
0φ1(N1)

3 + N1(2γ2ng0m2φ3
0 − 12γ2nφ0 − g2

0φ1)

+ g2
0φ0m2 = 0.

The pattern of the solutions found for the ECS case is very sim-
ilar to the case of EGB. In particular, the solutions available for 
non-zero values of γ1, γ2 smoothly extrapolate between the limits 
γ1 = 0 and γ2 = 0 found in [21] and [29]. The results are sum-
marized on Fig. 9 for n = 0.1 but we have checked that they are 
qualitatively similar for different values of n.
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